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We report ab initio density functional theory calculations on iron–nickel (Fe–Ni) alloys at conditions

representative of the Earth’s inner core. We test different concentrations of Ni, up to �39 wt% using ab

initio lattice dynamics, and investigate the thermodynamic and vibrational stability of the three

candidate crystal structures (bcc, hcp and fcc). First of all, at inner core pressures, we find that pure Fe

experiments on Fe–Ni alloys, we find the fcc structure is stabilised by the incorporation of Ni under core

pressures and temperatures. Our results show that the fcc structure may, therefore, be stable under

core conditions depending on the temperature in the inner core and the Ni content. Lastly, we find that

within the quasi-harmonic approximation, there is no stability field for Fe–Ni alloys in the bcc structure

under core conditions.

& 2012 Elsevier B.V.Open access under CC BY license. 
1. Introduction

The exact structure and composition of the Earth’s core is still
unclear. We know that the primary constituent is iron, but
cosmochemical models and meteorite studies suggest that the
core must also contain some nickel (Anderson, 1989). Under
ambient conditions, iron adopts a body-centred-cubic (bcc)
structure. Increasing temperature at ambient pressure causes a
transformation to the face-centred-cubic (fcc) phase at �1150 K.
At high pressures (411 GPa at room temp.) Fe adopts the
hexagonal-close-packed (hcp) structure, which persists at Earth’s
inner core pressures (Stixrude & Cohen 1995; Vočadlo et al. 1997,
1999; Saxena and Dubrovinsky, 2000; Ahrens et al., 2002).
However, little information is available on the phase relations of
Fe–Ni alloys at core conditions. A relatively low pressure (86 GPa)
experimental study by Lin et al. (2002) on a 10% Ni Fe–Ni alloy at
temperatures up to 2382 K suggested that while Ni stabilises the
fcc phase to higher pressures and lower temperatures, the stable
phase at Earth’s core conditions would still be the hcp phase. A
more recent experimental study by Dubrovinsky (2007) up to
225 GPa and 3400 K suggested that an alloy with 10% Ni would
adopt the bcc structure at core conditions. The following year,
Kuwayama et al. (2008) carried out an experiment with alloys
containing up to �25% Ni, reaching 300 GPa and 2000 K. Their
results suggested that, depending on the abundance of Ni in the
outer core in the early core formation period, the inner core
should be in the hcp or fcc structure, and they found no evidence
of bcc. The above uncertainty has prompted this ab initio study,
ax: þ44 20 7679 2685.

cense. 
where we use lattice dynamics to probe the structure of Fe–Ni
alloys of different concentrations at pressures and temperatures
representative of the Earth’s inner core (up to 330 GPa and 5500 K).

Finding the correct crystal structure of the inner core is very
important for understanding the observed seismic anisotropy and it
would provide a crucial constraint in recent Earth models. More
specifically, we know that the elastic anisotropy depends on the
particular crystal alignment, therefore different inner core phases will
naturally result in different amounts of anisotropy. Furthermore,
recent inner core models (Alboussi�ere et al., 2010; Monnereau
et al., 2010; Gubbins et al., 2011) suggest different mechanisms of
inner core evolution which depend on the particular rheology, mass
convection and heat flow in the inner core. These properties are
largely dependent on the choice of crystal structure in the inner core
since interpreting the anisotropy in terms of flow requires knowledge
of that crystal structure. A convecting core would line up to the flow
direction in a particular way, and incorrect assumptions about the
structure would give rise to a different elastic anisotropy from the one
observed. We have shown in previous studies (Vočadlo et al., 2003;
Côté et al., 2010) that temperature has an important influence on the
inner core’s structure, so using lattice dynamics we have the
opportunity, within the quasi-harmonic approximation, to examine
the phase relations between the candidate phases of Fe–Ni alloys at
core conditions.
2. Computational methods

