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The Mesozoic Era featured emplacement of a number of Large Igneous Provinces (LIPs), formed by the 
outpouring of millions of cubic kilometres of basaltic magma. The radiometric ages of several Mesozoic 
LIPs coincide with the dates of Oceanic Anoxic Events (OAEs). As a result of these coincidences, a causal 
link has been suggested, but never conclusively proven. This study explores the use of mercury as 
a possible direct link between the Karoo–Ferrar LIP and the coeval Toarcian OAE (T-OAE). Mercury 
is emitted to the atmosphere as a trace constituent of volcanic gas, and may be distributed globally 
before being deposited in sediments. Modern marine deposits show a strong linear correlation between 
mercury and organic-matter content. Results presented here indicate departures from such a simple 
linear relationship in sediments deposited during the T-OAE, and also during the Pliensbachian–Toarcian 
transition (an event that saw elevated benthic extinctions and carbon-cycle perturbations prior to the 
T-OAE). A number of depositional settings illustrate an increased mercury concentration in sediments 
that record one or both events, suggesting a rise in the depositional flux of this element. Complications to 
this relationship may arise from very organic-rich sediments potentially overprinting any Hg/TOC signal, 
whereas environments preserving negligible organic matter may leave no record of mercury deposition. 
However, the global distribution of coevally elevated Hg-rich levels suggests enhanced atmospheric 
mercury availability during the Early Toarcian, potentially aided by the apparent affinity of Hg for 
terrestrial organic matter, although the relative importance of aquatic vs terrestrial fixation of Hg 
in governing these enrichments remains uncertain. A perturbation in atmospheric Hg is most easily 
explained by enhanced volcanic output. It is suggested that extrusive igneous activity caused increased 
mercury flux to the Early Toarcian sedimentary realm, supporting the potential of this element as a 
proxy for ancient volcanism. This interpretation is consistent with a relationship between LIP formation 
and a perturbed carbon cycle during the Pliensbachian–Toarcian transition and T-OAE. The recording 
of these two distinct Hg excursions may also indicate that the Karoo–Ferrar LIP released volatiles in 
temporally distinct episodes, due either to multiple phases of magmatic emplacement or sporadic release 
of thermogenic gaseous products from intrusion of igneous material into volatile-rich lithologies.

Crown Copyright © 2015 Published by Elsevier B.V. This is an open access article under the CC BY 
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Large Igneous Provinces (LIPs) are seen in the geological 
record as immense emplacements of igneous material into ei-
ther oceanic or continental crust (Coffin and Eldholm, 1994;
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Bryan and Ernst, 2008). Most provinces comprise on the order of 
106 km3 of chiefly tholeiitic basalt, the bulk of which is thought to 
have been emplaced within a million years (Bryan et al., 2010;
Blackburn et al., 2013). Given the impact on the climate sys-
tem witnessed after the large-scale basaltic eruptions in Ice-
land at Laki in 1783 (Thordarson and Self, 2003), and the much 
greater volume and inferred eruption rate of LIPs, it has been 
proposed that these huge outpourings of magma resulted in 
catastrophic climatic effects. This hypothesis is reinforced by co-
incidences (within dating error) between the radiometric ages 
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Fig. 1. An illustration of the temporal correlation of Large Igneous Provinces (LIPs) with Ocean Anoxic Events (OAEs) and/or extinction events. The correlation is best in the 
Mesozoic. Palaeozoic provinces are less likely to be preserved, and Cenozoic provinces were emplaced in an icehouse climate, and were consequently less likely to facilitate 
regional anoxia. Note gaps in the correlation include the two most recent provinces (that do not appear to have had a major environmental impact) and the end-Ordovician 
mass extinction (that is not associated with any known LIP). This diagram is based on the reviews of Courtillot and Renne (2003) and Wignall (2005). The dates of LIP 
emplacement refer to the onset of emplacement and are taken from the reviews of Courtillot and Renne (2003) and Bryan et al. (2010). The geological ages are taken from 
the 2014 Geological Time Scale (Geological Society of America; http://www.stratigraphy.org/ICSchart/ChronostratChart2014.pdf).
of LIPs and the dates of a number of mass extinctions and/or 
Oceanic Anoxic Events (OAEs) (Rampino and Strothers, 1988;
Courtillot and Renne, 2003; Fig. 1).

In spite of this coincidence, there remains criticism of a sim-
ple cause-and-effect relationship between volcanism and distur-
bances to the global environment. The causal mechanism remains 
debated, usually featuring CO2 emissions, but some quantitative 
estimates of LIP volatiles are not thought high enough to have sig-
nificantly perturbed the carbon cycle (Caldeira and Rampino, 1990;
Wignall, 2001; Self et al., 2006, 2014). In addition, the coincidence 
between LIP emplacement and mass extinctions is not perfect. 
There are LIPs whose formation does not appear to have coincided 
with extinctions or major environmental change (e.g. the Ethiopian 
and Columbia River Provinces), whilst the end-Ordovician mass ex-
tinction did not coincide with formation of a documented LIP.

One of the issues with settling this debate is that whilst the 
extinction/climate record is preserved in sedimentary rocks, apart 
from rare LIP flows and/or volcaniclastic deposits interbedded 
with proximal sediments, there is no well-tested uniquely volcanic 
tracer in sedimentary deposits, particularly for deposits situated 
distally from the LIP. Biostratigraphic ages of sedimentary phenom-
ena are difficult to compare with the dates of volcanism derived 
from astrochronology and radiometric techniques (chiefly U–Pb), 
which all potentially carry attendant errors. Sampling of LIPs for 
dating is limited by their geographic and stratigraphic distribution, 
made worse by their typically poor preservation. Many oceanic LIPs 
may also have been partially destroyed by subduction, or broken 
up and obducted on to continents. A global sedimentary proxy for 
volcanism is a key piece of evidence to confirm the correlation 
between large-scale volcanism and major environmental change. 
A lead isotope study has linked OAE 2 (Cenomanian–Turonian 
boundary) to the Madagascan Province, but is the only study that 
uses Pb isotopes in that context, and is dependent on the assump-
tion that silicate material can remain long enough in the atmo-
sphere to cross hemispheres and still contribute 20–40% of silicate 
material to the studied sediment (Kuroda et al., 2007). Osmium 
and neodymium isotopes have also been used to infer volcanic 
output, but cannot be unambiguously distinguished from a reduc-
tion in the effects of continental weathering (Cohen et al., 2004;
Zheng et al., 2013; Du Vivier et al., 2014).

