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Despite more than 40 years of studying Apollo samples, the age and early evolution of the Moon remain 
contentious. Following the formation of the Moon in the aftermath of a giant impact, the resulting 
Lunar Magma Ocean (LMO) is predicted to have generated major geochemically distinct silicate reservoirs, 
including the sources of lunar basalts. Samples of these basalts, therefore, provide a unique opportunity 
to characterize these reservoirs. However, the precise timing and extent of geochemical fractionation 
is poorly constrained, not least due to the difficulty in determining accurate ages and initial Pb isotopic 
compositions of lunar basalts. Application of an in situ ion microprobe approach to Pb isotope analysis has 
allowed us to obtain precise crystallization ages from six lunar basalts, typically with an uncertainty of 
about ±10 Ma, as well as constrain their initial Pb-isotopic compositions. This has enabled construction 
of a two-stage model for the Pb-isotopic evolution of lunar silicate reservoirs, which necessitates the 
prolonged existence of high-μ reservoirs in order to explain the very radiogenic compositions of the 
samples. Further, once firm constraints on U and Pb partitioning behaviour are established, this model 
has the potential to help distinguish between conflicting estimates for the age of the Moon. Nonetheless, 
we are able to constrain the timing of a lunar mantle reservoir differentiation event at 4376 ± 18 Ma, 
which is consistent with that derived from the Sm–Nd and Lu–Hf isotopic systems, and is interpreted as 
an average estimate of the time at which the high-μ urKREEP reservoir was established and the Ferroan 
Anorthosite (FAN) suite was formed.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The lunar magma ocean (LMO) model, proposed after the first 
analyses of the Apollo samples, remains the canonically accepted 
explanation for the magmatic differentiation of the Moon (Wood et 
al., 1970; Elkins-Tanton et al., 2011). In its current form, the model 
predicts the formation of a global magma ocean as a consequence 
of a Moon-forming “giant impact” between the Earth and a Mars-
sized body (Hartmann and Davis, 1975) ∼60 million years (Ma) 

* Corresponding author.
E-mail address: joshua.snape@nrm.se (J.F. Snape).
http://dx.doi.org/10.1016/j.epsl.2016.07.026
0012-821X/© 2016 The Authors. Published by Elsevier B.V. This is an open access article
after Solar System formation at 4567 Ma (Touboul et al., 2007; 
Connelly et al., 2012; Avice and Marty, 2014). Development of the 
major lunar rock suites then occurred as a result of cooling and 
differentiation of this magma ocean, followed by partial melting of 
the mantle reservoirs that formed during differentiation. However, 
the age of the LMO (and the Moon), as well as the time inter-
val required for its crystallization, remain unclear. While W-isotope 
data, suggesting that the short-lived 182Hf was extinct by the time 
of lunar formation (Touboul et al., 2007), place the oldest limit for 
the age of the LMO at about 4500 Ma, the attempts to define the 
youngest limit are based on studies of the oldest identified lunar 
rocks, represented by the highland samples. These samples are in-
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terpreted as remnants of either the primary anorthositic crust (Fer-
roan Anorthosites; FAN) that formed as part of the LMO differenti-
ation sequence, or early plutonic magmatic rocks (Magnesian- and 
Alkali-Suite rocks; Elkins-Tanton et al., 2011; Carlson et al., 2014;
Borg et al., 2015; Pernet-Fisher and Joy, 2016). Crystallization 
age estimates for FANs range from 4290–4570 Ma, while the 
Magnesian-suite rocks have crystallization ages of 4110–4570 Ma, 
but analytical uncertainties for a significant number of these dates 
are often close to 100 million years or more (Borg et al., 2015). 
Such large uncertainties, and the wide range of overlapping ages 
for FAN and Magnesian-suite rocks, have led to the traditional LMO 
model for lunar differentiation being challenged in recent stud-
ies (Borg et al., 2011; Carlson et al., 2014; McLeod et al., 2014;
Gaffney and Borg, 2014). In particular, some of these studies sug-
gested that the age of the Moon and the LMO may be more than 
100 million years younger (i.e. ∼4400 Ma) than indicated by other 
isotopic constraints (e.g. Avice and Marty, 2014). The younger age 
of the Moon, however, conflicts with dates as old as 4417 ± 6 Ma
determined in zircon grains identified in lunar breccias, which 
have been interpreted as placing a lower time limit on the final 
stages of LMO crystallization (Nemchin et al., 2009).

The Apollo mare basalts have younger crystallization ages, typi-
cally between 3800–3000 Ma (e.g. Albee et al., 1970; Turner, 1970; 
Papanastassiou et al., 1970; Davis et al., 1971; Murthy et al., 1971;
Papanastassiou and Wasserburg, 1971; Compston et al., 1971, 
1972; Nyquist et al., 1975, 1979, 1981; Guggisberg et al., 1979;
Tartèse et al., 2013). Nevertheless, the melts from which these 
rocks crystallized are thought to have been sourced from silicate 
reservoirs in the lunar mantle generated during the LMO crys-
tallization, therefore providing a link to this initial phase of the 
Moon’s evolution. As such, four mare basalt and two KREEP-rich 
(material enriched in K, REE and P; Warren and Wasson, 1979) 
basalt samples have been investigated using high spatial resolu-
tion Secondary Ion Mass Spectrometry (SIMS) to obtain a new set 
of Pb isotope data and help constrain early lunar magmatic evolu-
tion.