The Density Functional Theory (DFT) calculations in this work
were carried out using the VASP code (Kresse and Furthmuller,
1996), using the generalised gradient approximation (GGA)
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(Wang and Perdew, 1991) to represent the exchange-correlation
energy. VASP calculates the ground state (T¼0) for each set of
ionic positions and the electronic free energy is taken as the
quantity to be minimised. The k-point sampling grid and cutoff
energies were chosen carefully so that the energy convergence
would not exceed 1 meV/atom. Specifically, we used a 400 eV
cutoff energy throughout the calculations. For pure iron, the
k-point grid chosen is described in our previous work (Côté
et al., 2010). For the Fe–Ni alloys, different concentrations of Ni
were achieved by substitution in primitive cells of 4 or 8 atoms.
We compared the thermodynamical stability of the fcc and hcp
phases using three different concentrations of Ni (12.5%, 25% and
37.5%). Achieving the latter concentration requires three Ni atoms
in the 8 atom cell, so a number of trials were performed with all
the different configurations of the defect atoms in both phases,
and the most favourable configurations at high pressure were
chosen. For the fcc supercell, the lowest energy 8-atom structure
is the one with the three Ni atoms positioned at coordinates
(0,0,0), (0.25,0.75,0.5), and (0.25,0.25,0.5); for the orthorhombic
hcp supercell, those coordinates are (0,0,0), (0.25,0.5,0) and
(0.5,0,0). The k-point grids used in the 8 atom cases were
6�6�12 for bcc (equivalent to 36 k-points in the irreducible
Brillouin zone (IBZ)), 6�6�9 for fcc (30 k-point in the IBZ) and
6�6�6 for hcp (64 k-points in the IBZ). Correspondingly dense
grids were used in the 25% hcp and low bcc concentrations where
4- and 16-atom primitive cells were used respectively.

We calculated the phonon frequencies for different structures
and examined their vibrational stability. The phonon calculations
were carried out using the code PHON (Alf�e, 1998), which
calculates the phonon vibrational frequencies oks along a pre-
defined path in the 1st Brillouin zone, by using the small
displacement method to construct force constant matrices.

To get accurate results in the phonon calculations, very
accurate forces are needed. We therefore used a very low
tolerance criterion for the total energy (10�7 eV), and an added
grid in the Fourier transform mesh in order to reduce the noise in
the forces, which were set to converge below 10�5 eV/Å. The
atoms were displaced by a small distance (0.01 Å) from their
equilibrium positions, in order for the forces to remain within the
harmonic approximation, and the forces were calculated. For all
cases, the calculations were performed on supercells large enough
to avoid self-interaction due to the periodic boundary conditions,
typically three times the size of the primitive unit cell in each
direction. The resulting supercells contained up to 288 atoms. We
must also note that none of the phonon calculations was spin-
polarised. We know that bulk fcc Ni remains ferromagnetic to
highest compression, but the Ni concentrations studied here are
not high enough for magnetism to persist at high pressures.

Our calculations were extended to nonzero temperatures by
using the quasi-harmonic approximation, where the volume and
temperature dependence of the Helmholtz free energy F(V,T) was
calculated as a sum of the contributions due to static compres-
sion, F0(V), thermal excitation of electrons, Fel(V,T), and thermal
excitation of phonons, Fvib(V,T):

FðV ,TÞ ¼ F0ðVÞþFelðV ,TÞþFvibðV ,TÞ ð1Þ

The last term in (1) is defined as

FvibðV ,TÞ ¼ kBT
X
s,k

ln 2sin h
hosk

2kBT

� �� �
ð2Þ

where kB is the Boltzman constant, and osk is the frequency of the
phonon mode for wave vector k and volume V.

The contribution to the free energy from electronic excitations
at different electronic temperatures Fel(V,T) was included by using
a Fermi smearing function when calculating the ground-state
energy in VASP. Adding the electronic temperature makes a big
difference in the stability of different phases.