http://www.stratigraphy.org/ICSchart/ChronostratChart2014.pdf


L.M.E. Percival et al. / Earth and Planetary Science Letters 428 (2015) 267–280 269
Fig. 2. A simplified illustration of the natural mercury cycle, designed to highlight the large-scale features of the major pathways from volcanic emission to sedimentary 
deposition. An arbitrary landmass is represented that features a number of contrasting marine redox settings (anoxic wetlands, oxic carbonate platforms, and euxinic restricted 
basins) along its coastlines. Aquatic and atmospheric chemistry is considerably simplified here to aid clarity of illustration. The figure is primarily constructed on the basis of 
the reviews by Schroeder and Munthe (1998), Munthe et al. (2009) and Selin (2009), as well as the additional studies of Benoit et al. (1999) and Fleck et al. (1999).
1.1. Mercury as a tracer for distal volcanism

It is known that volcanism represents a substantial source of 
mercury to the atmosphere (Pyle and Mather, 2003 and refer-
ences therein). Most volcanic mercury is emitted as gaseous Hg0, 
which has an atmospheric residence time of 1–2 years, signifi-
cantly longer than that of other volcanic metals emitted as aerosols 
and particles, which (depending on the size of the particle/aerosol 
droplet) have an atmospheric residence time on the order of weeks 
(Jaenicke, 1980; Schroede and Munthe, 1998; Hinkley et al., 1999;
Mather et al., 2003; Bagnato et al., 2007; Witt et al., 2008). Thus, 
the element has a greater potential for global distribution than 
other volcanic trace metals, and can certainly achieve hemispheric 
exchange. Gaseous Hg0 is removed from the atmosphere through 
oxidation by halogens, ozone, and other radicals to form reactive 
Hg2+, which is soluble in water and typically deposited during 
rainfall. Particulate Hg represents a minor component of volcanic 
mercury, but has a much shorter residence time in the atmosphere 
than Hg0, restricting it to a more localized distribution (Schroede 
and Munthe, 1998; Selin, 2009). In the aquatic realm, a number of 
biotic and abiotic processes may affect dissolved Hg2+ , which of-
ten result in the formation of organic–Hg complexes. Consequently, 
mercury is typically adsorbed onto organic matter when deposited 
in sediments, resulting in a roughly constant Hg/TOC ratio (TOC: 
Total Organic Carbon) in modern environments (Benoit et al., 2001;
Outridge et al., 2007; Gehrke et al., 2009; Liu et al., 2012; Ruiz and 
Tomiyasu, 2015). In waters rich in sulphides, Hg-sulphide com-
plexes may precipitate, resulting in rapid mercury burial (Benoit 
et al., 1999; Niessen et al., 2003). In the terrestrial realm, mer-
cury may be deposited in soil, or taken up directly by leaves 
in the tree canopy (Fleck et al., 1999; Frescholtz et al., 2003;
Ericksen et al., 2003), which may then result in enhanced Hg con-
centrations in plant tissue (Fleck et al., 1999). Fig. 2 illustrates 
the path from volcanism to sediment in a simplified mercury 
cycle.

Because volcanoes are known to expel Hg into the atmosphere, 
a number of studies have used the element as a tracer for his-
torical volcanism in both ice cores and sedimentary systems (e.g. 
Schuster et al., 2002; Ribeiro Guevara et al., 2010). In the geological 
record, the first use of Hg as a proxy for volcanism was by Sanei 
et al. (2012), who observed a Hg excursion at the Permian–Triassic 
boundary in the Sverdrup Basin, Canadian Arctic, which they at-
tributed to Hg output from the emplacement of the Siberian Traps. 
Moreover, when the Hg concentration observed at the end-Permian 
was normalized against TOC, a positive excursion in Hg/TOC ratios 
remained, indicating that the anomalous Hg signal was not simply 
derived from increased deposition of organic carbon and associated 
organic-Hg complexes. Comparison with the stratigraphic record 
of Mo/Al redox proxy suggests that the Permian–Triassic Hg/TOC 
anomalies do not relate to decreases in oxygenation, indicating 
that anoxia was not the sole cause of the anomalous Hg/TOC ratios 
in end-Permian sediments (Grasby et al., 2013).

Anomalous Hg concentrations have also been reported from 
end-Cretaceous sediments, which are attributed to the Deccan 
Traps (Silva et al., 2013; Sial et al., 2013, 2014). However, the re-
ported Cretaceous Hg anomalies are not normalized against TOC, 
and therefore do not allow for potential lithological changes in 
organic-matter content governing Hg concentrations (for example, 
the transition between organic-poor limestone and organic-rich 
clay). These studies highlight the importance of considering wt% 
TOC alongside mercury concentrations because aquatic Hg is typ-
ically scavenged by organic matter (OM) and increased burial of 
such material may similarly increase Hg drawdown into sediments 
(Sanei et al., 2012). However, if flux and burial rate of organic 
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matter were great enough to overwhelm its scavenging affinity for 
Hg, a signal of real increased mercury input could potentially be 
hidden if expressed as a simple Hg/TOC ratio.

1.2. The Toarcian Oceanic Anoxic Event

The Toarcian Oceanic Anoxic Event (T-OAE) of the Early Juras-
sic has previously been linked to LIP volcanism (Rampino and 
Strothers, 1988; Duncan et al., 1997; McElwain et al., 2005; 
Svensen et al., 2007). The OAE was initially recognized in the ma-
rine sedimentary record by the appearance of laminated organic-
rich black shale in a number of globally distributed sections, 
beginning at or near the top of the boreal ammonite tenuicosta-
tum Zone and extending into the falciferum Zone above (Jenkyns, 
1988). Coincident with the appearance of the black shale is a suc-
cession of carbon-isotope excursions (CIEs). Typically, an abrupt 
negative shift, usually about −6� but ranging from −3� to −9�
according to material analyzed, disrupts an overarching positive 
excursion (Jenkyns and Clayton, 1986, 1997; Hesselbo et al., 2000;
Jenkyns, 2003; Hermoso et al., 2009a). The CIEs are observed in 
wood, carbonate and marine organic matter at a number of loca-
tions, indicating that the carbon cycle was perturbed in both the 
marine and atmospheric realms. A smaller negative CIE is also ob-
served at the Pliensbachian–Toarcian boundary, below the T-OAE 
level (Hesselbo et al., 2007; Littler et al., 2010).