Previous attempts to apply Pb isotope systematics to fundamen-
tal questions related to the early history of the Moon have utilized 
Thermal Ionization Mass Spectrometry (TIMS) analyses of chemi-
cally separated Pb fractions. While this approach has been success-
fully applied to the investigation of differentiation processes on the 
Earth (e.g. Zartman and Doe, 1981; Kramers and Tolstikhin, 1997), 
the inherently low Pb concentrations in lunar samples (relative to 
those from the Earth) renders the data particularly susceptible to 
the influence of laboratory contamination. The low Pb content in 
lunar samples is thought to be a consequence of extensive loss 
of volatile Pb early in the history of the Moon (e.g. Tatsumoto, 
1970), most likely resulting from the giant Moon-forming im-
pact. This concept is consistent with previous attempts to mea-
sure Pb isotopes in lunar samples (Tatsumoto, 1970; Tera and 
Wasserburg, 1972; Tatsumoto et al., 1987; Gaffney et al., 2007a;
Nemchin et al., 2011), which indicate that the ratio of 238U/204Pb 
(μ) in many lunar rocks is significantly higher (∼100–600) than 
μ-values inferred for the Earth’s mantle (typically ∼8–10; Zartman 
and Doe, 1981; Kramers and Tolstikhin, 1997). These high μ-values 
of lunar rocks also result in very radiogenic Pb isotope composi-
tions, making it difficult to distinguish between analyses represent-
ing Pb accumulated in the samples by in situ radioactive decay of U 
(radiogenic Pb) and those reflecting the initial Pb composition in-
herited during crystallization, or various mixtures of the two. The 
high spatial resolution SIMS approach undertaken here makes it 
possible to limit contamination, focus on the individual phases in 
which Pb is concentrated, and overcome the issues associated with 
the multi component Pb mixtures present in lunar samples, help-
ing to determine both the crystallization ages of these samples and 
their initial Pb compositions.
2. Analytical methods

2.1. Data acquisition

Four of the samples (10044,645; 12039,44; 14072,61 and 
15386,46) were thin sections prepared at NASA Johnson Space Cen-
ter and cleaned with isopropyl alcohol before being carbon coated 
for Scanning Electron Microscope (SEM) analysis. The 12038,263 
and 12063,330 samples were chips mounted in EPOTEK epoxy 
resin blocks at Birkbeck College, University of London. Initial Back 
Scattered Electron (BSE) and elemental mapping of the four thin 
sections was performed at the Open University with a Quanta 3D 
Focused Ion Beam (FIB) Scanning Electron Microscope (SEM), while 
12038,263 and 12063,330 were mapped at Birkbeck College using 
a JEOL JXA-8100 electron microprobe (Fig. A.1). Both instruments 
were fitted with Oxford Instruments INCA energy dispersive X-ray 
(EDS) detectors. Acquisition of additional BSE and elemental maps 
was performed with a Quanta 650 Field Emission Gun (FEG) SEM 
and accompanying Oxford Instruments EDS detector at Stockholm 
University. For all three SEM setups, the mapping and analysis of 
the samples was conducted with an electron beam accelerating 
voltage of 15–20 kV at a working distance of 10–15 mm. The BSE 
and element maps were then used to identify phases for SIMS 
analyses; these included plagioclase and pyroxene grains, as well 
as accessory phases (such as K-Feldspar and K-rich glass; Fig. A.2), 
which were identified based on regions of high-K and high-Si.

Following SEM documentation of the samples and prior to the 
SIMS analyses, the samples were cleaned with isopropyl alcohol 
before applying a 30 nm thick gold coat. The Pb isotopic compo-
sitions of various phases (Table B.1) were determined over three 
analytical sessions using a CAMECA IMS 1280 ion microprobe at 
the NordSIMS facility in the Swedish Museum of Natural His-
tory, Stockholm, using a methodology similar to that outlined in 
previous studies (Whitehouse et al., 2005; Nemchin et al., 2011;
Bellucci et al., 2015). Apertures in the primary column were used 
to generate a slightly elliptical O−

2 sample probe with dimensions 
appropriate to the target. The smaller accessory phases (including 
K-feldspar and K-rich glass) were analysed using a ∼10 μm spot 
(beam current ca. 2–3 nA), while larger accessory phases and pla-
gioclase grains were analysed with either a ∼20 μm spot (beam 
current ca. 10–12 nA), or a ∼30 μm spot (ca. 19–20 nA) (Fig. A.2). 
Prior to each measurement, an area of 20–35 μm around the spot 
location was rastered for 60 s in order to remove the gold coating 
and minimise possible surface contamination. The instrument was 
operated in high-transmission mode, corresponding to a transfer 
magnification of 160×. In this mode, the field aperture size was 
chosen to limit the field of view on the sample surface (i.e. the 
area from which ions will be admitted to the mass spectrome-
ter) to be bigger than the unrastered spot but smaller than the 
rastered area, further minimising the possibility of surface contam-
ination. The mass spectrometer was operated at a nominal mass 
resolution of 4860 (M/�M), sufficient to resolve Pb from known 
molecular interferences. An NMR field sensor regulated the stabil-
ity of the magnetic field. Pb-isotopes were measured simultane-
ously in multi-collector mode using four low-noise (<0.01 counts 
per second) ion counting electron multipliers (Hamamatsu 416) 
with electronically gated deadtimes of 60 ns. Background counts 
for each channel were measured at regular intervals during each 
session. The average background counts for each session were used 
to correct the sample analyses and are presented in Table B.2.

