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We present a method that can be used to estimate the amount of recycled material present in the source
region of mid-ocean ridge basalts by combining three key constraints: (1) the melting behaviour of the
lithologies identified to be present in a mantle source, (2) the overall volume of melt production, and (3)
the proportion of melt production attributable to melting of each lithology. These constraints are unified
in a three-lithology melting model containing lherzolite, pyroxenite and harzburgite, representative
products of mantle differentiation, to quantify their abundance in igneous source regions.
As a case study we apply this method to Iceland, a location with sufficient geochemical and geophysical
data to meet the required observational constraints. We find that to generate the 20 km of igneous
crustal thickness at Iceland’s coasts, with 30 ± 10% of the crust produced from melting a pyroxenitic
lithology, requires an excess mantle potential temperature (�Tp) of �130 ◦C (Tp � 1460 ◦C) and a source
consisting of at least 5% recycled basalt. Therefore, the mantle beneath Iceland requires a significant
excess temperature to match geophysical and geochemical observations: lithological variation alone
cannot account for the high crustal thickness. Determining a unique source solution is only possible
if mantle potential temperature is known precisely and independently, otherwise a family of possible
lithology mixtures is obtained across the range of viable �Tp. For Iceland this uncertainty in �Tp means
that the mantle could be >20% harzburgitic if �Tp > 150 ◦C (Tp > 1480 ◦C).
The consequences of lithological heterogeneity for plume dynamics in various geological contexts are
also explored through thermodynamic modelling of the densities of lherzolite, basalt, and harzburgite
mixtures in the mantle. All lithology solutions for Iceland are buoyant in the shallow mantle at the
�Tp for which they are valid, however only lithology mixtures incorporating a significant harzburgite
component are able to reproduce recent estimates of the Iceland plume’s volume flux. Using the literature
estimates of the amount of recycled basalt in the sources of Hawaiian and Siberian volcanism, we found
that they are negatively buoyant in the upper mantle, even at the extremes of their expected �Tp. One
solution to this problem is that low density refractory harzburgite is a more ubiquitous component in
mantle plumes than previously acknowledged.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Plate tectonic motions have been cycling material from the
Earth’s surface into the deep mantle for several billion years, con-
necting the development of the atmosphere and oceans to the
generation of chemical heterogeneity in the Earth’s interior. The
marble-cake mantle that we find today preserves a record of plan-
etary differentiation (Allègre and Turcotte, 1986), which provides
information about conditions early in Earth’s history, and on the
mantle dynamics driving planetary evolution.
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The difficulty of sampling material from the Earth’s deep inte-
rior poses a major obstacle to understanding its current and past
states. One means of accessing this information is by studying the
volcanic products erupted at mid-ocean ridges (MOR), arcs and
intra-plate settings. Of these, MOR basalts (MORB) provide our best
chance of obtaining information on the thermo-chemical state of
the convecting upper mantle for a number of reasons. Firstly, there
is only a thin layer of young igneous crust between source and
surface, minimising the possibility of contamination from old ra-
diogenic continental crust and lithosphere. Secondly, if MOR act
as passive linear samplers of the upper mantle, then the com-
positional distribution of the material rising under MOR is the
same as the global distribution of compositions in the uppermost
convecting mantle. Thirdly, the coverage of the globe by MOR al-
lows us to investigate global spatial patterns of mantle chemistry.
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In order to understand the origin and dynamics of the mantle
it is necessary to have knowledge of its composition. Although the
long-held lherzolite model explains many features of mantle struc-
ture (Ringwood, 1962), a predicted ∼10% of basaltic crust will have
been returned to the mantle over Earth’s history (Hofmann, 1997;
Stracke et al., 1999). Given that basalts form by the depletion of
some primary lherzolitic lithology, a large return flux of basalt
to the Earth’s interior necessitates a highly lithologically hetero-
geneous mantle, containing refractory harzburgitic and fusible py-
roxenitic/eclogitic domains with a complete spectrum of litholo-
gies of intermediate fertility in between. However, including such
a wealth of mantle diversity in a melting model is currently be-
yond our ability, and in any case would be unconstrained by geo-
chemical observations in most settings. Therefore, we reduce the
spectrum of mantle lithological variability to a consideration of
three representative lithologies, which between them encompass
most of the expected range from recycling: (1) an aluminous lher-
zolite, representing depleted upper mantle and presumably the
most abundant lithology in MORB genesis; (2) a pyroxenite, rep-
resenting recycled basalt and an example of a high-productivity
lithology; (3) a harzburgite, to represent the refractory residues
left after melt extraction, which will have low productivity dur-
ing any further melting. We develop a method that can be used to
quantify the abundance of these three lithologies in basalt source
regions.

1.1. Previous estimates of the lithological character of the mantle

Recycled oceanic crust was first invoked as a mantle compo-
nent to explain the high trace element concentrations and radio-
genic isotopic compositions of ocean island volcanics (Chase, 1981;
Hofmann and White, 1982). Following the ‘marble-cake’ mantle
model of Allègre and Turcotte (1986), Prinzhofer et al. (1989) ex-
plored the role of a mixed peridotite–pyroxenite source in gener-
ating the local variation in trace element and isotopic composi-
tions of basalts from the East Pacific Rise. Hirschmann and Stolper
(1996) extended this logic to MORB globally, suggesting a mixed
lherzolite–garnet pyroxenite source as the cause of the signature of
garnet in MORB. The crucial methodological insight of Hirschmann
and Stolper (1996) was to couple the geochemical constraints with
a requirement to match typical MOR crustal thickness (∼7 km,
White et al., 1992), combining these chemical and physical ob-
servations with a model of mantle melting. This model allowed
for the higher productivity of pyroxenite compared with lherzo-
lite lithologies to be accounted for when estimating the abun-
dance of source pyroxenite. With these observational and model
constraints, Hirschmann and Stolper (1996) estimated that 5% of
MORB mantle-source could be formed of pyroxenite.

A number of authors have recently attempted to estimate the
proportion of pyroxenite in various settings using olivine compo-
sitions or the trace and major element compositions of basalts
(e.g., Sobolev et al., 2005, 2007, 2008; Lambart et al., 2009;
Pietruszka et al., 2013). By combining Os isotopes and olivine com-
positions, Sobolev et al. (2008) concluded that ∼40% of the mass of
some Icelandic melts were derived from pyroxenite melting. How-
ever, this estimation does not formally include the requirement to
match melt volumes with source composition, nor do the authors
perform an investigation into how productivity differences affect
the estimates of source lithology. Shorttle and Maclennan (2011)
identified lithological heterogeneity beneath Iceland using basalt
major element compositions and produced a melting model to ex-
plore pyroxenite’s effect on melt production. However, they did
not use geochemical constraints to define the fraction of melt pro-
duction derived from pyroxenite melting, nor did they rigorously
constrain source composition.
A separate issue overlooked by the above methods is the role
and abundance of refractory material in the mantle. The unra-
diogenic Pb isotopic compositions found in North Atlantic basalts
associated with the Iceland plume, and their offset from depleted
MORB mantle values, led Thirlwall (1995) and Kerr et al. (1995) to
infer the presence of refractory domains in plume sources. Sub-
sequent to these studies Fitton et al. (1997) used the Nb–Zr–Y
trace element systematics of Icelandic basalts to identify a dis-
tinct depleted endmember for the Iceland plume. Nd and Hf iso-
tope systems have been used to validated this result for Icelandic
basalts (Kempton et al., 2000; Fitton et al., 2003), and also com-
piled from MORB globally to highlight the importance of depleted
domains (Salters et al., 2011). Abyssal peridotites provide an in-
dependent line of evidence for the presence of highly depleted
domains in the mantle. Stracke et al. (2011) showed that clinopy-
roxenes from Gakkel Ridge abyssal peridotites contain extremely
radiogenic Nd and Hf isotopic compositions, extending beyond the
values observed in MORB. Importantly for the issue of melt gen-
eration and mantle dynamics, Stracke et al. (2011) also found that
the Hf isotopes correlated with major and trace element indices of
depletion, meaning these domains with radiogenic Hf are also re-
fractory. These results suggest that refractory domains could be a
ubiquitous upper mantle component. However, identifying the role
of refractory domains in basalt genesis remains challenging and we
are lacking in tools to quantify the combined effect of refractory
and fusible heterogeneity on melt production.

As the earlier Hirschmann and Stolper (1996) analysis showed,
neither geochemical nor geophysical constraints alone are suffi-
cient to quantify mantle lithological variability. The abundant ob-
servational evidence for both depleted and enriched mantle do-
mains, forces us to develop a method to formally quantify the in-
volvement of both of these sources in the melting process, even if
the refractory domain contributes little melt. Here we demonstrate
how geochemical and geophysical observations can be combined
with a model of three lithology melting to quantify the thermo-
chemical state of the mantle.

1.2. Approach

This contribution is split into three sections, each exploring
constraints on source lithology.