Although negative excursions in δ13C may result from a num-
ber of processes, such as a local change in organic-matter com-
position, the preservation of negative excursions in shallow- and 
deep-water carbonate, wood, and compound-specific organic mat-
ter synchronously across the globe suggests a global perturba-
tion of the carbon cycle (Schouten et al., 2000; French et al., 
2014). The most plausible explanation is that the negative ex-
cursions indicate a massive release of isotopically light carbon to 
the atmosphere: likely from methane clathrate release or ther-
mogenic sources (Hesselbo et al., 2000; McElwain et al., 2005;
Svensen et al., 2007). The positive excursions reflect increased 
burial of organic matter rich in isotopically light carbon (Jenkyns, 
1988, 2010). Such disturbances to the global carbon cycle would 
be expected to have manifestly changed global marine and at-
mospheric conditions. Increased atmospheric carbon output would 
have raised global temperatures, potentially leading to raised sea 
levels, increased weathering rates, an enhanced hydrological cy-
cle, localized eutrophic water bodies, and widespread stratified 
water columns (Jenkyns, 2003; Cohen et al., 2004; McArthur et 
al., 2008; Hermoso and Pellenard, 2014; Brazier et al., 2015). The 
changes to Earth’s climate and sea levels would have likely re-
sulted in elevated extinction rates. Such a rise in extinctions in 
marine fauna (particularly benthic groups) is observed at both the 
Pliensbachian–Toarcian boundary and T-OAE horizon (Little and 
Benton, 1995).

1.3. The Karoo–Ferrar Province

Large-scale igneous emplacements are widely distributed across 
South Africa (Karoo), southern South America (Chon Aike), and 
Droning Maud Land in Antarctica (Ferrar). The combined vol-
ume of the igneous outcrop totals more than two million cubic 
kilometres (Pankhurst et al., 2000), and would have been much 
greater in volume originally, because much of the emplaced mate-
rial has been eroded or, in the case of the Ferrar, obscured by ice 
sheets. All of the emplacements have been radiometrically dated 
to the Early Jurassic by a number of techniques (i.e. Rampino and 
Strothers, 1988; Encarnación et al., 1996; Duncan et al., 1997;
Pankhurst et al., 2000). The most recent Ar–Ar dates indicate 
that emplacement had commenced by 183.246 ± 0.045 Ma (Ka-
roo) and 182.799 ± 0.033 Ma (Ferrar), and continued to 181.31 ±
0.19 Ma (Sell et al., 2014; Burgess et al., 2015). Thus emplacement
occurred throughout the early- to mid-Toarcian Stage (Stage age 
from 2014 Geological Time Scale – Geological Society of Ameri-
ca; http://www.stratigraphy.org/ICSchart/ChronostratChart2014.
pdf). However, within individual provinces, a range of radiomet-
ric ages has been determined, which illustrate some disparity in 
different geographical regions (Jourdan et al., 2005). Such dispar-
ities may suggest a style of emplacement that featured multiple 
phases of extrusion spread over several million years, each in-
dividual phase lasting 10s–100s of millennia. This inference is 
supported by the interpreted emplacement styles of other LIPs, for 
example the Deccan Traps and Central Atlantic Magmatic Province, 
where individual flows show weathering surfaces and/or are sep-
arated by many metres of sediment (Widdowson et al., 1997;
Marzoli et al., 2011 and references therein).

Much of the Karoo and Ferrar Provinces consist of basaltic rock, 
although the Ferrar Province also contains a large proportion of 
more silicic material (McClintock and White, 2006), and the Chon 
Aike emplacements are predominantly rhyolitic (Pankhurst et al., 
1998). Although Hg is a trace volcanic volatile, 2 × 106 km3 of 
magma would be expected to have produced a significant flux 
of the element. The entire emplacement may have emitted up 
to 150 Mt of Hg, based on previous estimates of LIP SO2 output 
and Hg/SO2 ratios at modern volcanoes (Siegel and Siegel, 1984;
Thordarson and Self, 1996; Self et al., 2005, 2006; Bagnato et al., 
2011, 2014; Mather et al., 2012). The significant fraction of silicic 
rocks in Ferrar and Chon Aike may suggest considerable explosive 
activity during emplacement of those provinces, increasing the po-
tential for stratospheric injection of volatiles. Such a process would 
be expected to extend further the lifetime of gaseous Hg in the at-
mosphere, thus enhancing global distribution of the element. Fur-
thermore, the Karoo province is thought to have intruded organic-
rich shales and coals in the Karoo Basin (McElwain et al., 2005;
Svensen et al., 2007). Metamorphism of organic-rich (and there-
fore relatively mercury-rich) lithologies may have produced ther-
mogenic mercury gas, potentially increasing Hg output to the at-
mosphere still further.

1.4. Study aims

The Sanei et al. (2012) study on end-Permian mercury anoma-
lies examined only one section thought to have been downwind of 
the Siberian Traps. Data from a single site do not prove global dis-
tribution of mercury simultaneous with LIP volcanism. Although 
the end-Cretaceous studies examined widely distributed sections, 
Hg concentrations were not normalized against TOC, so that an 
abnormal supply of this element cannot be unambiguously in-
ferred. In this study, seven sections that record the Lower Toarcian 
interval are examined and analyzed for Hg concentrations at reg-
ular intervals, with Hg abundance normalized against wt% TOC. 
Hg abundances and Hg/TOC ratios are set against known lithol-
ogy and carbon-isotope signatures of the sections to determine 
whether excursions in Hg/TOC coincide with volcanic events at the 
Pliensbachian–Toarcian boundary and/or the onset of the T-OAE. 
In addition, analysis of a section with variable TOC levels of Late 
Jurassic age – an interval not coincident with any known LIP vol-
canism – allows investigation of whether Hg/TOC ratios respond 
simply to changes in redox conditions rather than increased Hg 
flux due to volcanism. A further aim of this study is to establish to 
what extent local environmental effects may be superimposed on 
any global signal of volcanism.