Analyses of the USGS basaltic glass reference material, BCR-2G, 
were used to correct for mass fractionation and detector gain cal-
ibration. The BCR-2G analyses were all within ±5% of the values 
presented by Woodhead and Hergt (2000), and these deviations 
were used to generate correction factors for the data. The re-
producibility of the BCR-2G analyses for all three sessions were 
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Fig. 1. Schematic illustration of the mixing relationships observed in the datasets 
between initial Pb, radiogenic Pb and terrestrial contamination, and how these re-
late to the data filtering procedure.

as follows: 208Pb/206Pb = 0.63%, 0.46% and 0.38%; 207Pb/206Pb =
0.24%, 1.27% and 0.19%; 208Pb/204Pb = 0.81%, 1.48% and 0.24%; 
207Pb/204Pb = 1.18%, 0.86% and 0.33%; 206Pb/204Pb = 0.95%, 1.91% 
and 0.14% (reported as 2σ standard deviations from the average 
values for each session). Data were then processed using in-house 
SIMS data reduction spreadsheets and the Excel add-in Isoplot 
(version 4.15; Ludwig, 2008).

Follow-up SIMS analyses provided an approximate measure of 
the 238U/208Pb ratios for multiple spots within several of the sam-
ples. These were performed using a 4–5 nA O2− primary beam 
to produce a slightly elliptical ∼10 μm spot on the surface of the 
sample, within the areas previously analysed for Pb isotopic com-
positions. The 238U/208Pb analyses were made in mono-collector 
mode, with each analysis preceded by a series of automated cen-
tring and optimization procedures using the 208Pb peak. The data 
collection routine then consisted of 30 cycles through the 208Pb 
and 238U masses. Note, these measurements were not calibrated 
with representative standards for the individual minerals mea-
sured and are simply used here to provide an indication of the 
238U/208Pb ratio. They should not, for example, be used to con-
struct U/Pb isochrons.

2.2. Data processing

The SIMS technique was applied to generate a large dataset 
(Fig. A.3; Table B.1), which has been filtered to discriminate ob-
vious terrestrial contamination, yield isochrons and define initial 
Pb isotope compositions (Figs. 1; A.3). The Pb isotopic composi-
tions determined for each of the samples are interpreted as rep-
resenting mixtures between three main components: [1] an initial 
Pb component incorporated into the rock at the time of crystal-
lization; [2] Pb generated by the in situ decay of U; and [3] ter-
restrial contamination. On a 207Pb/206Pb vs. 204Pb/206Pb plot, the 
trend between the first two components is a primary isochron 
and is defined by the points with the lowest 204Pb/206Pb values 
for particular 207Pb/206Pb ratios that form the steepest trend on 
the diagram. This isochron was used to determine the crystalliza-
tion age of each sample. The presence of terrestrial contamination 
will lead to points falling to the right of the isochron and towards 
the composition of modern terrestrial Pb (Stacey and Kramers, 
1975). As such, the data for each sample were filtered so as to 
define a statistically significant isochron (MSWD <2; probability of 
fit >0.1) on a 207Pb/206Pb vs. 204Pb/206Pb plot with no analytical 
points lying to the left of it (Fig. 1). The analyses removed dur-
ing this filtering process include those with the lowest count rates 
and, consequently, the largest analytical uncertainties (Fig. A.4; Ta-
ble B.1). An exception to this was the Apollo 15 KREEP basalt sam-
ple (15386,46), for which it was not possible to obtain an isochron 
with an MSWD <5.3 based on the current dataset. In addition to 
the three main components discussed, some contribution to the 
measured Pb isotope compositions may in theory also come from 
meteoritic material and contamination from an old (>3.9 Ga) lunar 
Pb component identified in previous studies (Tera and Wasserburg, 
1974; Borg et al., 2011), which has been interpreted as being dis-
tributed across the lunar surface due to volatilization of Pb by 
impacts during the period of heavy bombardment that character-
ized early lunar history. A conceivable mechanism for introducing 
one or both of these components into unaltered basaltic samples 
that postdate this period is through interaction of the lower part of 
the basaltic flow with the lunar surface during the basalt extrusion. 
However, the bulk of the basaltic flow is unlikely to have been af-
fected. Furthermore, mixing of these components during eruption 
of the basalts will have resulted in an effective mixing and homog-
enization of different initial Pb components on the sample scale 
and will, therefore, have no effect on the way the Pb/Pb isochrons 
are constrained. The possible presence of such contamination may 
be confirmed or disproved with further analyses of samples inter-
preted to represent different parts of individual basalt flows.

The data were also filtered in order to remove any analyses 
where the count rates for any of the Pb isotopes were very low 
and effectively below detection limits (<3× the measured back-
ground count rates; Tables B.1; B.2). In the dataset presented here, 
it is also notable that the analyses with the largest analytical er-
rors and lowest Pb counts are also typically those with the highest 
204Pb/206Pb ratios (Fig. A.3; Table B.1). This is interpreted as evi-
dence that the points with the lowest counts of Pb are also those 
that are most affected by the presence of terrestrial contamination.

3. Results

The Apollo 11 basalt (10044) yields a crystallization age of 
3688 ± 5 Ma, while the three Apollo 12 basalts (12038, 12039 and 
12063) have crystallization ages of 3242 ± 13 Ma, 3129 ± 10 Ma
and 3193 ± 11 Ma, respectively (Fig. 2). A crystallization age of 
3905 ±8 Ma is determined for the high-Al (and KREEP-rich) Apollo 
14 basalt (14072), and 3884 ± 76 Ma for the Apollo 15 KREEP 
basalt (15386; Fig. 2). The uncertainties for each of these ages are 
quoted at the 2σ level.