Section 2 contains a description of a method for estimating the
mass fraction of pyroxenite derived melts forming the average Ice-
landic crust (Fmelt

px ). Using the geochemistry of Icelandic basalts we
form a mass budget of enriched and depleted melts and find that
Fmelt

px = 0.3 ± 0.1.

In Section 3 we project the calculated value of Fmelt
px back into

a mass fraction of solid mantle material. We develop a melting
model that includes lherzolite, pyroxenite and harzburgite litholo-
gies to resolve the influence of their different productivities on
Fmelt

px . Coupling observational constraints on Fmelt
px and melt pro-

duction allows a single source lithology mixture to be identified.
However, the abundance of lherzolite and harzburgite lithologies
in the source is strongly dependent on having knowledge of man-
tle potential temperature (Tp).

We next investigate the dynamical implications of lithological
heterogeneity as a possible additional constraint on source. In Sec-
tion 4 we model the densities of lherzolite–pyroxenite–harzburgite
mixtures to assess their buoyancy in the upper mantle and conse-
quences for plume volume flux. All our valid source solutions for
Iceland are buoyant. However, we show that some previous liter-
ature estimates for Hawaiian and Siberian trap volcanism, which
involve >15% pyroxenite in the source, are not likely to be buoy-
ant even in mantle plumes with large �Tp.
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Fig. 1. The geochemical variability recorded in Icelandic whole-rock samples. The top three panels show how in lavas from each zone Nb/Zr evolves as MgO drops. Solid
horizontal lines mark the volume average composition (Nb/Zr) calculated from all samples in the zone, with 1 s.e. drawn as a grey bar (see text for details). Dashed horizontal
lines record the endmember Nb/Zr calculated from the highest and lowest 10% of samples from each zonal dataset (5% for south west Iceland, because of its smaller number
of samples at enriched and depleted extremes) falling within a 9.5–12 wt% MgO interval (Shorttle and Maclennan, 2011). Fmelt

px is calculated using Eq. (4), which mass

balances the endmember compositions with the volume average crustal composition shown in each panel, uncertainty on Fmelt
px is propagated from the standard deviation of

the endmember compositions and mean crustal composition and quoted at 1σ . Inset maps highlight the geographic location of each volcanic system the samples are from.
The bottom panels show the running normalised variance for the data in the plots above, binned in 1.5 wt% MgO intervals with a 95% confidence envelope. Data sources can
be found in Appendix F.
2. Proportion of pyroxenite supplied melt

Shorttle and Maclennan (2011) established the need for litho-
logical heterogeneity in the Icelandic mantle from the observation
that the high FeO and low CaO of certain Icelandic basalts could
not be reproduced by melting of a depleted lherzolite. Instead,
these major element characteristics require melting of a refertilised
lherzolite containing up to 50% basalt material (e.g. the pyroxenitic
KG1 lithology of Kogiso et al., 1998). High FeO and low CaO in
Icelandic basalts correlates with high incompatible trace element
and radiogenic Sr and Pb isotopic compositions, linking typical in-
dices of enrichment to a specific mantle lithology (Appendix A
and Shorttle and Maclennan, 2011). These incompatible trace el-
ement and isotopic characteristics are a useful tracer of a magma’s
source history, as they have simple systematics in response to frac-
tional crystallisation and magma mixing. In this section we use
the incompatible trace element ratios of basalts to determine the
aggregate melt composition and from this form a mass balance be-
tween melts from lherzolite and pyroxenite lithologies.

2.1. Calculating an aggregate melt composition

An erupted basalt is formed by a stochastic mixing and crys-
tallisation process, with its final composition a combination of
pyroxenite and lherzolite derived melts according to its melt mix-
ing history during transport through mantle and crust (Rudge
et al., 2013). The variable mixing history of basalts from sin-
gle melt regions is advantageous, as it means that lithological
and compositional variability is resolvable (Maclennan, 2008b;
Shorttle and Maclennan, 2011). However, a corollary of this find-
ing is that any single basalt will give a biased representation of the
composition of melts being supplied from the mantle, especially at
high MgO, where residence in the crust has yet to mix out pri-
mary compositional variability (Maclennan, 2008a). To remove this
bias and start to reconstruct the chemical properties of the bulk
mantle, we need to consider the aggregate composition of melts
being produced and the endmember melt compositions from each
lithology.

In the case of Iceland, where melting is occurring at a ridge
axis, the aggregate product of mantle melting is the column of
new igneous crust. During a basalt’s evolution in the crust it will
mix with existing melt reservoirs, which on average will be more
evolved and have undergone greater mixing the shallower they are
in the system. These processes homogenise a diversity of mantle
supplied melts, which for conservative tracers like radiogenic iso-
topes and incompatible trace element ratios (see Appendix B), will
result in a convergence of melt compositions at low MgO towards
that of the average crust (Maclennan, 2008a). The consequences of
crustal mixing and fractionation processes can be seen in Fig. 1.
Data from each zone displays a spread in Nb/Zr at high MgO, col-
lapsing to a limited range by 5–6 wt% MgO. The lower panels in
Fig. 1 quantify this drop in geochemical variance for each zone.
The concurrent mixing and crystallisation of basalts means that by
<6 wt% MgO they provide a good estimate of the average compo-
sition of mantle melts for a conservative tracer like Nb/Zr.

A test of whether the diminishing range of basalt compositions
at low MgO reliably estimates the average crustal composition is to
compare low MgO compositions with a direct average of all sam-
pled basalts. We form this average by using the known volume of
eruptions to calculate a volume weighted average of all the chem-
ical data available. A volume average is formed by assigning each
sample a fractional volume,

vk = Vk/nk, (1)

where Vk is the total erupted volume of eruption k and nk
the number of samples from that eruption. From this, the mean
concentration of an element i can be calculated, appropriately
weighted by each volume,

C̄i =
∑Ne

k=1

∑nk
x=1 vkCxi∑Ne V

, (2)

k=1 k
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Fig. 2. (a) The relationship between the Nb/Zr of high MgO basalts (9.5–12.5 wt% MgO) and their Sr isotopic composition. The plotted data are from the subset of samples in
Fig. 1 that also have Sr isotope analyses. Panels (b) and (c) show the correlation between Nb/Zr and the major element oxides, CaO in (b), and FeO in (c). Grey bars map the
selection of the 10% of basalts with either the highest or lowest Nb/Zr from north east Iceland onto their corresponding major element compositions. These basalts were used
by Shorttle and Maclennan (2011) to define the major element characteristics of endmember enriched and depleted Icelandic basalts, and relate them to source lithological
heterogeneity. The width of the grey bars is equal to one standard deviation either side of the mean of the 10% of basalts used in defining the endmember compositions.
Only basalts with MgO between 9.5 and 12.5 wt% MgO are used. Data sources in Appendix F.
where Ne is the number of eruptions. In the mixing calculation
to determine the mass fraction of pyroxenite supplied melt in the
crust, we are going to mass balance the incompatible trace element
concentrations of endmember melts with the trace element ratio
of the mean crust for the ith and jth elements. In this case the
relevant mean crustal composition is

Rij = C̄i/C̄ j. (3)

The solid horizontal black lines in Fig. 1 allow for comparison of
RNb,Zr from Eqs. (1)–(3) with the raw data. In each case, the calcu-
lated crustal average is close to the erupted basalt compositions at
low MgO.

2.2. Defining endmember melt compositions

To form the mass balance with the average crustal composition,
endmember melt compositions need to be selected. Endmembers
are defined by selecting the 10% of samples (5% for south west
Iceland) with the highest (enriched) and lowest (depleted) Nb/Zr
with MgO concentrations from 9.5 to 12 wt%. This is the same
range of basalts used by Shorttle and Maclennan (2011) to char-
acterise the major element composition of enriched and depleted
Icelandic melts, and relate this major element variability to specific
lithological heterogeneity in the Icelandic mantle. The estimates of
the endmember melts for Nb/Zr are plotted as the black dashed
horizontal lines in Fig. 1.

Implicit in our approach for characterising endmember melts
and relating them to mantle lithological heterogeneity is that the
trace element variation in basalt chemistry correlates with differ-
ences in mantle source. The validity of this assumption has been
discussed in Shorttle and Maclennan (2011) and is further demon-
strated by, (1) the isotope–Nb/Zr correlations in Fig. 2a, which
show that trace element ratios are a consistent proxy for source,
and (2) basalts with extremes in Nb/Zr also having extremes in
most of the major elements (Figs. 2b, 2c and Appendix A). A key
result from Shorttle and Maclennan (2011) for understanding our
method here, is that the basalts with the extreme major element
chemistries can be produced by melting of single enriched or de-
pleted lithologies without any subsequent melt mixing/reaction.
So in mass balancing between endmembers defined using trace
elements, we are assuming that this directly relates to balanc-
ing the proportions of melts derived from each lithology. As our
understanding of compositional modification during melt trans-
port develops, the major element characteristics used by Shorttle
and Maclennan (2011) will have to be refined, and the ability of
melts from single lithologies to produce the enriched and depleted
Icelandic endmembers re-assessed. We do however, perform melt-
ing calculations using both the enriched lithology identified by
Shorttle and Maclennan (2011) and an even more fusible lithology
(the G2 lithology of Pertermann and Hirschmann, 2003) to evalu-
ate the possible effect of different fusible-enriched lithologies on
our estimates of the source lithology mixture.