2. Study areas

Most well-documented sedimentary records of the T-OAE are 
located in the northern hemisphere; the majority of them in Eu-
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Fig. 3. A palaeogeographic reconstruction of the Early Toarcian world. The locations of the seven studied sections are indicated, as well as the Karoo–Ferrar LIP and Chon Aike 
(C.A.) emplacements (red; see Bryan and Ernst, 2008). Six of the sections (1, 2, 4, 5, 6, 7) are interpreted as having been deposited in a shelf marine (light blue) environment, 
with one section (3) deposited terrestrially (green), but none from the open oceanic realm (dark blue). The global palaeogeography is based upon Ron Blakey’s Early Jurassic 
reconstruction (http://cpgeosystems.com/200moll.jpg). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.)
rope. For this study, six European basins covering a range of fa-
cies were studied, together with the Neuquén Basin in Argentina 
(Fig. 3). The T-OAE horizon is recorded in all seven sections by a 
characteristic negative carbon-isotope excursion and/or accompa-
nying biostratigraphy (see supplementary data). An Upper Jurassic 
section through the Kimmeridge Clay of the U.K. was examined as 
the organic-rich control from a period not associated with LIP vol-
canism.

2.1. Arroyo Lapa, Neuquén Basin, Argentina

As a southern hemisphere locality recording the T-OAE, the 
Neuquén back-arc basin contains a record relatively proximal to 
the Karoo–Ferrar Province. During Toarcian times, the basin would 
have been situated within about 1000 kilometres from extrusive 
centres. The lithology alternates between cross-bedded sandstone, 
siltstone, and black shale, and contains abundant marine fossils, 
particularly ammonites (Al-Suwaidi et al., 2010). Therefore, the 
section is interpreted as representing a marine setting on the edge 
of the Gondwanan supercontinent. Proximity to land is supported 
by the presence of macroscopic wood. The shale is locally rich 
in framboidal pyrite and, in one section, illustrates an increase 
in TOC up to a maximum of 8 wt% near the boundary between 
the tenuicostatum and hoelderi ammonite Zones, coincident with a 
stepwise decrease of 6� in δ13Corg and δ13Cwood (Al-Suwaidi et 
al., 2010). These indicators suggest a trend towards anoxic/euxinic 
conditions coincident with a perturbation in the marine and atmo-
spheric carbon cycles.

There is evidence for local arc volcanism to the west of the 
Neuquén Basin in the form of volcaniclastic sedimentary grains. 
This local volcanism may have resulted in an enhanced background 
Hg/TOC ratio prior to the T-OAE at Arroyo Lapa. However, be-
cause of the greater size and eruptive rates of the Karoo–Ferrar, 
an excursion from the LIP should significantly exceed any local en-
hancement of Hg.
2.2. Hawsker Bottoms, Cleveland Basin, Yorkshire, U.K.

The Lower Toarcian strata of Yorkshire are dominated by dark 
grey shale, locally rich in ammonites and belemnites. In the upper-
most tenuicostatum and overlying falciferum zones these sediments 
become black and laminated, with local carbonate concretions of 
centimetre to metre scale (Howarth, 1962). Coeval with the black 
shale is a large excursion in δ13C of −7�, developed in both bulk 
organic matter and fossil wood centred in the falciferum exara-
tum Subzone (Jenkyns and Clayton, 1997; Hesselbo et al., 2000;
Kemp et al., 2005). Additionally, a smaller negative excursion in 
δ13Corg is recorded below the T-OAE level at the Pliensbachian–
Toarcian boundary (Littler et al., 2010).

Local to regional anoxia/euxinia during the T-OAE is indicated 
by framboidal pyrite, a sulphur-isotope excursion, increased TOC 
and S concentrations, organic biomarkers for green sulphur bacte-
ria, and the millimetre laminated organic-rich nature of the shale 
itself (Jenkyns and Clayton, 1997 Wignall et al., 2005; McArthur et 
al., 2008; Gill et al., 2011; Kemp et al., 2011; French et al., 2014). 
The T-OAE horizon also records an excursion towards radiogenic 
osmium isotopes, indicative of enhanced continental weathering, 
possibly resulting from a more dynamic hydrological cycle during 
the T-OAE (Cohen et al., 2004).

2.3. Bornholm, Danish Basin, Denmark

Unlike most European basins of the Jurassic, the Danish Basin 
contains sediments primarily laid down in a paralic environment, 
ranging from fluvial to marginal marine. Consequently, the bulk 
of the organic matter preserved at Bornholm is terrestrial in na-
ture, consisting predominantly of wood (Hesselbo et al., 2000). 
The negative excursion in the δ13Cwood at Bornholm is therefore 
a good indication that a carbon-cycle perturbation affected the 
atmosphere as well as the marine realm (Hesselbo et al., 2000). 
Because Bornholm preserves a near-terrestrial environment, the 
ammonite biostratigraphy applied to most other Toarcian sections

http://cpgeosystems.com/200moll.jpg
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cannot be utilized. However, the size and shape of the CIE pre-
served in the Bornholm wood is similar to those from Lower Toar-
cian sediments at other locations (Hesselbo et al., 2007; Hesselbo 
and Pieńkowski, 2011). Available palynology also indicates identifi-
cation of Lower Toarcian sediments at this locality (Koppelhus and 
Nielsen, 1994).

2.4. Sancerre, Paris Basin, France

The Sancerre Borehole penetrated a typical north European 
Toarcian marine succession with abundant marl and shale whose 
organic-carbon content is relatively high, and the OAE itself regis-
tered by millimetre-laminated black shale. As elsewhere, the onset 
of the OAE is also marked by a stepwise fall of 6� in δ13Ccarb
(Hermoso et al., 2009a, 2012). Additionally, geochemical excursions 
in manganese and iron are observed (Hermoso et al., 2009b). Such 
geochemical excursions, together with the aforementioned black 
shale, indicate an anoxic to euxinic water column. This interpre-
tation is supported by an absence of benthic fauna. An additional 
manganese excursion is recorded at the Pliensbachian–Toarcian 
boundary, although there is no accompanying negative excursion 
in δ13Ccarb at this horizon (Hermoso et al., 2009b).