For 10044, the analysis with the highest 207Pb/206Pb ratio (and 
therefore the most likely to represent an initial Pb component) is 
within error of several analyses obtained in a separate study for 
a similarly aged, low-K, ilmenite basalt 10047 (Fig. 2a; Rasmussen 
et al., 2008). As such, we have taken an average of the analyses 
in our dataset with the highest 207Pb/206Pb ratios and those in 
the data presented by Rasmussen et al. (2008), as being the best 
indication of the initial Pb component in the Apollo 11 ilmenite 
basalt suite. In 12038 and 12063, the highest 207Pb/206Pb compo-
sitions are represented by a single measurement in each sample. 
Therefore, we have no option but to use these compositions as 
the closest estimate for the initial Pb component in each sam-
ple. Although these initial Pb values may slightly underestimate 
the 207Pb/206Pb and 204Pb/206Pb ratios of the true initial composi-
tion, they nonetheless provide the lowest possible limit. In 12039, 
we interpret a clustering of K-feldspar compositions as represent-
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Fig. 2. 207Pb/206Pb vs. 204Pb/206Pb plots of filtered datasets from: (a) 10044,645; (b) 12038,263; (c) 12039,44; (d) 12063,330; (e) 14072,61; and (f) 15386,46. The isochrons 
determined for each sample have been indicated with dashed lines. Also shown are the growth lines for our two-stage model of lunar Pb isotope growth for each sample, 
from the model Pb isotopic composition at t1 (4376 ± 18 Ma) to the time of crystallization. Error bars are at 2σ uncertainties.
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Fig. 3. 207Pb/206Pb vs. 204Pb/206Pb plot of complete dataset from 15386,46. In ad-
dition to the sample isochron, a second trend (indicating the mixing between the 
initial Pb component and terrestrial contamination) has been illustrated to demon-
strate the calculation of the initial Pb composition for that sample. The modern 
terrestrial Pb composition illustrated here is taken from the model of Stacey and 
Kramers (1975).

ing the initial Pb component of the sample (Fig. 2c). A weighted 
average of all analyses from this cluster was taken as the best es-
timate for this initial Pb composition. For 14072, three plagioclase 
analyses were interpreted as providing the closest approximation 
to initial Pb compositions (Fig. 2e). In the case of 15386, the anal-
yses with the highest 207Pb/206Pb ratios fall significantly to the 
right of the sample isochron in the 207Pb/206Pb vs. 204Pb/206Pb co-
ordinate space (Fig. 3). This is interpreted to be a result of minor 
terrestrial contamination. Consequently, an initial Pb composition 
for this sample has been estimated by calculating the intercept 
between the sample isochron and the mixing trend between the 
initial Pb component and the terrestrial contaminant (Fig. 3).

The measured 238U/208Pb ratios determined in several of the 
samples provide a first order check that the obtained Pb isotopic 
compositions do indeed represent a mixture between initial and 
radiogenic Pb. In the locations interpreted as having Pb isotopic 
compositions closer to initial values, the U content is confirmed as 
being lower than in the locations interpreted as containing radio-
genic Pb supported by the in situ decay of U (Fig. 4).

4. Discussion

4.1. Comparison of basalt ages with previous studies

The crystallization ages determined here are in broad agree-
ment with previous studies (Fig. 5; Table B.3; cited in the following 
discussion with 2σ uncertainties). Two separate studies of 10044 
determined Rb–Sr ages of 3700 ±70 Ma and 3710 ±110 Ma (Albee 
et al., 1970; Papanastassiou and Wasserburg, 1971). Early analyses 
of this sample also determined a range of 39Ar–40Ar plateau ages; 
3740 ± 50 Ma, 4000 ± 70 Ma and 3710 ± 40 Ma (Turner, 1970;
Davis et al., 1971; Guggisberg et al., 1979). Note, these 39Ar–40Ar 
and Rb–Sr ages reflect the original reported values and have not 
been recalculated for updated monitor ages and decay constants. 
More recently, Tartèse et al. (2013) determined a 207Pb/206Pb age 
Fig. 4. Plot of 238U/208Pb vs. 207Pb/206Pb for points within four of the analysed 
samples. Note that the 238U/208Pb ratio decreases notably for points with a high 
207Pb/206Pb. This indicates that the Pb present in these locations cannot be sup-
ported by the in situ decay of U and most likely represents the best estimate for 
the initial Pb composition in each sample. Note, these measurements were not cal-
ibrated with representative matrix-matched standards for the individual minerals 
and are simply used here to provide an indication of the 238U/208Pb ratio.

Fig. 5. Comparison of crystallization ages determined in this work (colour symbols) 
with those of previous studies (black symbols). See main text and Table B.3 for 
references. Error bars indicate 2σ uncertainties.

of 3722 ± 11 Ma for the sample with in situ analyses of tranquilli-
tyite. The tranquillityite 207Pb/206Pb age is significantly older than 
the age determined in this study for 10044 (3688 ±5 Ma), but was 
determined from the weighted average of 207Pb/206Pb ages from 
very radiogenic Pb isotope compositions, which were not corrected 
for the presence of initial lunar Pb. These compositions all lie at 
the extreme lower end of the isochron in Fig. 2a. If the tranquilli-
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Fig. 6. 207Pb/206Pb vs. 204Pb/206Pb plot comparing the 10044 data from this study with the tranqullityite analyses reported by Tartèse et al. (2013). Error bars indicate 2σ
uncertainties.
tyite data from Tartèse et al. (2013) are combined with those from 
this study, both datasets fall on the same isochron and an overall 
age of 3687 ± 4 Ma (MSWD = 1.3) is obtained (Fig. 6).