The Gibbs free energy was then obtained by

GðP,TÞ ¼ FðV ,TÞþPV ð3Þ

In order to account for the contribution of thermal pressure at
different temperatures and obtain the last term of (3) accurately,
we performed free energy calculations at 6 different volumes,
corresponding to pressures in the range 200–400 GPa. We then
fitted the results to an E(V) Birch–Murnaghan 3rd order equation
of state, from where we were able to find the correct volume for
any pressure at various temperatures. The total free energies for
core pressures and temperatures could thus be evaluated. Using
that P–V–T data allowed us to construct a thermal equation of
state based on Birch–Murnaghan’s 3rd order formulation:
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where V0 is the temperature dependent zero-pressure volume,
linearly approximated as

V0ðTÞ ¼ V0ðT0Þexp a0ðT�T0Þþ
1

2
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Þ
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where T0 is a reference temperature at which the volume is V0 and
the bulk modulus has the value K0. The thermal expansion
coefficient varies linearly with temperature as a(T)¼a0þa1T.

With this formulation (Angel, 2001), the actual values of a0 and
a1 that describe a V–T curve depend on the value of the reference
temperature T0.

It should be noted that the calculations are quasi-harmonic
and, therefore, neglect anharmonicity, which may be important at
high temperatures. It has been shown that the total anharmonic
contribution to the free-energy of hcp Fe at 6000 K is only of the
order of 60 meV/atom (Alf�e et al., 2001). Since fcc is a close-
packed structure like hcp, it should have a similar anharmonic
contribution. It is thus unlikely for the free-energy differences to
be larger than �10 meV/atom, even at very high temperatures,
and since it is free-energy differences that are important, anhar-
momonic contributions are unlikely to change phase transition
temperatures substantially. We have, therefore, used 10 meV/
atom to estimate the uncertainty in the temperature of our
predicted hcp–fcc phase transitions. It should be noted, however,
that the anharmonic contribution to the free-energy may be
higher for the bcc phase, as it is not close-packed. This may lead
to larger (and as yet unknown) errors in the temperature of bcc
phase transitions. The Ni bearing phases may have more intrinsic
anharmonicity than pure Fe, but we currently have no reason to
suspect that the difference will be significantly greater than in
pure Fe (10 meV/atom).
3. Results

3.1. Vibrational stability

We substitutionally inserted different concentrations of nickel
at high pressure in all three phases (bcc, fcc and hcp). As reported
previously (Côté et al., 2010), the bcc phase of pure iron becomes
vibrationally unstable at high pressures above �200 GPa, but the
addition of Si stabilises it. Ni, however, does not have the same
effect. At low concentrations the bcc structure remains vibration-
ally unstable, and at concentrations above �9%, if the geometry is
allowed to relax, it transforms to the fcc structure. Interestingly,
this only happens when the electronic temperature corresponds



Fig. 1. Phonon dispersion relations of Fe–Ni alloys at 330 GPa for (a) 6.25% Ni in the bcc structure, where the mechanical instability is obvious, compared with 12.5% Ni in

the (b) fcc and (c) hcp structures. With 12.5% Ni, bcc transforms to fcc after a geometry optimisation.
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to core temperatures (�5500 K). Phonon dispersion relations for
the different structures are presented in Fig. 1.

At lower electronic temperatures (o4000 K), the Fe0.9Ni0.1

alloy remains in the bcc structure, but, like pure iron, it is
vibrationally unstable, at least in the quasiharmonic approxima-
tion. Consequently, examining the thermodynamical stability of
bcc was not feasible in this study. Previous theoretical studies
have pointed out that the bcc phase is dynamically and elastically
stable due to anharmonic effects (Vočadlo et al., 2003;
Belonoshko et al., 2003; Luo et al., 2010); this work, however,
suggests that above 4000 K it would transform to fcc if the Ni
concentration is above �9%.

Both fcc- and hcp-Fe remain dynamically stable with the
addition of Ni. We were therefore able to examine their relative
thermodynamical stability at core conditions.