2.5. Peniche, Lusitanian Basin, Portugal

The Peniche section of the Lusitanian Basin is characterized 
by coccolith-bearing marls and limestones, containing ammonites 
and brachiopods, that record a hemipelagic environment through 
the Late Pliensbachian and Early Toarcian interval. The presence 
of macroscopic pyritized wood throughout the section indicates 
the former presence of landmasses proximal to the basin. Marly 
sediments developed during the start of the Toarcian, but black 
shale typical of an OAE is almost absent, and TOC levels re-
main low (<1%) throughout the majority of the section, suggest-
ing that persistent anoxic conditions did not develop during the 
T-OAE (Hesselbo et al., 2007). However, abrupt iron, magnesium, 
and manganese enrichment indicates that seawater chemistry was 
characterized by reduced species of these metals during the Early 
Toarcian (Hermoso et al., 2009b). The onset of these trace-element 
excursions takes place at the boundary between the polymorphum
and levisoni ammonite zones, and coincides with an abrupt nega-
tive excursion in δ13Ccarb of −2�. There is also a carbon-isotope 
excursion at the Pliensbachian–Toarcian boundary, which coincides 
with elevated manganese concentrations (Hesselbo et al., 2007;
Hermoso et al., 2009b). The Pliensbachian–Toarcian boundary and 
T-OAE horizon both record a negative excursion in δ44Ca, from 
which enhanced weathering rates during those intervals have been 
inferred (Brazier et al., 2015). This interpretation is consistent with 
the proportional increase in siliciclastics and the appearance of 
mass-transport deposits at the base of the levisoni Zone (Hesselbo 
et al., 2007). Such observations support the notion of an enhanced 
hydrological cycle and elevated weathering rates interpreted to 
have been present during the Early Toarcian in Europe (Cohen et 
al., 2004).

2.6. Velebit, Adriatic Basin, Croatia

The Velebit sections in Croatia derive from a Tethyan carbonate 
platform of Early Jurassic age. The Pliensbachian and lowest Toar-
cian sediments comprise largely lithiotid (bivalve) limestone. These 
sediments are succeeded in the Lower Toarcian by intensely bio-
turbated “spotted” limestone that is locally dolomitized (Vlahović 
et al., 2005). Within the spotted limestone beds an excursion of 
−3� in δ13C of carbonate is recorded. There is also a clear posi-
tive excursion of 1–2� above the negative excursion (Sabatino et 
al., 2013).
As platform carbonates, the sediments represent a shallow-
water oxic marine environment that retained relatively constant 
marine chemistry before, during, and after the T-OAE. A small in-
crease in manganese concentration is observed coincident with 
the onset of the negative CIE, indicating a minor change in re-
dox chemistry during the Early Toarcian, but there is no evidence 
to support the development of significantly oxygen-depleted con-
ditions (Sabatino et al., 2013).

2.7. Mochras, Cardigan Bay Basin, U.K.

The Mochras core provides one of the most expanded records 
of the Early Jurassic in the world and has yielded abundant am-
monites and belemnites. The core records a marine environment, 
likely relatively deep marine with open access to the Central At-
lantic Ocean (Sellwood and Jenkyns, 1975). The inferred depo-
sitional setting of a well-mixed basin is supported by the rela-
tively low TOC concentrations (1–2.5 wt%), which are significantly 
lower than those observed in the Early Jurassic Paris and Cleve-
land Basins that are thought to have been restricted and density-
stratified (Jenkyns and Clayton, 1997; Jenkyns, 2010). Macroscopic 
wood is recorded in abundance throughout the section, indicat-
ing a significant terrestrial influx, which is further indicated in 
the upper spinatum Zone and exaratum Subzone by the appear-
ance of centimetre-scale graded and laminated quartz-rich gravity-
flow deposits, and the increased abundance of detrital material. 
δ13C excursions are recorded in both carbonates and bulk organic 
matter, illustrating a positive excursion throughout the Early Toar-
cian stage, but with an abrupt negative excursion in the exara-
tum Subzone of the falciferum Zone (Jenkyns and Clayton, 1997;
Jenkyns, 2003). A convincing negative excursion in δ13C has not 
yet been reported from the Pliensbachian–Toarcian boundary in 
the Mochras core.

2.8. The Kimmeridge Clay (control section)

The facies of the Kimmeridge Clay are similar to those recorded 
in Early Toarcian basins, but instead formed during the Kimmerid-
gian and Tithonian stages of the Late Jurassic. No known LIP (or 
local volcanism) dates to that time. If volcanism were the ma-
jor cause of sedimentary Hg/TOC anomalies then they should be 
absent from the Kimmeridge Clay. Therefore analysis of an inter-
val within the Kimmeridge Clay was carried out to test whether 
Hg/TOC excursions can be produced merely through changes in 
marine redox chemistry (Hg is redox-sensitive), or as a result of 
varying lithological or environmental processes/conditions.

The shale is organic-rich (TOC can exceed 30%), and biomarkers 
for green sulphur bacteria and pyrite framboids are locally present, 
indicating prolonged anoxic–euxinic conditions in the water col-
umn (Tyson et al., 1979; Tribovillard et al., 1994; van Kaam-Peters 
et al., 1998; Morgans-Bell et al., 2001; van Dongen et al., 2006).

3. Methods

For each basin, sections were analyzed from a few metres be-
low the Pliensbachian–Toarcian boundary to a few metres above 
the base of the negative CIE. Sample resolution was variable, rang-
ing from every 10 cm to every 50 cm (see supplementary data). 
Two analyses were carried out: (1) analysis for mercury content, 
(2) analysis for TOC wt% content and type (based on other organic 
carbon analyses, e.g. Hydrogen Indices) if no pre-existing data were 
available.

3.1. Analysis for mercury

Mercury analysis was conducted using the RA-915 Portable 
Mercury Analyzer with PYRO-915 Pyrolyzer, Lumex (as described 
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by Bin et al., 2001). 50 ± 2 mg of powdered sample was weighed 
into a glass measuring boat and its precise mass determined. The 
sample was then placed into the pyrolyzer (set at Mode 1), which 
heated it to 700 ◦C. This process volatilized the mercury in the 
sample, with the resulting gas analysed spectrally to detect and 
calculate the Hg concentration. As a standard, five 50 ± 2 mg sam-
ples of peat (NIMT/UOE/FM/001 – Inorganic Elements in Peat) with 
a known mercury concentration of 169 ± 7 ng/g were analyzed 
prior to processing of each sample-set and, throughout analysis, a 
sample of peat was analyzed after approximately every tenth sam-
ple. Fifteen peat-standard samples, of varying masses between 10 
and 90 mg, were also used to calibrate the Lumex.