A second important observation of Shorttle and Maclennan
(2011) is that the endmember basalts from both south west and
north east Iceland, despite having differences in their Nb/Zr ra-
tios, have the same major element characteristics. This means the
range of melt compositions in both areas is consistent with melt-
ing of the same two lithologies: a KLB-1 type lherzolite for the
depleted basalts and a KG1 or KG2 type lithology producing the
most enriched basalts. The slight trace element differences be-
tween endmember basalts in south west and north east Iceland
do not create resolvable differences in their major element chem-
istry, which is also consistent with Nd and Sr isotopes, the ex-
treme values of which are similar between basalts from each zone
(Fig. 2a). The inter-zonal differences we see between the endmem-
ber Nb/Zr in Fig. 1 could therefore be due to slight changes in
melting conditions to which the major elements are not sensitive.
Spatial variation in Pb isotopes however argues for some source
differences between the north and south of Iceland (Shorttle et al.,
2013). Because of the potential control of melting on the trace ele-
ment expression of the endmembers, we allow them to be defined
on a zone by zone basis, rather than using a fixed set of endmem-
bers for all calculations.

2.3. Calculating Fmelt
px

Given the endmember trace element ratios, rd
i j and re

i j , and con-

centrations, Cd
j and Ce

j , for depleted and enriched endmembers
(superscript d and e respectively) and the average crustal composi-
tion, Rij , it is now possible to form a mass balance to solve for the
mass fraction of enriched melts contributing to the average crust,

[
Fmelt

px

]
i j = rd

i j − Rij

(Ce/Cd)(Rij − re ) + (rd − Rij)
. (4)
j j i j i j
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Fig. 3. Solutions of Fmelt
px for a range of trace element pairs for three of Iceland’s volcanic zones. Fmelt

px is calculated applying the same methodology as in Fig. 1, but with
different trace element pairs: for example the numerator element (Nb in Fig. 1) appears along the top axis and the denominator element (Zr from Fig. 1) along the vertical
axis. The results of mass balancing between the endmember compositions and average crust using Eq. (4) to calculate Fmelt

px are presented as a matrix, with each point

coloured according to the Fmelt
px calculated. A mean Fmelt

px is found for each zone by taking the average of the matrix of results and is quoted with a 1σ uncertainty,

representing the variability of the multiple Fmelt
px determinations. Trace element pairs resulting in an Fmelt

px < 0 or >1 are indicated by a ‘−’ and ‘+’ symbol respectively, these
are left out of the average and standard deviation calculations.
The results of applying this mass balance for Nb/Zr are shown in
Fig. 1: crust in north and south Iceland is made from 30 ± 10% en-
riched melts, whilst the higher mean Nb/Zr of basalts from central
Iceland compared with north Iceland (along with central Iceland’s
same endmember Nb/Zr as the north) means that central Iceland’s
average crustal composition is balanced by 50 ± 20% of enriched
melts. Uncertainty for each of these estimates of Fmelt

px is propa-
gated from the variation in endmember compositions and mean
crustal composition and quoted as 1σ .

Calculations of Fmelt
px are not limited to using Nb/Zr and we can

use any trace element pair in Eqs. (1)–(4) to form the estimate of
Fmelt

px . In Fig. 3 we recalculate Fmelt
px using a variety of trace element

pairs. The important result from Fig. 3 is that the estimate of Fmelt
px

is mostly independent of the trace elements chosen. The mean
Fmelt

px calculated from all the individual determinations in Fig. 3 is
within error of that from using Nb/Zr alone. Although there are
fewer isotope data than trace element data for Iceland, we show
in Appendix C that the same result is also obtained by mass bal-
ancing isotope endmembers with average crustal composition.

The higher Fmelt
px of central Iceland is consistent with plume

driven upwelling at the base of the melt region, causing excess
production of small fraction melts compared with passive plate
spreading. This is in contrast to basalts from north east Iceland,
for which the lower Fmelt

px is consistent with derivation from an en-
riched mantle source undergoing passive decompression melting
at a spreading centre (Maclennan et al., 2001a). In the following,
we proceed with the estimate of Fmelt

px obtained from north east
Iceland data, because (1) it was produced using more data than
from the south west (4859 versus 2395 separate geochemical ob-
servables), and (2) plume driven upwelling may not be significant,
unlike central Iceland.

3. Translating Fmelt
px into Fsolid

px

The conversion of the mass fraction of pyroxenite derived melts
(Fmelt

px ) into the mass fraction of pyroxenite in the source (Fsolid
px )

requires understanding the melting behaviour of each lithology
present, as there will be a non-trivial relationship between the
mass fraction of material in the source and the volume of melt
produced from each lithology. A full realisation of multi-lithology
mantle melting is not possible given our current understanding
of the composition, extraction and reaction of melts during melt-
ing, and quantitative estimates of mantle lithological heterogeneity
will therefore have to be refined as our understanding of partial
melting improves. Despite these limitations, it is possible to make
estimates of Fsolid

px subject to some simplifying assumptions about
how the melting process operates. Here we investigate a method
using a simple tri-lithologic melting model, the strength of which
is in making the key controls and assumptions apparent.

3.1. Modelling melting

The important assumptions inherent to the melting model we
use are that melting and decompression occur isentropically, that
thermal equilibrium is maintained between all lithologies, and that
all lithologies and their melts are chemically isolated (see discus-
sion in Phipps Morgan, 2001). Whilst these assumptions will be
false in detail, incorporating disequilibrium processes would make
the model substantially more complex without helping our under-
standing of what controls Fmelt

px and crustal thickness (tc).
The volume of melt produced by each lithology is dependent

upon a wide range of parameters describing the physical state of
the melting region. Below we list the key parameters and how we
have dealt with them:

1. Mantle potential temperature. Tp is allowed to vary from
1250–1600 ◦C, equivalent to an excess temperature with re-
spect to MORB mantle of −80 to +270 ◦C assuming a MORB
mantle Tp of 1330 ◦C.

2. Mantle flow field. The higher Fmelt
px calculated from central Ice-

land compared with that from north east or south west Ice-
land (Fig. 3), supported the observation that Iceland’s cen-
tre is strongly affected by plume driven upwelling, whilst at
the coasts flow within the melt region is from passive plate
spreading alone (Ito et al., 1999; Maclennan et al., 2001a;
Kokfelt et al., 2003; Koornneef et al., 2012a). Melting calcu-
lations are therefore performed integrating over a triangular
melt region (White et al., 1992; Slater et al., 2001).
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Fig. 4. 3D ternary diagrams showing the calculated crustal thickness (tc) when melting a mantle of variable lithology at Tp = 1480 ◦C. (a) The endmember lithologies are
a lherzolite (lz, using the parameterisation for KLB-1 from Katz et al., 2003), harzburgite (hz, not modelled to melt), and pyroxenite (px, using a new parameterisation for
melting the pyroxenite KG1, see Appendix D). Intermediate bulk lithologies represent a source containing a mechanical mixture of the pure endmembers. The height of the
surface along the z-axis and its shading denotes the crustal thickness. The dashed white contour marks an isopleth of constant (20 km) crustal thickness, equivalent to that
beneath Theistareykir and Iceland’s coasts, and points along this contour are numbered by the mass fraction of pyroxenite in the lithology mixture (Fsolid

px ). (b) The same
calculations as in (a) but now using a parameterisation for melting the more fusible G2 pyroxenite from Pertermann and Hirschmann (2003) in place of KG1. See text for
details of calculations.
3. The locations of the solidus and liquidus surfaces for each lithology.
Existing solidus and liquidus parameterisations are used for
lherzolite (lz, Katz et al., 2003) and G2 pyroxenite (Pertermann
and Hirschmann, 2003). We assume the harzburgite (hz) un-
dergoes no melting, and for KG1 define a new parameterisa-
tion (see Appendix D).

4. The productivity (dF/dP ) of each lithology within the melting in-
terval. The parameterisations we use to define the solidus
and liquidus surfaces of each lithology also provide melt frac-
tion as a function of non-dimensionalised temperature, from
which dF/dP can be calculated. In our calculations the vari-
ous lithologies have productivities in the order [dF/dP ]G2 >

[dF/dP ]KG1 > [dF/dP ]lz > [dF/dP ]hz = 0.
5. The depth to the top of the melting region. The top of the melt re-

gion is defined to be the point at which the integrated crustal
pressure equals the pressure of upwelling. In this case, the
thicker crust generated by having a higher Tp or more pro-
ductive bulk lithology causes melting to stop deeper.