3.2. Thermodynamical stability

3.2.1. Pure iron

We know that pure iron in the bcc structure is unlikely to
become thermodynamically stable at core conditions (Vočadlo
et al., 2008a) so we only compare the two remaining phases, fcc
and hcp. From our results at all pressures and temperatures we
put together the 3D energy diagram which is shown in Fig. 2. As
can be seen – assuming that anharmonicity does not affect this –
fcc-iron becomes the stable phase even at high pressures, pro-
vided that the temperature is high enough, in fact very close to
the melting temperature. If the electronic temperature is not
correctly applied, the vibrational contribution alone is not enough
to stabilise fcc, as was the case with our previous study (Côté
et al., 2010). We note that this result does not contradict earlier
work on iron phase stability (Vočadlo et al., 2008b) based on
calculations at 5500 K, where the hcp phase was predicted to be
more stable, in agreement with the results presented here (Fig. 2).
3.2.2. Iron–nickel alloy

The Gibbs free energies for the Fe–Ni alloys as a function of
temperature at pressures of 200 and 330 GPa are plotted in Fig. 3,
relative to the hcp phase. We evaluated the free energies at
200 GPa as well as the inner core pressure, in order to compare
our results with the available experimental data. It is clear that
both Ni concentration and high temperatures increase the stabi-
lity field of the fcc phase, with Ni concentration having a smaller
effect at high temperatures. As can be seen from Fig. 3, at 37.5% Ni
fcc is always the most stable phase. The thermal equations of
state (Eq. (4)) using a reference temperature of 6000 K for the
different Ni concentrations of fcc and hcp are shown in Table 1.

Using the free energy results, we can estimate the Ni concen-
tration needed for the fcc phase to become the stable phase
thermodynamically. To do this, we added the configurational
term kBT(cNi ln(cNi)þcFe ln(cFe)), where c represents the atomic%
concentration, to the energies of the individual phases. The
resulting solid solution energies were then fitted to a polynomial
for each phase, the crossing point of the two lines representing
the phase transition. This estimate ignores any solid solutions,
and it represents the theoretical pseudo-univariant reaction,
where one phase would transform straight into the other. Super-
imposing our results on the experimentally derived phase dia-
gram of Kuwayama et al. at 200 GPa we obtain Fig. 4. We can see
that our pseudo-univariant line is completely consistent with all
available experimental data. At higher temperatures we predict a
steeper phase transition than suggested by Kuwayama et al.,
which they obtained by extrapolating their low temperature
experimental data to match the pure iron transition temperature
by Boehler (2000); the transition temperature we predict for pure
iron is �500 K lower.

We attempted to derive a two-phase region around the
pseudo-univariant line, however we were unable to use the
common tangent technique, described in Côté et al. (2010), due



Fig. 2. Gibbs free energy of fcc as a function of pressure and temperature with respect to hcp (zero plane). The crossing points of the two planes indicate the point of the

phase transition. Specifically at 330 GPa, the required temperature for stabilising fcc is �6000 K, below the melting point of 6300 K, as calculated by Alf�e et al. (2002).

Fig. 3. Gibbs free energy difference of fcc with respect to hcp (DG¼0 line) vs.

temperature at (a) 200 GPa and (b) 330 GPa, for increasing concentrations of Ni.

fcc is becoming more stable with respect to hcp with increasing temperature and

concentration. The lines through the points are guides for the eye.
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to the very small energy difference between the two phases and
the almost linear increase of free energy with Ni concentration at
200 GPa. Thus we were not able to determine the exact extent of
the two-phase solid solution. The yellow shaded region in Fig. 4 is,
therefore, an estimate based on our calculated two-phase region
at the inner core boundary pressure (330 GPa), where the afor-
mentioned technique could be applied, and is depicted in the
inset of Fig. 4. The width of our estimated two-phase region at
200 GPa is also consistent with that measured by Kuwayama et al.
(2008) at low temperatures. Finally, it is also worth noting that
the addition of nickel makes very little difference to the iron
phase transition before �13 wt% Ni.
4. Discussion