3.2. Analysis of total organic carbon

TOC analyses were conducted using the Rock Eval 6, and car-
ried out only on samples where there were no pre-existing TOC 
data. Approximately 20 mg of each sample were measured into 
gauze crucibles and their precise mass determined. A carousel was 
loaded with up to twenty-four crucibles, five of which would con-
tain the standard IFP 160000.

During analysis the samples spent 25 minutes in a pyrolysis 
furnace, which fed nitrogen gas through the sample at 650 ◦C, 
removing lower molecular weight compounds with no oxidation. 
The sample then spent 45 minutes in an oxidation oven, which 
fed purified air through the sample at 850 ◦C to decompose or-
ganic matter. The resultant CO and CO2 were analyzed spectrally 
to give the TOC percentage of the sample. The full method is de-
scribed by Espitalié et al. (1977). This analysis also determined 
the ratio of hydrogen and oxygen to carbon in the sample, from 
which the Hydrogen and Oxygen Indices (HI and OI) were calcu-
lated. Additionally, Tmax (temperature at which maximum cracking 
of kerogen in a sample occurs), and total inorganic carbon were 
derived from this method. Hydrogen Indices are of particular inter-
est, as in immature, non-oxidized organic matter they can be used 
to infer organic matter type. Generally, low HI (<100 mgHC/gTOC 
– HC: hydrocarbons) is indicative of woody/terrestrial organic mat-
ter, whilst much higher HI (500–600 mgHC/gTOC) is indicative of 
marine planktonic organic matter (Tissot and Welte, 1984).

4. Results

4.1. Rock-Eval data

The Hg and TOC results are presented in Fig. 4 (for the Kim-
meridge Clay) and Fig. 5 (for all Toarcian sections). For other Rock-
Eval data such as Hydrogen and Oxygen Indices, Total Inorganic 
Carbon and Tmax, see supplementary data. The results from the 
Rock Eval show that wt% TOC is very high (>10 wt%) at both 
Hawsker Bottoms and Sancerre at the T-OAE horizon (see also 
Jenkyns and Clayton, 1997). Such high preservation of organic mat-
ter likely results from the development of stratified euxinic wa-
termasses at both locations during that time (Jenkyns, 2010 and 
references therein). By contrast, Peniche, Arroyo Lapa, Bornholm 
and Mochras all record far lower TOC percentages (<2%), and neg-
ligible organic matter is preserved in the limestone beds at Velebit.

Hydrogen Indices data were collected for five sections (Hawsker 
Bottoms, Arroyo Lapa, Bornholm, Sancerre, and Peniche), and in-
dicates that Sancerre and Hawsker Bottoms have high values 
(400–600 mgHC/gTOC), whereas Peniche, Bornholm and Arroyo 
Lapa have rather lower ones (<200 mgHC/gTOC). Peniche, Born-
holm and Arroyo Lapa also contain abundant macroscopic woody 
material in the analyzed sections, and the presence of dominantly 
terrestrial organic matter is supported by such low HI values. Al-
though other processes may affect HI, such as thermal maturation 
or degradation of marine organic matter, other Rock Eval data (e.g. 
Oxygen Indices and Tmax) suggest that this is not the case here, 
and that the HI values do result from the dominance of wood in 
the bulk organic matter (see supplementary data).

4.2. Hg concentrations and Hg/TOC ratios

Hawsker Bottoms, Peniche, and Mochras all record an abrupt 
and short-lived positive excursion in Hg concentrations and Hg/TOC 
ratios coincident with the Pliensbachian–Toarcian Boundary. Ar-
royo Lapa also records a similar abrupt and short-lived posi-
tive excursion in Hg/TOC, but significantly below the putative 
Pliensbachian–Toarcian boundary. This apparent mismatch may 
result from incomplete, incorrect or different biostratigraphy com-
pared to Europe. Bornholm, Peniche, Arroyo Lapa and Mochras all 
record abrupt positive excursions in Hg concentrations and Hg/TOC 
ratios coincident with the onset of the negative carbon-isotope ex-
cursion during the T-OAE. Sancerre and Hawsker Bottoms record 
similar excursions in Hg concentrations, but no rise in Hg/TOC 
ratios, a phenomenon that may result from overprinting of any 
signal by the anomalously high TOC concentrations at the T-OAE 
level at these locations. This interpretation is supported by the 
absence of a linear relationship between Hg/TOC at the T-OAE 
horizon: Hg concentrations rise, but TOC concentrations propor-
tionally rise further. Moreover, at Sancerre and Hawsker Bottoms 
Hg concentrations reach 200–300 ppb. This degree of enrichment 
is substantially higher than that observed in modern sediments 
with similar organic-carbon content and higher than the Hg con-
centrations recorded in the organic-rich Kimmeridge Clay samples, 
suggesting that Hg fluxes were higher than normal in these north 
European localities during the Pliensbachian–Toarcian transition 
and T-OAE, despite there being no resultant increase in Hg/TOC 
ratios for the latter event. In the Kimmeridge Clay, Hg and TOC 
values oscillate, but do so in tandem, resulting in a linear relation-
ship between Hg and TOC. Such a relationship is similar to that 
observed at a number of modern locations, where Hg/TOC ratios 
are low and relatively consistent, between 0.01 and 0.02 (Gerkhe 
et al., 2009; Liu et al., 2012; Ruiz and Tomiyasu, 2015).

Very low Hg concentrations are present in the Velebit lime-
stones. However, negligible TOC or sulphides are preserved in these 
sediments (see Section 2.6; note also the absence of TOC data in 
Fig. 5F), and as these are the two geochemical species that draw 
down mercury to sediments, their absence may explain the paucity 
of Hg.