6. Melt extraction efficiency. We assume perfect fractional melting:
instantaneous complete extraction of all melt produced.

A detailed description of the melting model can be found in Ap-
pendix D.

The following results are presented separately for a mantle
containing the pyroxenite component as KG1 (a 50:50 lherzolite–
basalt mixture, Kogiso et al., 1998), and the pyroxenite component
as G2 (a subducted MORB, Pertermann and Hirschmann, 2003).
The reason for this is that although Shorttle and Maclennan (2011)
identified a homogeneous KLB-1–MORB mixture as providing the
closest match to the major element composition of Icelandic melts,
it is unclear whether a KG1-like source exists as a distinct lithol-
ogy prior to melting, or is generated by infiltration and reaction of
melts from the basalt lithology with surrounding lherzolite. How-
ever, we show here that even with this uncertainty, the fraction
of basalt in the source as inferred from using either the melting
behaviour of KG1 or G2 pyroxenite is very similar.

3.2. Combining geochemical and geophysical constraints

Together, the volume of melt production and the proportion of
melt from each lithology place limitations on the mantle lithology
and Tp. We know from Fig. 3 that Fmelt

px = 30±10%, and we can add
to this that crustal thickness at Iceland’s coasts is ∼20 km (Staples
et al., 1997; Darbyshire et al., 2000).

We first use the melting model to predict the igneous crustal
thickness (tc) as a function of the source lithology mixture. The re-
sults of calculating tc are shown in Fig. 4 as a 3D ternary diagram,
which along the vertical axis plots the tc generated from melting
varying mechanical mixtures of lherzolite (lz), pyroxenite (px, ei-
ther KG1 Fig. 4a, or G2 Fig. 4b) and harzburgite (hz) at a Tp of
1480 ◦C. Increasing the amount of either KG1 or G2 in the source
raises the total melt production, whilst harzburgite dilutes produc-
tivity because it is not melting. Dashed white contours on each
ternary mark all the lithology combinations generating a crustal
thickness of 20 km, equivalent to that at Iceland’s coasts. With only
the crustal thickness constraint on source lithology the white con-
tour shows that the pyroxenite fraction in the source could vary
between 0 and 40%, provided the harzburgite fraction undergoes
a corresponding increase to offset the pyroxenite’s high produc-
tivity. Despite a range of lithology mixtures generating 20 km of
crust, the key observation is that although a pure lherzolite man-
tle is a valid solution for matching tc alone, it would necessarily
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Fig. 5. Ternary diagrams combining crustal thickness (tc) and geochemical constraints (Fmelt
px ) to identify the allowable lithology combinations beneath Iceland. Each apex of

the ternary represents an endmember lithology in the mantle: lherzolite (lz), harzburgite (hz) and pyroxenite (px, for (a) and (c) the KG1 composition from Kogiso et al.,
1998, for (b) and (d) the G2 composition from Pertermann and Hirschmann, 2003). The three endmember lithologies are mechanically mixed in variable proportions and
three-lithology melting calculations performed to fill in the ternary space for Fmelt

px and tc. Background colours in these diagrams correspond to Fmelt
px determined for model

runs with Tp = 1480 ◦C. (a) and (b) All calculations are performed at a mantle potential temperature of 1480 ◦C. The dashed white line marks the lithology combinations
melting to produce a tc = 20 km, the solid white line and grey shaded region mark the lithology combinations reproducing the observed Fmelt

px = 0.3 ± 0.1. The point of
intersection of the solid and dashed white lines is the lithology mixture able to match both crustal thickness and geochemical constraints (in (a) this is lz71hz17px12, in (b)
lz70hz22px8). (c) and (d) Melting calculations are repeated for a range of Tp to explore its effect on our ability to estimate the lithology of the source. With variable Tp a
series of lithology mixtures are able to match tc and Fmelt

px , these possible solutions are shown by a thick solid black line. Grey circles show the points where the solid white

lines (Fmelt
px constraint) and dashed lines (tc constraint) intersect for each different Tp. Only mantle potential temperatures �1465 ◦C in (c), and �1455 ◦C in (d), provide

valid solutions.
create a crust where Fmelt
px = 0, inconsistent with what we found in

Section 2.
In Fig. 5 we have combined the requirements for the melting

model to match tc and generate 30% of the crust from pyroxen-
ite derived melts. The ternary diagrams in Figs. 5a and 5b relate
source lithology to Fmelt

px (coloured surface), overlaid onto which is
the tc = 20 km contour (dashed white line from Fig. 4) and the
Fmelt

px = 30% contour (solid white line, with grey region marking the
±10% uncertainty). The intersection of these two lines defines the
lithology combination that can match both tc and Fmelt

px . With KG1
as the pyroxenite component, the mantle at the point of intersec-
tion between the tc and Fmelt

px contours is lz71hz17px12 (Fig. 5a),
whilst with G2 the intersection is at lz70hz22px8 (Fig. 5b). Sepa-
rating the KG1 lithology into its constituent basalt and lherzolite
components, the mantle source found in Fig. 5a is lz77hz17px6.
So given a Tp of 1480 ◦C, the mantle lithology beneath Iceland
contains 4–10% basalt (or 8–15% KG1), 13–33% harzburgite and
83–57% lherzolite.

These estimates of source lithology are predicated upon inde-
pendently knowing Tp. If Tp is not known then a family of Fmelt

px –tc
intersections are generated, shown in Figs. 5c and 5d as grey cir-
cles connected by a thick black line. As the Tp of the calculations
increases, the tc = 20 km contour moves towards the harzburgite
apex, with increased amounts of the un-melting harzburgite off-
setting the extra melt generation from lherzolite and pyroxenite.
In contrast, the position of the Fmelt

px = 30% contour is not a strong
function of Tp: it undergoes a slight decrease as Tp increases, but
an Fmelt

px between 4 and 10% is a feature of all solutions.
Figs. 5c and 5d also place a lower limit on the Tp of the Ice-

landic mantle. The locus of viable mantle lithologies (thick black
line) intersects the lherzolite–pyroxenite join at a Tp ∼ 1460 ◦C
(Figs. 5c and 5d), any Tp lower than this is unable to generate the
required tc without forming too much of the crust from pyroxenite
derived melts.

4. Implications of lithology for plume buoyancy

Mantle plumes are a natural consequence of high Rayleigh
number convection in planetary interiors. Originating at thermal
boundary layers, plumes rise from depth as thermal expansion
lowers their density with respect to cooler ambient mantle. Almost
as soon as the plume theory had been developed (Wilson, 1963;
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Table 1
Starting compositions for the three lithology endmembers used in density modelling, in mole %.

Lithology SiO2 Al2O3 CaO MgO FeO Na2O Sum

Pyroxenite (MORB)a 52.15 9.90 12.75 12.30 10.10 2.80 100.00
Lherzolite (KLB-1)b 39.53 2.01 3.31 49.67 5.22 0.26 100.00
Harzburgite (DEPMA)c 36.60 0.90 1.08 55.70 5.70 0.02 100.00

a Kogiso et al. (1998).
b Hirose and Kushiro (1993).
c Laporte et al. (2004).

Fig. 6. Phase proportions (mole %) and densities for three bulk compositions, MORB (Kogiso et al., 1998), KLB-1 lherzolite (Hirose and Kushiro, 1993), and the DEPMA
harzburgite (Laporte et al., 2004), calculated using thermocalc (Holland and Powell, 1998) over an upper mantle pressure range and 1300 ◦C adiabat. The phase proportions
calculated from each bulk composition are given on the left axes and represented by coloured vertical bars, the densities are given on the right axes and represented in the
plots as black lines. g = garnet, ol = olivine, opx = orthopyroxene, hpx = high pressure pyroxene, cpx = clinopyroxene, coe = coesite, and stv = stishovite. The tc-ds62
dataset used in running thermocalc is from Holland et al. (2013), which is a revision of that released by Holland and Powell (2011). Activity–composition relations are from
Holland et al. (2013), which uses the garnet model from White et al. (2000) and the pyroxene model from Green et al. (2012).
Morgan, 1971), it became apparent that ocean islands represent
not only thermal, but also compositional anomalies (Tatsumoto,
1966; Hubbard, 1969). In the previous section we demonstrated
that for Iceland this compositional anomaly is likely to be due in
part to the presence of recycled material, which we modelled as
a basalt–harzburgite mixture. Lithological heterogeneity has a dy-
namical significance that trace element and isotopic heterogeneity
does not: it implies sources with different major element composi-
tions and mineralogies, which in turn will have different densities,
heat capacities and thermal expansivities. Using thermodynamic
modelling to estimate the densities of different sources, we now
assess the dynamical implications of lithological heterogeneity.