Previous estimates for the crystallization age of the Apollo 
12 feldspathic basalt (12038) were made using Rb–Sr isochrons 
(3280 ± 210 Ma and 3350 ± 90 Ma; Compston et al., 1971;
Nyquist et al., 1981) and Sm–Nd analyses (3280 ± 230 Ma; Nyquist 
et al., 1981). The crystallization age of the pigeonite basalt, 12039, 
was also determined by the Rb–Sr method (3190 ± 60 Ma; Nyquist 
et al., 1979) and Sm–Nd analyses (3200 ± 50 Ma; Nyquist et al., 
1979). The ilmenite basalt, 12063, has been dated in two separate 
Rb–Sr studies, yielding ages of 3340 ± 100 Ma and 3300 ± 130 Ma 
(Murthy et al., 1971; Papanastassiou and Wasserburg, 1971).

Early analyses of 14072 determined a Rb–Sr age of 3990 ±
90 Ma (Compston et al., 1972) and a 39Ar–40Ar age of 4040 ±
50 Ma (York et al., 1972; uncorrected for new monitor ages and 
decay constants). The crystallization age of the Apollo 15 KREEP 
basalt sample, 15386, was first determined by Rb–Sr analyses as 
3940 ± 10 Ma (Nyquist et al., 1975). A slightly younger, but consis-
tent Sm–Nd age of 3850 ± 80 Ma was determined by Carlson and 
Lugmair (1979). This age of ∼3800–3900 Ma is common in Apollo 
15 KREEP basalt samples and has, therefore, been interpreted 
as representing a period of widespread KREEP volcanism in the 
nearside Procellarum KREEP Terrane (Carlson and Lugmair, 1979;
Taylor et al., 2012).

4.2. Pb isotope source reservoir evolution models

The initial Pb compositions estimated for all the investigated 
samples are extremely radiogenic, indicating prolonged growth of 
radiogenic Pb in high-μ reservoirs, which is consistent with the 
hypothesis that the Moon experienced profound Pb-loss during it’s 
early evolution. Although single stage model ages are clearly an 
oversimplification of the true Pb isotope evolution of lunar reser-
voirs, they can provide an estimate of the time when such high-μ
reservoirs were established, providing that there was no signifi-
cant change in the μ-values of the different reservoirs since the 
initial loss of Pb from the Moon. These model ages were calcu-
lated for the source reservoirs of each of the samples based on 
the obtained Pb/Pb isochron ages and initial Pb isotope composi-
tions, giving: 4525 ± 32 Ma for 10044, 4423 ± 20 Ma for 12038, 
4466 ± 10 Ma for 12039, 4417 ± 20 Ma for 12063, 4423 ± 77 Ma
for 14072 and 4384 ± 63 Ma for 15386 (all uncertainties are 2σ ). 
The scatter of these model ages indicates that the evolution of Pb 
recorded by the analysed samples cannot be explained by a sim-
ple single differentiation event on the Moon that coincided with 
its formation and simultaneously resulted in the overall Pb loss 
from the Moon and differentiation of the lunar mantle into several 
reservoirs with distinct μ-values.

Fortunately, Pb isotopes also offer an opportunity to evaluate 
two-stage models, with the advantage of gaining additional infor-
mation related to the Pb isotope evolution of the Moon, with an 
assumption that the formation of the Moon and its differentiation 
are separated by some time exceeding the errors defined by the 
analytical uncertainties. These two-stage source reservoir Pb evolu-
tion models were calculated, assuming the sources of mare basalts 
and the primordial KREEP reservoir (i.e. urKREEP; Warren and 
Wasson, 1979) differentiated at approximately the same time (t1) 
from a single primordial lunar reservoir with a common μ-value 
(μ1), which acquired its Pb isotope composition as a result of ra-
dioactive decay before differentiation (between t0 and t1; Fig. 7a). 
Starting with the Pb isotope composition of Canyon Diablo Troilite 
(CDT values; Göpel et al., 1985), a two-stage model was calcu-
lated for a range of t0 times (between 4567 and 4400 Ma) in order 
to obtain corresponding values for μ1 (primordial lunar reservoir) 
and μ2 (six values for the source of each basalt investigated), as 
well as the age of differentiation and the Pb isotope composition 
at this time (see Appendix C for discussion of model calculations). 
The model was calculated using nonlinear regression fitting func-
tion in Matlab in order to optimize the fit with the ages and 
initial Pb compositions of all investigated samples. These calcula-
tions were initially performed assuming that the μ-values of the 
Earth–Moon precursor materials were low enough that there was 
no significant evolution of the Pb isotope compositions away from 
CDT values between 4567 Ma (Connelly et al., 2012) and t0. Ad-
ditional model runs were then performed assuming a range of 
precursor μ-values, allowing for Pb isotope compositions more ra-
diogenic than CDT prior to the formation of the Moon. The results 
(Figs. 7b and 8a) indicate that changing t0 does not produce any 
significant variation in time of differentiation, with t1 being cen-
tred at 4376 ± 18 Ma (2σ ) for t0 of 4500 Ma and estimates for all 
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Fig. 7. (a) The stages of Pb isotopic evolution, starting from Solar System formation, 
defined by Calcium Aluminium Inclusion formation at 4567 Ma (Connelly et al., 
2012), and assuming Canyon Diablo Troilite Pb isotope compositions (CDT; Göpel et 
al., 1985). The solid arrows indicate stages represented by the two-stage model in 
this study. (b) 207Pb/206Pb vs. 204Pb/206Pb plot illustrating the two-stage Pb isotopic 
growth model with t0 set at 4500 Ma. Dashed curves indicate the growth curves 
constructed with the mean model values, while the surrounding fields indicate 2σ
uncertainties of these values. The initial Pb compositions determined for each sam-
ple are plotted as diamonds, colour coded to the model growth curves. Error bars 
indicate 2σ uncertainties.