5. Discussion

5.1. Possible local causes of Hg perturbations

The discovery of Lower Toarcian anomalies in Hg concentrations 
and Hg/TOC ratios in both Argentina and across Europe suggests 
that they result from a global trigger rather than local perturba-
tions. However, because the Pliensbachian–Toarcian boundary and 
T-OAE are commonly associated with changes in lithological and 
sedimentation rate, such phenomena need to be considered as pos-
sible drivers of Hg perturbations

If it is assumed that atmospheric mercury concentrations are 
constant and Hg is deposited in sedimentary environments at a 
constant rate, then a reduction in sedimentation rate would result 
in increased Hg concentrations in bulk rock. However, to achieve 
the perturbations observed in the Early Toarcian would require a 
five to tenfold reduction in sedimentation rate across many basins 
at the same time, which is highly unlikely. In addition, an ex-
cursion towards radiogenic Sr-isotopes has shown that a major 
decrease in sedimentation rate did occur abruptly at Hawsker Bot-
toms during the T-OAE, whilst this was not the case during the 
Pliensbachian–Toarcian transition (McArthur et al., 2000). In con-
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Fig. 4. δ13C, Total Organic Carbon (TOC), Hg and Hg/TOC data from sections from the Kimmeridge Clay (used as a control). The blue lines represent raw data. Biostratigraphic 
horizons are represented by bold black horizontal lines. Hg measurements have up to ±10% uncertainty; TOC measurements up to ±2% uncertainty, resulting in a net 
uncertainty of approximately ±10.2% for Hg/TOC measurements. Stratigraphic heights are in metres, Stage refers to the Stage in geological time; Zone refers to biostratigraphic 
ammonite Zones that subdivide that stage. Tith. indicates Tithonian. The simplified lithology, TOC data and carbon-isotope data are sourced from Morgans-Bell et al. (2001). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
trast, there is a Hg anomaly at the Pliensbachian–Toarcian bound-
ary at Hawsker Bottoms, but not at the T-OAE horizon, the opposite 
of what should occur if the perturbations were controlled by sedi-
mentation rate.

That a change in lithology might have caused mercury anoma-
lies is discounted on the basis that changes in sediment type are 
observed in the studied section of the Kimmeridge Clay with-
out any shift in Hg/TOC ratios. In addition, large Hg anomalies 
are observed during the Toarcian at Mochras, where the lithol-
ogy remains relatively constant. Although both the Pliensbachian–
Toarcian boundary and T-OAE level at Mochras coincide with sed-
iments containing increased detrital material, mercury influx to 
the marine realm in such a context typically takes place through 
bonding of Hg onto surfaces of detrital organic matter (see Sec-
tion 1.1). Therefore, an increase in sedimentary Hg through detrital 
influx would not be expected to change Hg/TOC ratios significantly. 
Clearly, the Hg/TOC ratios do increase at both the Pliensbachian–
Toarcian boundary and the T-OAE horizon (Fig. 5). The results from 
Mochras support the conclusion from the Kimmeridge Clay that 
lithological changes do not result in significant changes in Hg/TOC.

It could be argued that the change in marine redox chemistry 
during the T-OAE may aid concentration of Hg in sediments. If the 
spread of anoxic conditions during the T-OAE were the cause of 
the mercury anomalies, then it would be expected that Hg/TOC 
ratios in the Kimmeridge Clay (which also records anoxic/euxinic 
conditions) should also be high. However, Hg/TOC ratios are low 
in the Kimmeridge Clay, equivalent to modern background levels 
and pre-T-OAE background levels (Liu et al., 2012). The absence 
of an excursion in Hg/TOC ratios in the Kimmeridge Clay sug-
gests that anoxic conditions do not concentrate Hg independently 
of concentrating organic matter. Such an inference is supported by 
other data. For example, a linear Hg/TOC correlation was retained 
in Mediterranean sapropels deposited under both oxic and anoxic 
depositional conditions during the mid-Pleistocene (Gerkhe et al., 
2009). Similarly, Grasby et al. (2013) showed that the variations in 
Hg/TOC ratios do not correlate with variations in redox proxies in 
the Permian–Triassic sediments of the Sverdrup Basin. Both stud-
ies, as well as the results from the Kimmeridge Clay in this paper, 
indicate that redox changes are not the major control on sedimen-
tary Hg/TOC ratios.

Hence, redox chemistry, lithological changes, sedimentation rate 
are all discounted as major factors responsible for the Hg concen-
tration and Hg/TOC ratio excursions observed in Lower Toarcian 
sediments. An external, global, trigger is a more plausible expla-
nation than local influences. However, local conditions may still 
influence Hg records: in environments with very high production 
and preservation of organic carbon any Hg/TOC perturbation may 
be overprinted (such as the stratified basins preserved at Hawsker 
Bottoms and Sancerre), whilst negligible burial of organic carbon 
may eliminate any possibility of recording a potential Hg pertur-
bation, even under conditions of increased flux of the element into 
Fig. 5. δ13C, Total Organic Carbon (TOC), Hg and Hg/TOC data from sections from Arroyo Lapa (A), Hawsker Bottoms (B), Bornholm (C), Sancerre (D), Peniche (E), Velebit F) 
and Mochras (G). The blue lines represent raw data. All stratigraphic heights are in metres, Stage refers to the Stage in geological time; Zone refers to biostratigraphic 
ammonite Zones that subdivide that stage (except at Bornholm where miospore and dinoflagellate Zones are used). tenui. and Pliens. indicate tenuicostatum Zone and 
Pliensbachian Stage, respectively. Biostratigraphic horizons are represented by bold black horizontal lines, with dashed lines representing an area where the precise location 
of a biostratigraphic boundary is uncertain. The vertical black bar and dark grey shading indicate the stratigraphic range of the T-OAE, as indicated by the positive and 
negative excursions in δ13C. Hg measurements have up to ±10% uncertainty; TOC measurements have up to ±2% uncertainty, resulting in a net uncertainty of approximately 
±10.2% for Hg/TOC measurements. Velebit (F) lacks TOC data as the TOC content at that section is negligible. Carbon-isotope data are sourced as follows: Arroyo Lapa from 
Al-Suwaidi et al. (2010); Hawsker Bottoms from Kemp et al. (2011) and Littler et al. (2010); Bornholm from Hesselbo et al. (2000); Sancerre from Hermoso et al. (2009a); 
Peniche from Hesselbo et al. (2007); Velebit from Sabatino et al. (2013); Mochras from Jenkyns and Clayton (1997). TOC data are either determined in this study, or sourced 
as follows: Arroyo Lapa from Al-Suwaidi et al. (2010) and new data; Hawsker Bottoms from Littler et al. (2010) and Jenkyns and Clayton (1997). The lithological columns 
shown are representative and simplified. For more detailed lithological columns see the following references: Al-Suwaidi et al. (2010) for Arroyo Lapa; Littler et al. (2010) for 
Hawsker Bottoms; Hesselbo et al. (2000) for Bornholm; Hermoso et al. (2009a) for Sancerre; Hesselbo et al. (2007) for Peniche; Vlahovic et al. (2005) for Velebit; O’Sullivan 
et al. (1972) for Mochras. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. (Continued)
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the sedimentary environment (such as the carbonate-platform en-
vironment preserved at Velebit).