4.1. Density of the Icelandic mantle

We use thermocalc (Holland and Powell, 1998) with the re-
vised dataset tc-ds62 from Holland et al. (2013) to compute the
phase assemblages and densities of endmember lherzolite, pyrox-
enite, and harzburgite lithologies. The bulk compositions for each
lithology used in the calculations can be found in Table 1. We
only consider external plume buoyancy here, i.e. that of the bulk
plume material with respect to the ambient mantle (assumed to
be KLB-1-type lherzolite with Tp = 1300 ◦C). Internal buoyancy,
that of the individual heterogeneities with respect to the plume’s
dominant, or matrix, lithology, is neglected for the following rea-
sons: (1) Stokes’ settling velocities for even kilometer sized hetero-
geneities with 300 kg m−3 density excesses are small compared to
likely rates of plume ascent; (2) full modelling of internal plume
re-organisation, especially considering a tri-lithologic mantle in
which some plume lithologies could be buoyant with respect to
the matrix, would require a dynamical model and is beyond the
scope of this paper.

The density and mineralogy for each lithology over an up-
per mantle pressure range are shown in Fig. 6, for a calculation
performed at a Tp = 1300 ◦C. The DEPMA harzburgite lithology
is distinct from KLB-1 lherzolite by having greater proportions
of olivine and less garnet and pyroxene, whilst a MORB com-
position pyroxenite is olivine free and composed almost entirely
of garnet and clinopyroxene, with minor amounts of coesite or
stishovite. These differences in mineralogy and composition be-
tween the three lithologies give rise to differences in density such
that ρhz < ρlz < ρpx (Fig. 6). Given the >280 kg m−3 excess density
of pyroxenite compared with lherzolite, it is clear that to main-
tain plume buoyancy with a large fraction of entrained pyroxenite
will require a large excess temperature and/or a compensating low
density harzburgite fraction.

In Fig. 7a we calculate the excess density of plume mantle
(�ρ = ρ(plume) − ρ(ambient), where ambient mantle is assumed
to be 100% lherzolite), having a Tp = 1500 ◦C and at a pressure of
70 kbar. The ternary in Fig. 7 is coloured by �ρ , where blue indi-
cates regions where the plume mantle has positive excess density
and is negatively buoyant, red indicates negative excess density
and therefore positive plume buoyancy, and white is the point
of neutral buoyancy. Overlaid on top of the red–white–blue �ρ
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Fig. 7. The density difference (�ρ) between lherzolite, harzburgite and pyroxenite lithology mechanical mixtures and a reference mantle column of 100% lherzolite at 1300 ◦C.
(a) The fitting Icelandic source compositions are mapped onto a three lithology ternary diagram to determine their buoyancy in the upper mantle. As in Fig. 5, the thick
solid black line represents the range of solutions for which the lithology mixtures are able to match tc and Fmelt

px constraints at different mantle potential temperatures. The
ternary diagram is coloured for the density excess/deficit of a 1500 ◦C mantle plume with respect to reference lherzolitic mantle at 70 kbar, however, the thin black lines
also drawn indicate the locus of neutrally buoyant lithology mixtures for a range of plume potential temperatures: above these lines (on the high px side) lithology mixtures
are negatively buoyant, whilst below they are positively buoyant. (b) �ρ for each lithology solution, plotted against the potential temperature of that solution. Points are
coloured by the pressure at which the densities have been calculated, 50–120 kbar, representing most of the depth range of the upper mantle. Note that moving along the
x-axis represents both a change in potential temperature and bulk composition of the source. The grey region marks the �ρ for when the plume is referenced to a mantle
column containing 5% pyroxenite and 95% lherzolite. All calculations were performed using thermocalc (Holland and Powell, 1998). The horizontal dashed lines around 0
represent a 2σ uncertainty on the density calculations, propagated from the uncertainty on mineral endmember volumes. (For interpretation of the references to colour in
this figure, the reader is referred to the web version of this article.)
surface is a thick black line joining grey circles, this marks the
lithology solutions we found for Iceland, labelled by the Tp for
which they are valid. For example, the 1500 ◦C lithology solution
lies in the light red region in Fig. 7a, indicating that it is less dense
than the reference KLB-1 mantle and therefore positively buoyant.
Strictly, the surface in Fig. 7a is only appropriate when plume Tp
= 1500 ◦C, i.e. for only one of the possible lithology solutions. To
address this, Fig. 7b directly plots the �ρ for all lithology solu-
tions over an upper mantle pressures range, using the potential
temperatures for which the solutions are valid. Almost all lithol-
ogy solutions for Iceland are buoyant in the upper mantle; only
the Tp = 1465 ◦C lithology solution (a pure lherzolite–pyroxenite
mixture) is close to neutral or negative buoyancy (Fig. 7b).

It is implicit in the relative density calculations performed
above that we know the lithology of the ambient mantle (we
assumed 100% lherzolite). However, estimates of ambient man-
tle lithology from Hirschmann and Stolper (1996) and Sobolev
et al. (2007) have suggested that it may contain as much as 5%
MORB-like pyroxenite component. If there is pyroxenite embed-
ded in lherzolitic ambient mantle then this mixture will have a
higher bulk density than the lherzolite alone and relatively in-
crease the buoyancy of mantle plumes (assuming that there is
not also a complementary harzburgite fraction in ambient mantle,
which would tend to counter this effect). The significance of a 95:5
lherzolite:pyroxenite ambient mantle for our density calculations
is shown by the grey field in Fig. 7b. By including 5% pyroxenite
in the ambient mantle, plume buoyancy increases by ∼12 kg m−3.
This is a small effect compared to the total positive buoyancy of
the hottest and most harzburgitic Iceland plumes (∼70 kg m−3),
but is enough that the 1465 ◦C solutions (lz87hz0px13) that were
neutrally buoyant when the ambient mantle was purely lherzo-
lite, now have the same positive buoyancy as the original 1490 ◦C
plume mantle (lz66hz23px11) had with respect to lherzolite. There-
fore, in terms of using merely the presence or absence of plume
positive buoyancy to isolate viable plume lithologies, this uncer-
tainty the lithology of the ambient mantle could have a large ef-
fect. In part to address this uncertainly we next consider how the
calculated plume densities translate into plume dynamics, specifi-
cally a plume’s volume flux.

4.2. How a plume’s lithology affects its volume flux

Plumes are driven by having a lower density than ambient
mantle, so the wide range of �ρ exhibited by the different lithol-
ogy solutions in Fig. 7 may imply significant variations in plume
strength, or volume flux. Jones et al. (2014) recently estimated vol-
ume flux for the Iceland plume from the combined geochemical
and geophysical evidence for the plume material affecting ridge-
segments up to 1800 km away from the plume centre. Here we use
a simple analytical model to relate the �ρ for each of our lithol-
ogy solutions to a plume volume flux, and compare this estimate
with that of Jones et al. (2014). The null-hypothesis in this test is
that all lithology solutions are capable of generating the required
volume flux. However, from Fig. 7b it is the low Tp (harzburgite
poor) lithology solutions that have the lowest buoyancy, which if
they struggle to match the Jones et al. (2014) volume flux con-
straint will imply a finite harzburgite fraction in the source and Tp
> 1460 ◦C.

The equation to relate �ρ to the volume flux through a de-
formable plume conduit is (Turcotte and Schubert, 2002),

Q v = π

8

�ρgr4

μp
, (5)

where g is gravity, r is the radius of the conduit and μp is the
viscosity of the plume (Fig. 8a). Eq. (5) is a significant simplifi-
cation of plume flow, but is meaningful provided viscosity in the
plume conduit is substantially less than that of ambient mantle;
a condition that should be met by the temperature dependence
of viscosity (Karato and Wu, 1993), and our estimated minimum
plume temperature excess of 130 ◦C.

In Eq. (5) we use a fixed viscosity of 1019 Pa s and plume con-
duit radius of 100 km (Fig. 8b). The use of Eq. (5) with these
parameter values in three ways errs on the side of supporting the
null-hypothesis that all solutions will generate high volume fluxes:
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Fig. 8. Model calculations using the density contrast of the different lithology solutions for Iceland to predict the plume volume flux and compare it with the Jones et al.
(2014) determination. (a) A cartoon of the model calculation where the plume tail is modelled as a cylindrical pipe (Turcotte and Schubert, 2002); r is conduit radius, μ is
the viscosity, and ρ is the density, where subscript ‘p’ indicates plume and ‘m’ the mantle. (b) Model calculations solving Eq. (5) with a 100 km radius conduit and plume
viscosity of 1019 Pa s. The density contrast between ambient mantle (100% lherzolite) and the plume is a function of pressure, so volume flux for each of the lithology
solutions has been calculated at a range of pressures corresponding to most of the depth range of the upper mantle, points are coloured by the pressure used. The horizontal
solid and dashed lines mark the plume flux estimate from Jones et al. (2014), Q v = 49±14 km3 yr−1. The grey region indicates how the solutions shift if the ambient mantle
is assumed to contain 5% pyroxenite component, this increases its density thereby making the plume more buoyant.
(1) we consider r = 100 km from tomographic estimates (Rickers
et al., 2013), however the resolution of the tomographic models
means 100 km must be an upper limit on conduit radius and con-
sequently overestimate Q v in Eq. (5); (2) μp = 1019 Pa s is low
given that glacio-isostatic estimates of upper mantle viscosity are
∼1021 Pa s (Peltier, 1996), and is still reasonable even consider-
ing the approximately ten-fold decrease in viscosity per 100 ◦C of
temperature excess (Schubert et al., 2001); (3) the form of Eq. (5)
linearly relates increases in �ρ to Q v , however boundary layer
scalings for an isoviscous fluid imply that Q v ∝ Ra1/3 (where Ra
is Rayleigh number), so in applying Eq. (5) we are likely to be
overestimating the scaling of Q v with increasing �ρ . All these
factors make our volume flux estimates conservative with regard
to arguing for high plume temperatures and significant refractory
components.