We find that at 330 GPa the hcp phase of pure iron transforms
to the fcc phase at �6000 K. We also find that the presence of
nickel lowers this transition temperature, particularly at concen-
trations of Ni above �13%. This result is based on the assumption
that there is no significant difference in the anharmonic contribu-
tion to the Gibbs free energies of the fcc and hcp phases, and also
that any additional anharmonic contribution arising from the
presence of nickel will be similar for each phase, so that the free
energy difference is unaffected. Our result for pure iron is in
agreement with the theoretical and experimental results of
Mikhaylushkin et al. (2007) and also with earlier ab initio
molecular dynamics calculations (Vočadlo et al., 2008b) which
predicted that the thermodynamically stable phase of pure iron at
5500 K is the hcp phase (see Fig. 2).

Whether the inner core is in the fcc structure rather than the
hcp structure depends on the temperature of the core, the nickel
concentration and the light element concentration. For a Fe–Ni
core, at temperatures below �6000 K and moderate Ni content
(�5%), the core is likely to be in the hcp structure; a hotter core
and/or higher Ni concentrations will likely change the core phase
to the fcc structure. This transition temperature will be even
lower if light elements are taken into account; for example, Côté
et al. (2010) have shown that 13 atm% (7 wt%) Si reduces the
transition temperature to 5500 K. It is also possible that the core
could be a mixture of both phases (Mikhaylushkin et al., 2007;
Côté et al., 2010). Our results show that for the Fe–Ni system, very



Table 1
Thermal equation of state parameters for different concentrations of Ni, for the fcc and hcp crystal stuctures. Reference temperature T0¼6000 K.

12.5% Ni 25% Ni 37.5% Ni

fcc hcp fcc hcp fcc hcp

V0/atom (Å3) 99.9962 99.0594 95.9726 47.6502 96.7767 95.7073

K0 (GPa) 165.3468 170.3889 201.5196 204.7459 190.7421 202.3631

K0 4.2170 4.2082 4.0840 4.1035 4.1391 4.0828

a0 (�10�5 K) 1.9870 1.9496 1.8689 1.8199 1.8935 1.8659

a1 (�10�8 K) 0.4279 0.4237 0.28745 0.2561 0.2755 0.2598

dK/dT �0.0240 �0.0244 �0.0212 �0.0199 �0.0198 �0.0203

Fig. 4. Compositional phase diagram of the Fe–Ni system at 200 GPa, super-

imposed on the experimental results of Kuwayama et al. (2008). The yellow

coloured region indicates an estimated solid solution range based on the experi-

ment, and includes the pseudounivariant (blue line). The pure iron hcp to fcc

phase transition happens at a lower temperature than the one estimated by

Kuwayama et al. (black cross at �5500 K) which they obtained by extrapolating

experimental results of Boehler (2000). The black dashed line denotes an

estimated melting curve at 200 GPa starting from Boehler’s pure iron melting

point assuming very little compositional effect. The dotted blue line is a shift of

that melting curve such that it starts at Alfe’s ab initio melting point for pure iron

at 200 GPa (2002). The inset shows the two-phase loop at 330 GPa, where it was

calculated using the common tangent technique (Côté et al., 2010). At 330 GPa the

melting point starts higher, at �6300 K. The melting curve has not been

estimated. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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high concentrations of Ni and low temperatures are required in
order to be in the two-phase region. However, a full analysis is
needed that includes light elements in order to quantify this
mixed-phase region.

Finally, this study found the bcc phase of iron remains
vibrationally unstable with the addition of nickel, making it
impossible to calculate any free energies; however, this does
not necessarily mean that we can rule the bcc phase out
altogether as a candidate for the inner core, as it has been found
to be stabilised by light elements (Vočadlo et al., 2003; Côté et al.,
2008).
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