other t0 values ranging within this 18 Ma uncertainty (Table B.4). 
A similarly limited variability is observed for the Pb isotope com-
position at the time of differentiation (204Pb/206Pb = 0.036 ±0.004
and 207Pb/206Pb = 1.59 ± 0.02; Fig. 7b) and, as a consequence, the 
μ2-values (372 ± 14 for 10044, 534 ± 4 for 12038, 643 ± 4 for 
12039, 419 ±7 for 12063, 2604 ±185 for 14072 and 3675 ±271 for 
15386; Table B.4). The μ1-value is the only parameter that changes 
significantly with changing the model start time (274 ± 50 when 
t0 = 4567 Ma and 1063 ± 184 when t0 = 4425 Ma; Fig. 8a). The 
uncertainties on these model values are quoted at the 2σ level. 
The model calculation becomes less stable when t0 moves closer to 
t1, indicating that it is becoming increasingly difficult to fit all the 
analytical data into a two-stage model. This loss of stability is re-
flected in the increased uncertainty of μ1 estimates corresponding 
to the younger t0 values (e.g. μ1 = 1557 ±727 when t0 = 4400 Ma; 
Fig. 8a; Table B.4).

Initial 208Pb/204Pb compositions were determined for all of the 
mare basalts and 14072 (it was not possible to determine the ini-
tial 208Pb/204Pb composition of 15386 with the current data set). 
Within the uncertainties of these initial compositions, the samples 
can all be modelled as having evolved from t1 (4376 Ma) until 
their respective crystallization ages with a κ-value (232Th/238U) of 
3.90 ± 0.64 (Fig. 9), which is similar to estimates for the terres-
trial and martian systems (Zartman and Doe, 1981; Kramers and 
Tolstikhin, 1997; Bellucci et al., 2015).

4.3. Model interpretation and implications

Two-stage Pb evolution models, such as the one proposed by 
Stacey and Kramers (1975), have been an important initial step in 
the understanding of terrestrial evolution and chemical differenti-
ation. Although these models cannot describe the full complexity 
Fig. 8. Model μ-value comparisons. (a) Variation in μ1- and μ2-values depending 
on the two-stage model starting time (t0). The μ1-values decrease if Pb isotope 
evolution in a high-μ (e.g. μ = 200) reservoir prior to t0 is considered, as is illus-
trated by the dashed black lines, representing the lower limits of the μ1-values for 
a precursor with μ = 0 and μ = 200. (b) The compositions resulting from mixing 
high-μ materials with low-μ terrestrial material (four filled circles, colour coded to 
Pb growth curves) lie on an isochron connecting the growth curves at the time of 
mixing (the 4376 Ma isochron provides an arbitrary example). The growth curves 
are calculated from Canyon Diablo Troilite Pb isotope composition (CDT; Göpel et 
al., 1985).

of the Earth’s history, when combined with information obtained 
from other isotope systems, they have led to the development of 
the modern field of mantle chemical geodynamics over the past 
40 years. The Stacey and Kramers (1975) model is still widely 
used in all chronological studies to determine composition of ini-
tial Pb when applying corrections to the U–Pb data obtained for 
the principal geochronometers, such as zircon, monazite, titanite 
etc. Similarly, the Pb evolution model presented here for the Moon 
is the first step in a better understanding of the dynamics and 
differentiation of lunar mantle. It is important, therefore, to de-
termine the significance and limitations of the ages and μ-values 
defined by this model.

4.3.1. μ-Value of the Bulk Silicate Moon and implications for the age of 
the Moon

The two-stage model calculations based on the currently avail-
able data cannot provide a unique and precise set of values for 
the age of the Moon and the μ-value of the Bulk Silicate Moon 
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Fig. 9. Plot of the best estimates for the initial 208Pb/204Pb compositions plotted 
against X = eλ232t1 −eλ232ti

eλ238t1 −eλ238ti
× ( 6

4 i − 6
4 1), such that the slope of the trend is equal to 

the κ-value of the system, given that: 208Pb
204Pb i

= κ eλ232t1 −eλ232ti

eλ238t1 −eλ238ti
× ( 6

4 i − 6
4 1) + 208Pb

204Pb 1
.

(i.e. μ1) acquired during its formation. Nevertheless, the model 
highlights the relationship between the time of lunar formation 
and the μ1-value (Fig. 8), such that if one of these parameters can 
be determined independently, the other one would be defined by 
the Pb isotope systematics described in this study. For example, ac-
cepting the recently proposed young age for the Moon (Borg et al., 
2011; Carlson et al., 2014; McLeod et al., 2014), requires a compar-
atively high first stage μ1-value (1063 ± 184 when t0 = 4425 Ma
or 1557 ± 727 when t0 = 4400 Ma), as well as a 2–5× decrease 
of the μ2-values in the mare basalt sources relative to that of 
the undifferentiated LMO and a 2–3× increase of the μ2-values 
in urKREEP. Conversely, older lunar formation requires more mod-
erate μ1-values (e.g. 462 ± 46 when t0 = 4500 Ma), a negligi-
ble change in μ-values between the undifferentiated LMO and 
mare basalt sources, and a 5–10× increase to reach the urKREEP 
μ2-values. Regardless of the precise age of the Moon, the model 
places constraints on LMO crystallization and the formation of ma-
jor lunar silicate reservoirs (Fig. 8a; Table B.4), as the Pb isotope 
modelling restricts the range of μ2-values for both the mare basalt 
sources (∼300–700) and urKREEP (∼2500–3500).

So long as U and Pb partitioning behaviour between melt and 
the main rock forming minerals is well constrained, any LMO 
differentiation model that defines a specific set of μ1–μ2 rela-
tionships will uniquely determine the age of the Moon. While 
estimates of U and Pb partition coefficients are available (e.g. 
Green, 1994; Bindeman et al., 1998; Bindeman and Davis, 2000;
Fonseca et al., 2014), to date, no study has determined coefficients 
for both elements from a single set of experiments. Thus, pre-
diction of the relative behaviour of these elements in magmatic 
fractionation processes will be imprecise and prevent full applica-
tion of the Pb-isotope model presented here.