Using the parameters discussed above we calculate Q v over an
upper mantle pressure range (Fig. 8b). The key result of Fig. 8b is
that a volume flux equal to the 49 ± 14 km3 yr−1 estimate of Jones
et al. (2014) is only able to be attained across the whole upper
mantle pressure range by those lithology solutions with high Tp
(�1500 ◦C) and significant harzburgite fraction (�30%). The lithol-
ogy solutions with Tp < 1500 ◦C have low predicted �ρ and vol-
ume fluxes due to their low Fsolid

hz , high Fsolid
px , and low Tp, and can-

not reproduce the Jones et al. (2014) estimate of Iceland’s volume
flux. Importantly, this result holds even when plume buoyancy is
enhanced by comparison to an ambient mantle that contains 5%
pyroxenite.

In Appendix E we show that allowing our choice of pa-
rameter values to vary, conduit radii �120 km and viscosities
� 0.5×1019 Pa s all still require greater source buoyancy than pro-
duced by the lowest Tp-lithology solutions. Therefore, even with
the uncertainty in making volume flux estimates, the conservative
nature of our calculations makes it likely that to meet the volume
flux estimate of Jones et al. (2014), a plume substantially hotter
than the minimum Tp solution of 1465 ◦C is required, and thus
also a source with a significant harzburgite fraction.

4.3. Buoyancy of lithology estimates in other settings

The density calculations performed above allow the buoyancy
and dynamical plausibility of the suggested source lithologies from
other settings to be assessed. Few quantitative estimates of source
lithology exist and, as far as we are aware, no other workers
have quantified lithology proportions for a lherzolite–pyroxenite–
harzburgite mantle. As a result, the source estimates we overlay
onto the 1450 ◦C and 1600 ◦C neutral buoyancy contours in Fig. 9a
have all been plotted at constant Fsolid

px , but over the full range of

Fsolid
hz and Fsolid

lz .
The important result of Fig. 9 is that the mantle lithologies

identified by several authors for Hawaii (Sobolev et al., 2005;
Pietruszka et al., 2013) are not buoyant as simple lherzolite–
pyroxenite mixtures in the upper mantle, even with excess temper-
atures of 270 ◦C. Instead, up to 40% of the Hawaiian source must
be harzburgite (or another low density lithology) for the plume
to both contain ∼20% recycled basalt and have positive buoy-
ancy (Fig. 9b). Alternatively, the mass fraction of pyroxenite in the
Hawaiian source has been overestimated, and although some vol-
canoes may be supplied almost exclusively by pyroxenite derived
melts, the bulk source has much less pyroxenite in it. This latter
possibility reminds us of the difficulty of estimating source lithol-
ogy from basalt geochemistry, especially in dynamically complex
regions like Hawaii, where the melting process that is so domi-
nant a control on the manifestation of source heterogeneity is itself
poorly understood.

5. Summary: a recipe for quantifying lithological heterogeneity

To make an estimate of mantle lithological heterogeneity from
an initial identification of geochemical heterogeneity in erupted
basalts requires multiple steps, each of which involves assumptions
about processes that are themselves poorly understood. The proce-
dure we developed here considered a three lithology lherzolite–
pyroxenite–harzburgite mantle and took the following steps:

1. Identify the geochemical characteristics of endmember de-
pleted and enriched melts.

2. Determine the composition of the aggregate melt from the
melting region.

3. Calculate the fractional contribution of enriched and depleted
melts to the aggregate melt by calculating a mass balance be-
tween the aggregate and endmember melt compositions.

4. Use the major element compositions of the endmember melts
to isolate the mantle lithologies they correspond to Shorttle
and Maclennan (2011).
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Fig. 9. The buoyancy of mantle source lithologies inferred to be feeding volcanism in a variety of settings. (a) Literature estimates of the amount of Fsolid
lz and Fsolid

px are

overlaid onto the 1450 and 1600 ◦C plume–neutral buoyancy contours (solid grey lines) from Fig. 7 (assuming 100% lherzolite ambient mantle). Solid coloured lines are Fsolid
px

estimates from Hirschmann and Stolper (1996) and Sobolev et al. (2007, 2008), the light red region is the range of lherzolite:pyroxenite estimates for Hawaiian volcanism from
Pietruszka et al. (2013). None of the literature Fsolid

px values explicitly consider a harzburgite fraction in the mantle, so they have been drawn to cover the range of possible

Fsolid
hz given the estimated Fsolid

px . It should be noted that these ranges do not preserve the lherzolite to pyroxenite ratio implicit in the authors’ original estimates, other than

for when Fsolid
hz = 0. (b) The density difference between hypothesised Hawaiian plume sources and ambient mantle (�ρ), plotted as a function of harzburgite fraction in the

source; calculated with Tp = 1600 ◦C. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
5. Produce a tri-lithologic melting model, containing enriched,
depleted and refractory domains to predict Fmelt

px and tc as a
function of source lithology and Tp.

6. Combine observational constraints on Fmelt
px and tc to delimit

viable mantle source lithologies and Tp.

The result of these calculations indicates that the mantle under
Iceland must contain 4–10% pyroxenite and have an excess po-
tential temperature �130 ◦C. A variation in lithology alone cannot
reproduce the geophysical and geochemical observations, which re-
quire the Icelandic mantle to also have a significant temperature
excess compared with typical mid-ocean ridges.

For the purposes of producing simple testable models, in this
manuscript we have only considered a mantle comprising a lher-
zolite, pyroxenite, and harzburgite mixture. This three-lithology
source represents a large reduction in mantle lithological complex-
ity, away from of what must really be a continuum in the major
element chemistry of mantle rocks. However, what is important is
that the three lithologies we use are representative of the gross in-
puts and outputs of mantle differentiation. Therefore, our finding
of a finite proportion of each of lherzolite, pyroxenite, and harzbur-
gite lithologies in the Icelandic source is in all likelihood evidence
for the continuous nature of mantle lithological variability, which
ranges from both more refractory and more fertile domains.

If refractory domains are an important part of the mantle litho-
logical spectrum, as our results suggest, this means there is a
greater need to combine geochemical observations with geophysi-
cal constraints to overcome their often chemically cryptic role in
mantle melting. In this manuscript we explored one additional
constraint, that of the plume’s volume flux and how it is affected
by the range of viable source lithologies and potential temper-
atures of the Icelandic mantle. From the requirement to match
Iceland’s estimated volume flux it is likely that in addition to con-
taining recycled pyroxenite, the Icelandic mantle contains a mass
fraction of refractory component �30%.
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Appendix A. Identifying lithological heterogeneity: major
element–trace element relationships

Shorttle and Maclennan (2011) used plots of Nb/Zr versus MgO
with individual points coloured by their major element composi-
tion to relate lithological heterogeneity to enrichment. These plots
allowed primitive samples to be identified that had avoided signif-
icant mixing and crystallisation, both of which can introduce erro-
neous correlations between major elements and indices of enrich-
ment. The MgO range of primitive samples was �9.5 wt% MgO and
those samples have been plotted in Fig. A.1 directly against their
major element composition. Major element–trace element trends
are similar between north and south Iceland and clearly repro-
duce the association between high FeO, low CaO and enrichment
(high Nb/Zr). These major element characteristics are inconsistent
with melting of a single lherzolite lithology at a range of pressures
or melt fractions, and instead require lithological variability in the
source (Shorttle and Maclennan, 2011).

Appendix B. Nb/Zr as a conservative tracer

We define a conservative tracer during fractional crystallisa-
tion as one that is not fractionated by the removal of crystallising
phases, so that despite a change in the concentration of elements
forming the tracer during magmatic evolution, its value stays con-
stant. The best example would be a radiogenic isotope ratio such as
87Sr/86Sr, of which the equilibrium fractionation between isotopes
during crystallisation is very small (and in any case corrected for
during analysis), so that a single batch of magma evolving in iso-
lation would have the same 87Sr/86Sr after 99% crystallisation as it
did at 0%. However, as we discuss in Appendix C, the abundance
of isotope data is less than that of trace elements so we chose to
use an incompatible trace element ratio with a similar resistance
to the fractionation process as an isotope ratio.