5.2. Volcanism as a cause of global Hg perturbations

Elevated concentrations of sedimentary mercury are observed 
on a global scale in Toarcian sediments. In the modern world, 
global transport of mercury is predominantly achieved atmospher-
ically (Schroeder and Munthe, 1998) and there is no reason to 
assume that this was not also the case during the Jurassic Pe-
riod. The data therefore suggest that atmospheric mercury concen-
trations were enhanced during the Early Toarcian. This inference 
is supported by the predominance of terrestrial OM in sections 
where Hg excursions are recorded (Mochras, Peniche, Arroyo Lapa 
and Bornholm). If levels of atmospheric mercury were enhanced, 
then it would be expected that any vegetation canopy would ad-
sorb more Hg, particularly increasing its concentration in terrestrial 
organic matter (Frescholtz et al., 2003). However, there is still a 
possibility that such relative enrichment might have been sub-
sequently overprinted by aquatic Hg-organic chemistry once the 
terrestrial OM entered the water column. Therefore, the prevalence 
of Hg/TOC excursions in sections with abundant woody material 
does not in itself signify an atmospheric perturbation in Hg. How-
ever, it is suggestive of this possibility, particularly given that the 
global distribution of Hg excursions also suggests elevated levels of 
atmospheric Hg during the Early Toarcian.

In the natural world, large-scale output of mercury to the at-
mosphere would be most easily achieved by widespread wildfires, 
large-scale volcanism, or release of thermogenic Hg (related to vol-
canism or a bolide impact). There is no evidence for widespread 
wildfires or bolide impact in the Toarcian, so the simplest expla-
nation for globally enhanced mercury during the Toarcian is major 
volcanic activity, or release of thermogenic Hg following interac-
tion between magma and country rock during large-scale igneous 
activity. The Karoo, Ferrar, and Chon Aike Provinces would have 
provided a large-scale volcanic source for enhanced atmospheric 
mercury during the Early–Mid Toarcian, the approximate age of the 
three provinces determined by radiometric dating, and the Karoo is 
known to have intruded organic-rich shales and coals, potentially 
producing additional, thermogenic, Hg output (see Section 1.3).
A key result of this work is that if perturbations in sedimen-
tary Hg do indeed result from large-scale volcanism, there was 
not only LIP volcanism coincident with the T-OAE, as proposed 
by numerous studies, but also a precursor phase of LIP volcanism 
coincident with the Pliensbachian–Toarcian boundary. This suppo-
sition is best illustrated by the data from Peniche, Arroyo Lapa 
and Mochras, with absence of one or both Lower Toarcian Hg/TOC 
excursions at other sections possibly resulting from conditions lo-
cal to those palaeogeographies, as discussed above. Two episodes 
of LIP emplacement separated by a significant period of time is 
suggestive of a multiple-phase emplacement of the Karoo–Ferrar–
Chon Aike complex. Such a pattern is consistent with the notion 
that the three provinces formed separately from the same super-
plume, and therefore may have been emplaced at slightly different 
times (Pankhurst et al., 2000; Burgess et al., 2015). Moreover, in-
dividual LIPs are apparently emplaced as a series of large-scale 
magmatic pulses separated by quiescent periods lasting tens or 
hundreds of millennia (Blackburn et al., 2013; Self et al., 2014 and 
references therein). The multiple excursions observed in Hg/TOC 
(particularly at Mochras, Arroyo Lapa and Peniche) may reflect this 
style of magmatic emplacement. Alternatively, it is possible that 
magmatic activity of the three provinces took place throughout 
the Early Toarcian, and the mercury perturbations only occurred 
during magmatic interaction with organic-rich shales or coals, al-
lowing release of thermogenic Hg. Such a possibility is compati-
ble with the coincidence in timing of the Hg perturbations with 
the negative carbon-isotope excursions, which have been related 
by some authors to release of thermogenic carbon from meta-
morphism of coal or organic-rich shales (McElwain et al., 2005;
Svensen et al., 2007).

6. Conclusions

This study has expanded on previous work (e.g., Sanei et al., 
2012) by using Hg concentrations and Hg/TOC ratios as a global-
scale proxy for LIP volcanism in the geological record. The main 
aim was to identify a relationship between the Karoo–Ferrar–Chon 
Aike Provinces and Early Toarcian climate perturbations, whilst 
also aiming to ascertain whether local effects could mask any 
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global excursion. Evidence for the influence of localized condi-
tions on the Hg excursion record is observed at Hawsker Bottoms, 
Sancerre, and Velebit. If there is no organic-matter burial, then Hg 
burial will also be negligible and no excursion can be recorded 
(Velebit). Conversely, if organic matter burial is so great as to out-
weigh the effects of organo-Hg scavenging, any potential excursion 
in Hg/TOC will be overprinted by excess TOC deposition (Hawsker 
Bottoms and Sancerre). Consequently, palaeogeography and deposi-
tional environment must be carefully considered when evaluating 
Hg concentrations observed in the geological record.

In spite of the local environment issues outlined above, globally 
distributed positive excursions in both absolute Hg concentrations 
and Hg/TOC ratios of Lower Toarcian sediments are observed in 
this study, particularly at Peniche, Arroyo Lapa, Mochras and Born-
holm. These excursions are coincident with the well-known nega-
tive carbon-isotope excursions associated with the Pliensbachian–
Toarcian boundary and Toarcian Oceanic Anoxic Event. Due to the 
presence of the Toarcian Hg/TOC excursions in sedimentary rocks 
from Argentina and across Europe, and the documented global 
transportation of mercury in the modern atmosphere, it is here 
proposed that the positive excursions in sedimentary mercury re-
flect enhanced atmospheric Hg concentrations, an enhancement 
most likely derived from increased output of volcanic Hg from 
three LIPs of Early Jurassic age. Thus, the geochemical signatures 
illustrated here can be related specifically to the emplacement of 
the coeval Karoo–Ferrar–Chon Aike LIP. The record of enhanced at-
mospheric Hg during both the end-Pliensbachian extinction and 
T–OAE seen in some sections may support a multi-phase em-
placement of the Karoo–Ferrar–Chon Aike complexes, diachronous 
emplacement of individual provinces, or a sporadic release of ther-
mogenic volatiles.
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