While the two-stage Pb evolution model appears to have the 
capacity to describe the early evolution of the Moon within the 
framework of the LMO crystallization sequence, it is necessary to 
consider several complications, which may violate the model. The 
estimated first stage μ-value is likely to be an integrated result 
of several discrete or continuous changes in the U–Pb ratio of 
the primordial lunar reservoir, rather than a single increase at the 
starting time of the model. However, achieving a high-μ early in 
the differentiation history is necessary to attain the observed ra-
diogenic Pb compositions. This supports the conclusion of earlier 
work that Pb volatility is the major factor in its depletion in the 
Moon. Sequestration of Pb into the lunar core as it formed could 
provide one alternative way to increase the μ-value of the pri-
mordial lunar reservoir. In the case of the Earth, formation of a 
volumetrically large core only generated, at most, a ∼10× increase 
in terrestrial mantle μ-values (Kramers and Tolstikhin, 1997). Ad-
ditionally, the segregation of the Martian core did not increase the 
μ-value of the Martian mantle by a substantial amount (Bellucci 
et al., 2015). By comparison, the Moon has a relatively small core 
(∼20% of its mean radius; Weber et al., 2011), making it impossi-
ble by mass balance to explain the high-μ (exceeding 300–400) by 
core segregation, which instead would have more likely resulted in 
a comparatively minor, and currently unresolved, μ-value increase 
during the first stage of the model (between μ1–μ2).

An alternative to profound Pb loss during the formation of the 
Moon, which can possibly explain the Pb isotope compositions ob-
served in lunar samples, is to consider high-μ precursor material, 
for example, a high-μ impactor colliding with the Earth in the 
Moon forming giant impact. This scenario would allow for more 
radiogenic Pb isotope compositions to have evolved prior to t0. In 
a simplistic case where the precursor material is considered as 
a single reservoir (i.e. neglecting the effects of mixing between 
the early Earth and the giant impactor), the Pb isotope composi-
tions can be explained with a μ1-value of 791 ± 301 when t0 is 
4400 Ma, if the precursor has a μ-value of 200 and formed at 
about the same time as the Solar System (Fig. 8a). However, gi-
ant impact models commonly predict that the primordial Moon 
would contain tens of percent (by mass) of material from the Earth 
(Canup and Asphaug, 2001). Since a high-μ impactor would be ex-
pected to have a low concentration of Pb due to the volatile nature 
of Pb and refractory nature of U, even small amounts (e.g. 10%) 
of terrestrial material (assuming a μ-value of ∼8) will dominate 
the Pb budget of any mix with such an impactor. For example, 
even an impactor μ-value of 2000 (which seems highly unlikely 
given the comparatively low μ-values observed in other plane-
tary bodies; Zartman and Doe, 1981; Kramers and Tolstikhin, 1997;
Gaffney et al., 2007b; Amelin, 2008; Bellucci et al., 2015), would 
be little different to CDT starting composition (Fig. 8b), unless a 
high-μ early Earth is considered (Albarède, 2009).

4.3.2. Reservoir differentiation and crystallization of the Lunar Magma 
Ocean

The two isotopically distinct groups of reservoirs predicted in 
the second stage of this model have about a five-fold difference in 
μ-value. One is the source of the mare basalts and the other is 
a KREEP-rich reservoir (urKREEP: Warren and Wasson, 1979). Both 
are anticipated to form in a classic LMO model crystallization se-
quence (e.g. Wood et al., 1970; Elkins-Tanton et al., 2011). While 
the urKREEP represents a very small (a few percent maximum) 
portion of the LMO residual melt, the source of the mare basalts 
is considered to be an olivine–pyroxene cumulate formed during 
LMO crystallization (e.g. Wood et al., 1970; Snyder et al., 1992). 
Having estimates of the μ-values for these reservoirs allows for 
some simple first order constraints to be made in relation to the 
differentiation of the LMO based on the known behaviour of U and 
Pb in magmatic systems, even though exact partition coefficients 
for these elements are not very well constrained. Both are consid-
ered to be very incompatible with the available estimates of parti-
tion coefficients between most rock forming minerals and basaltic 
melt falling below 0.01 (e.g. Green, 1994; Fonseca et al., 2014). If 
that is the case, more than 90% of the original U and Pb will have 
remained in the residual melt, even after 99.99% of the LMO crys-
tallized. Therefore, in the absence of phases concentrating signifi-
cant amounts of Pb, fractional crystallization of the LMO appears 
not to be capable of changing the residual melt μ-value by more 
than about 10%, and certainly not the 2–10× increase predicted 
by the model for urKREEP, unless the initial μ-value that the 
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Moon acquired during its formation was similar to that estimated 
for urKREEP. Alternatively, the observed increase in the urKREEP 
μ-value could be unrelated to the magmatic differentiation process 
and explained instead by a significant loss of Pb from the resid-
ual LMO liquid. For example, degassing of the residual LMO liquid 
has been proposed following comparative studies of Cl isotope sig-
natures in mare basalts and KREEP-rich rocks (Boyce et al., 2015;
Barnes et al., 2016).