The equation describing the evolution of a trace element ratio
(C i

l /C j
l , for elements i and j in the liquid) during fractional crys-

tallisation is,
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Fig. A.1. The relationship between incompatible trace element ratio Nb/Zr and major
element composition of Icelandic basalts. Only basalts with MgO � 9.5 (wt%) have
been plotted and points are coloured by their MgO concentration. The left panel
of plots includes basalts from Iceland’s centre and north, the right panel basalts
from Iceland’s southwest. Red and blue horizontal lines mark the enriched and
depleted Icelandic melt composition respectively, identified by Shorttle and Maclen-
nan (2011). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

C i
l

C j
l

= C i
0

C j
0

F (Di−D j), (B.1)

where F is the degree of crystallisation. Eq. (B.1) shows that the
minimum offset of the final trace element ratio from the original
(C i

0/C j
0), is when the difference in partition coefficients between

the two elements (Di − D j ) is close to zero. In general this con-
dition is met for any pair of Di and D j that are similar, but will
also hold when both elements are highly incompatible (D � 1), in
which case even order of magnitude differences in Di and D j will
give |Di − D j| � 1.

To demonstrate the systematics of crystallisation and mixing in
the crust, we used Nb/Zr ratios (Fig. 1). We reproduce the first
panel from Fig. 1 here, overlaid with a model calculation of how
Fig. B.2. Whole-rock Nb/Zr from Theistareykir and Krafla basalts overlaid with black
lines modelling how the Nb/Zr of primitive basalts is predicted to evolve during
fractional crystallisation alone. The relationship between the degree of crystallisa-
tion and MgO was taken from Maclennan et al. (2001b), with 20% of the starting
mass lost to wehrlite (ol69cpx30plag1) removal between 14 and 9.5 wt% MgO, fol-
lowed by gabbro (ol7cpx40plag53) removal to 5 wt% MgO, by which point 80% of
the starting system mass has been lost to crystallisation.

fractional crystallisation alone would affect the Nb/Zr of primitive
melts (Fig. B.2, details of calculation in caption). Fig. B.2 shows
that Nb/Zr ratios are minimally affected by fractional crystallisa-
tion, even though 80% of the starting system mass is lost during
evolution from ∼14 to 5 wt% MgO (Maclennan et al., 2001b).

We subsequently expanded our analysis from looking at Nb/Zr
alone, to using a range of trace elements (Fig. 3). To demonstrate
that this selection of trace elements and their ratios is robust
to fractional crystallisation processes we have plotted matrices of
|Di − D j | for separate mineral phases (Fig. B.3) and for the bulk
wehrlitic or gabbroic cumulates (Fig. B.4). The values of |Di − D j |
are greatest for clinopyroxene (Fig. B.3), but for the abundance of
crystallising phases to be consistent with the major element evolu-
tion of Icelandic basalts (Maclennan et al., 2001b), almost all trace
element ratios will have a |Di − D j| � 0.1 (Fig. B.4).

The small values of |Di − D j| in the matrices of Fig. B.4 jus-
tify our use of Nb/Zr and other incompatible trace element ratios
as conservative tracers during crystallisation. Our use of conserva-
tive trace element ratios means that the estimate of mean crustal
composition (Rij in Eq. (4)) can be reliably made, without crystal
fractionation introducing a significant systematic bias to the final
determination of Fmelt

px .

Appendix C. Mass balance of pyroxenite and lherzolite derived
melts with isotopes

Despite the arguments for incompatible trace element ratios
being an appropriate proxy for source composition (Fig. 2a and
Section 2.2), and their being conservative during magmatic differ-
entiation (Appendix B), it would still be preferable to use isotope
data to form the diagrams in Fig. 1 and to make the estimates of
Fmelt

px . The drawback of using isotopes is that there is much less
data available, which means the effect of concurrent mixing and
crystallisation on geochemical variability is harder to resolve. De-
spite this limitation, in Fig. C.5 we use Sr isotopes in place of Nb/Zr
to track geochemical variability, estimate average crustal and end-
member compositions, and calculate Fmelt

px . The key result is that

the Fmelt
px estimates from Fig. C.5 using isotopic data are within un-

certainty of those presented in Figs. 1 and 3 using trace element
data.

Appendix D. Modelling tri-lithology mantle melting

Before developing a melting model it is necessary to identify
the lithologies present in the mantle and their melting behaviour.
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Fig. B.3. Matrices show the absolute partition coefficient difference for individual mineral phases (|D y − Dx|). Elements along the top axis form the denominator partition
coefficient (Dx), elements along the vertical axis the numerator partition coefficient (D y ). Partition coefficients from McKenzie and O’Nions (1991), Gibson and Geist (2010).

Fig. B.4. The absolute difference in bulk partition coefficients if olivine, plagioclase and clinopyroxene are crystallising in wehrlitic the proportions (ol69plag1cpx30) or gabbroic
(ol7plag53cpx40) proportions.

Fig. C.5. The evolution of isotopic variability and composition during concurrent crystallisation and mixing (equivalent to the trace element patterns in Fig. 1). Samples used
in defining the endmember compositions are circled in black. Solid horizontal black lines marks the volume average 87Sr/86Sr with the 1 s.e. region in grey. The reason for
the low estimates of uncertainty on the values of Fmelt

px here compared with those in Fig. 1, is that in selecting only one sample to define an isotopic endmember we are
reducing the apparent uncertainty in the endmember compositions, which when we used the (much more abundant) trace element data was obtained by calculating the
standard deviation of the highest and lowest 10% of samples.
There is abundant geochemical evidence for at least one enriched
and one depleted source in the Icelandic mantle, corresponding
to pyroxenite and lherzolite lithologies respectively (Shorttle and
Maclennan, 2011). In this paper we consider the melting of a lher-
zolite and pyroxenite lithology (two types of the latter), as well as
allowing for variable amounts of harzburgite to be present. Refrac-
tory lithologies in the mantle may be difficult to detect geochem-
ically; they would contribute little if any melt to the total melt
production, and any melts produced would have low concentra-
tions of the incompatible trace elements (Sr, Nd, Pb) whose isotope
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Fig. D.6. Results of model calculations melting single lithology mantles of lherzolite (lz), pyroxenite (G2 or KG1, Pertermann and Hirschmann, 2003; Kogiso et al., 1998) or
harzburgite (hz) at a mantle potential temperature of 1330 ◦C. (a) Pressure–temperature paths for a column of single lithology mantle undergoing isentropic decompression,
followed by melting once it has intersected its solidus. Mantle P –T paths are indicated by thick solid lines, solidus, liquidus and clinopyroxene out (cpx out) boundaries for
each lithology are marked by thin solid or dashed lines. Because the harzburgite is constrained to undergo no melting it defines a simple adiabat (Eq. (D.3)) for the whole
pressure range. The shaded area marks the crustal thickness applied in these calculations, and therefore the pressure at which the melting calculations stop. (b) The degree
of melting for a packet of mantle undergoing the maximum amount of decompression.
systems are most frequently used to characterise source. However,
there is evidence from Hf isotopes that highly refractory domains
exist and are sampled by melting in some locations (Salters et al.,
2011). Given also that we are envisaging a recycled origin for the
pyroxenite component it seems inevitable that the complementary
depleted lithologies would be recycled as well, and so may form a
significant, albeit cryptic, fraction of any mantle source containing
recycled material.

At least three equations are needed to parameterise the melting
of a lithology, (1) an equation for the location of the solidus surface
in temperature–pressure space, Ts(P ), (2) an equation for the liq-
uidus surface, Tl(P ), and (3) an equation describing how the melt
fraction varies across the melting interval, F (P , T ′), where T ′ is
the dimensionless scaled temperature T ′ = (T − Ts)/(Tl − Ts). Fur-
ther, each of these expressions needs to be differentiable: dTl/dP ,
dTs/dP , [dT /dF ]P , [dT /dP ]F .

For lherzolite melting we use the parameterisation of Katz
et al. (2003), which splits melting up into a higher productivity
clinopyroxene–present melting interval, followed by a low pro-
ductivity clinopyroxene absent melting interval. The refractory
harzburgite we assume never undergoes melting. This is a sim-
plifying assumption, but is probably appropriate in the case when
the harzburgite is a minority component in the source, in which
case heat loss from the harzburgite to the other melting litholo-
gies will keep the harzburgite chilled below its solidus. We model
the melting of two pyroxenitic lithologies. The G2 lithology from
Pertermann and Hirschmann (2003) is a MORB-like composition,
with the result that it is an extreme case of a low solidus tem-
perature and high productivity (narrow melting interval). We also
create a parameterisation for the KG1 composition, which like
the lherzolite lithology of Katz et al. (2003) we break into a cpx
present melting interval described by a solidus surface,

Ts = −4.7P 2 + 124.1P + 1095.4, (D.1)

and clinopyroxene out surface,

Tcpx-out = −11.1P 2 + 157.2P + 1179.6. (D.2)

To parameterise the solidus and cpx-out surfaces and the isobaric
melt production of KG1, we used a method similar to that used
by Pertermann and Hirschmann (2003) for the pyroxenite G2 and
Lambart et al. (2013) on the pyroxenite MIX1G, assuming that F is
a quadratic function of temperature (T ) up to the cpx-out. Follow-
ing clinopyroxene out we then use the liquidus surface for harzbur-
gite from Katz et al. (2003), which creates a low productivity tail to
KG1 melting. The relevant solidus, liquidus and clinopyroxene out
surfaces for each lithology are shown in Fig. D.6, along with the
simplest case of single lithology melting for each source lithology.