Two groups of minerals provide likely candidates as Pb sinks in 
the assemblages crystallizing from the LMO; sulfides and feldspars. 
If all U stays in the residual melt, fractionation of an assem-
blage with a bulk Pb partition coefficient of around 0.25 is re-
quired to achieve a 2× increase in the μ-value of the remain-
ing 5% of melt. Taking into account that it is likely only part of 
the entire LMO cumulate pile is characterized by increased Pb 
concentrations, a partition coefficient of 0.4–0.5 would be more 
realistic to explain the urKREEP μ-value. Fractionation of sul-
fides during LMO crystallization is feasible, but the lack of sam-
ples representing this process in the existing collection of lunar 
rocks means that this possibility cannot be tested in great de-
tail. However, the FAN samples thought to represent the primary 
feldspathic crust are an important product of LMO crystallization. 
Results of Pb isotope studies of the FAN samples (e.g. Premo et 
al., 1999) indicate that plagioclase in these samples has a range 
of μ-values between ∼1 and 30, supporting the assumption that 
this mineral can extract two orders of magnitude more Pb than 
U out of its parent melt. This is further supported by studies 
of U and Pb partitioning in plagioclase Bindeman et al., 1998;
Bindeman and Davis, 2000.

A number of recent chronological results are easier to explain 
if the observed increase in the μ-value characterizing KREEP-
rich materials is linked to FAN formation, in particular younger 
ages of some FAN samples similar to the Nd and Hf model ages 
of KREEP-rich samples (Borg et al., 2011; Carlson et al., 2014;
McLeod et al., 2014). In fact, of all the related analytical data 
recently obtained, the most difficult to explain is the range of 
142Nd model ages of several FAN samples presented by Boyet et 
al. (2015), which indirectly supports protracted crystallization of 
the anorthositic lunar crust, and the large 142Nd deficit in one 
sample (62255), which is impossible to explain if it formed after 
∼4440 Ma. The two-stage Pb model likely provides a good ap-
proximation for the time (4376 ± 18 Ma) for the crystallization 
of the mineral assemblage that ultimately resulted in FAN forma-
tion as well as producing the enrichment of incompatible elements 
in the residual melt, leading to the high-μ isotopic signature of 
urKREEP. This Pb model age is further supported by a majority of 
the Nd and Hf model ages for similar rocks (Borg et al., 2011;
Carlson et al., 2014; McLeod et al., 2014), and may not date the 
precise timing of urKREEP (and FAN) formation, but rather an aver-
age time of a potentially complex process that could have extended 
over a few million to a few tens of millions of years.

As discussed in the previous section (4.3.1), since U and Pb par-
titioning behaviour is not well understood, the two-stage Pb model 
presented here is currently not in conflict with either an “old” or 
a “young” Moon. Resolution of the conflict regarding the forma-
tion of the Moon has implications for defining a unique time for 
the formation of the mare basalt sources. If the Moon is “old”, and 
the μ-values of the mare basalt sources are similar to that of the 
primordial lunar reservoir, then the time of mare basalt source for-
mation is difficult to determine as it will effectively be invisible 
within the two-stage model, where formation of urKREEP and FAN 
dominates the fractionation of U and Pb in the LMO. More incom-
patible behaviour of U (relative to Pb), will imply late formation 
of both the LMO and the Moon, in which case the 4376 ± 18 Ma
age will also encompass the time of mare basalt source formation, 
satisfying the main assumption of the two-stage model, that the 
differentiation took place at a single point in time from a previ-
ously undifferentiated reservoir.

Similar uncertainty with low-Ti basalts exists in the Nd isotopic 
dataset. The olivine and pigeonite basalts investigated by McLeod 
et al. (2014) are not fractionated far enough from the primitive 
reservoir to provide any definitive differentiation time constraints 
on their own in the 142Nd–143Nd system. This behaviour is re-
markably similar to that of the Pb isotope systematics described 
above, which indicates that the mare basalt sources do not show 
a significant change in either their μ-value or Sm–Nd ratio, rela-
tive to that of the undifferentiated Moon and, consequently, the 
model age of differentiation defined by both systems at about 
4370–4380 Ma defines the average time of urKREEP differentiation 
and FAN formation, but not necessarily the separation of the mare 
basalt sources. As such, neither the Pb nor Nd isotope systems 
can be used to determine exactly when these mare basalt mantle 
sources formed. Strictly speaking the “young” (∼4340–4390 Ma) 
ages in the McLeod et al. (2014) data are defined by an Apollo 15 
KREEP basalt and Apollo 17 high-Ti basalts, which are assumed to 
represent some of the final differentiates of the LMO, i.e. ilmenite-
rich cumulates and urKREEP (e.g. Warren and Wasson, 1979;
Snyder et al., 1992).

5. Conclusions

By using SIMS analyses to determine the Pb isotope composi-
tions of multiple phases in lunar basalts, crystallization ages have 
been determined that are both consistent with previous studies 
and, in most cases, significantly more precise. In addition to these 
ages, the data have been used to constrain the isotopic composi-
tions of Pb incorporated into the basalts when they crystallized, 
from which a two-stage model has been constructed for the Pb-
isotopic evolution of major lunar silicate reservoirs. This model is 
necessarily a simplification of the early magmatic differentiation of 
the Moon, omitting the effects of processes such as core segrega-
tion. Nonetheless, it provides a framework upon which subsequent 
studies can build, and several important constraints for the tim-
ing of key stages in this evolution and Pb isotope compositions at 
these stages. In principle, the model is capable of resolving uncer-
tainty over the age of the Moon, but this requires better knowledge 
of U and Pb partitioning behaviour in magmatic systems. The Pb 
isotope data support a major magmatic event on the Moon at 
4376 ± 18 Ma, possibly representing the average age of urKREEP 
and FAN formation. Following this event the mare basalt sources 
evolved with relatively low μ-values (370–640), while the KREEP 
reservoir acquired a significantly larger μ-value (2600–3675).
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