The basic parameters describing the melting process are the
productivity dF/dP and the temperature evolution of the (solid)
source dT /dP . These terms are derived by Phipps Morgan (2001)
by forming an entropy balance assuming isentropic melting (i.e.
reversible and adiabatic) for an n-lithology mantle. We reproduce
the key results below for the three lithology mantle we consider.

The adiabat for a three lithology mantle, in the absence of melt-
ing, is given by,

T = T0 exp

( ∑n=3
φn

αn
ρn∑n=3

φnCpn

P

)
(D.3)

where T0 is the mantle potential temperature, P – the pressure,
Cp – the heat capacity, φn – the mass fraction of a given lithology
n such that

∑n
φn = 1, α – the thermal expansivity and ρ is the

density.
In most cases (all cases we model in this paper), within an as-

cending parcel of a lithologically heterogeneous mantle, the fusible
pyroxenite lithology (KG1 or G2) will intersect its solidus first. In
this case, heat from the lherzolite and harzburgite flows to the py-
roxenite as it consumes heat undergoing the transition from a low
entropy solid to high entropy liquid. The equation for temperature
evolution during perfect fractional melting in this interval is,

dT

dP
= dF

dP

[
dT

dF

]px

P
+

[
dT

dP

]px

F
, (D.4)

and the productivity of the pyroxenite is given by,

dF

dP
= −

Cp
T

[ dT
dP

]px
F − (α/ρ)

φpx�S px
f + Cp

T

[dT
dF

]px
P

, (D.5)

where φ is the mass fraction of each lithology in the source, �S f

is the entropy of fusion, Cp = φpxCppx + φpdCppd + φhzCphz, and
(α/ρ) = φpx

αpx
ρpx

+ φpd
αpd
ρpd

+ φhz
αhz
ρhz

.

The next stage of melting is for the lherzolite to intersect its
solidus, then potentially both pyroxenite and lherzolite lithologies



38 O. Shorttle et al. / Earth and Planetary Science Letters 395 (2014) 24–40
Table D.1
Parameters used in the melting calculations.

Parameter Lherzolite Pyroxenite Harzburgite Units

KG1 G2

Mass fraction cpx 0.15a – – –
Heat capacity 1187 1140 1140 1000 J kg−1 K−1

Thermal expansivity, solid 30 × 10−6 30 × 10−6 30 × 10−6 30 × 10−6 K−1

Density, solid 3300 3300 3550 3250 kg m−3

Density, liquid 2900 2900 2900 2900 kg m−3

Entropy of fusion 407 380 380 – J kg−1K−1

a Required for the lherzolite parameterisation of Katz et al. (2003).

Fig. E.7. Model calculations to assess the sensitivity of the plume volume flux estimates to the chosen conduit radius and plume viscosity. In each figure the connected
coloured circles are the volume flux estimates for the Icelandic lithology solutions as shown in Fig. 8b, and the solid and dashed lines mark the volume flux estimate of
49 ± 14 km3 yr−1 from Jones et al. (2014). (a) Illustrates how the volume flux estimate for the density contrast at 50 kbar varies as a function of the conduit radius (light
blue region, 80 km–120 km) and plume viscosity (dark blue region, 1018 Pa s–1020 Pa s). (b) Variation in the plume flux estimate for the 120 kbar density contrast. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
will be melting depending upon their relative [dT /dP ]F . In the
dual lithology melting case, dT /dP is again given by Eq. (D.4)
(because thermal equilibrium has to be maintained between all
lithologies), but the dF/dP used is the bulk productivity, which
in the absence of harzburgite melting is given by,

dF

dP
= φpx

[
dF

dP

]px

+ φpd

[
dF

dP

]pd

. (D.6)

The individual productivities in this case are,

[
dF

dP

]px

= −
Cp
T

[ dT
dP

]px
F − (α/ρ) + φpd�S pd

f

([ dT
dP

]px
F −[ dT

dP

]pd
F

)
[dT /dF ]pd

P

φpx�S px
f + φpd�S pd

f
[dT /dF ]px

P

[dT /dF ]pd
P

+ Cp
T

[dT
dF

]px
P

, (D.7)

and for lherzolite,

[
dF

dP

]pd

= [dT /dF ]px
P

[dT /dF ]pd
P

[
dF

dP

]px

+
[ dT

dP

]px
F − [dT

d

]pd
F[dT

dF

]pd
p

. (D.8)

Parameters for these calculations can be found in Table D.1. The
differential equations describing melting are numerically inte-
grated using a fourth-order Runge–Kutta scheme (Press et al.,
1992). Integration to calculate total pressure of the crust is per-
formed using,

Pc =
∫

F

1 − F
dP , (D.9)

which accounts for compaction of the melting region in response
to melt extraction (Eq. (6) of White et al., 1992). Integration be-
gins at the onset of melting and stops when Pc � P , i.e. when the
mantle column has upwelled to the base of the crust. Conversion
between Pc and tc, the crustal thickness, is made by assuming the
crust has a mean density of 2900 kg m−3 (Menke, 1999).

Because the harzburgite is modelled to never undergo melting,
Eqs. (D.4)–(D.8) are very similar to the two lithology melting equa-
tions from Phipps Morgan (2001). The main difference is that the
harzburgite heat capacity term appears in the numerator and de-
nominator of Eqs. (D.6) and (D.5) for dF/dP , the effect of which is
to thermally buffer the melting of lherzolite and pyroxenite litholo-
gies.

Appendix E. Varying viscosity and conduit radius in plume flux
calculations

Neither plume viscosity (μp) nor plume conduit radius (r) are
independently and exactly known. A maximum plume conduit ra-
dius can be estimated from seismic tomographic images, and a
lower bound on viscosity can be placed by considering estimates
of upper mantle viscosity and the likely scaling of viscosity with
temperature. These considerations led us in Section 4.2 to use a
viscosity of 1019 Pa s and conduit radius of 100 km. These pa-
rameters indicated that the low Tp-lithology solutions for Iceland
could not generate sufficiently high plume volume flux Jones et al.
(2014). Here we test the sensitivity of that result to variations in r
and μp .

Panels a and b of Fig. E.7 explore how varying the plume con-
duit radius between 80 and 120 km and viscosity by two orders of
magnitude affects the predicted volume flux. Conduit radii up to
120 km still require Tp-lithology solutions with Tp > 1480 ◦C and
>15% harzburgite fraction in the source, whilst if the conduit is
narrower than 100 km both the Tp and harzburgite fraction must
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substantially increase to maintain the volume flux. Viscosity has
a strong control over volume flux because of the potential mag-
nitude of its variation within the Earth. Any μp > 0.5 × 1019 Pa s
requires finite harzburgite fraction, but if μp is as low as 1018 Pa s,
then the Tp-lithology solutions with the lowest �ρ are capable of
generating the Iceland plume’s volume flux, but only in the shal-
lowest upper mantle (Fig. E.7a).

An accurate relation of buoyancy to plume volume flux is
highly model and parameter dependent. However, within reason-
able bounds, the low Tp-lithology solutions are unable to generate
the volume flux seen at Iceland.

Appendix F. Data sources

Here we list the sources of geochemical data used in Figs. 1, 2
and 3. For north east Iceland data were taken from: Skovgaard et
al. (2001), Breddam et al. (2000), Maclennan et al. (2001b, 2001a,
2003), Slater et al. (2001), Stracke et al. (2003), Nicholson et al.
(1991), Kokfelt et al. (2006), Koornneef et al. (2012b). For cen-
tral Iceland data were taken from: Hémond et al. (1993), Chauvel
and Hémond (2000), Maclennan et al. (2001a), Shorttle et al.
(2013), Kokfelt et al. (2006), Breddam (2002), Hardarson and Fitton
(1997). For south west Iceland data were taken from: Skovgaard
et al. (2001), Hémond et al. (1993), Chauvel and Hémond (2000),
Sinton et al. (2005), Eason and Sinton (2009), Kokfelt et al. (2006),
Koornneef et al. (2012b), Hardarson and Fitton (1997), Gee et al.
(1998a, 1998b), Thirlwall et al. (2004), Peate et al. (2009).
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