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Our understanding of the continental climate development in East Asia is mainly based on loess–paleosol
sequences and summer monsoon precipitation reconstructions based on oxygen isotopes (δ18O) of
stalagmites from several Chinese caves. Based on these records, it is thought that East Asian Summer
Monsoon (EASM) precipitation generally follows Northern Hemisphere (NH) summer insolation. However,
not much is known about the magnitude and timing of deglacial warming on the East Asian continent. In this
study we reconstruct continental air temperatures for central China covering the last 34,000 yr, based on the
distribution of fossil branched tetraether membrane lipids of soil bacteria in a loess–paleosol sequence from
the Mangshan loess plateau. The results indicate that air temperature varied in phase with NH summer
insolation, and that the onset of deglacial warming at ~19 kyr BP is parallel in timing with other continental
records from e.g. Antarctica, southern Africa and South-America. The air temperature increased from ~15 °C at
the onset of the warming to a maximum of ~27 °C in the early Holocene (~12 kyr BP), in agreement with the
temperature increase inferred from e.g. pollen and phytolith data, and permafrost limits in central China.
Comparison of the tetraether membrane lipid-derived temperature record with loess–paleosol proxy records
and stalagmite δ18O records shows that the strengthening of EASM precipitation lagged that of deglacial
warming by ca. 3 kyr. Moreover, intense soil formation in the loess deposits, caused by substantial increases
in summer monsoon precipitation, only started around 12 kyr BP (ca. 7 kyr lag). Our results thus show that
the intensification of EASM precipitation unambiguously lagged deglacial warming and NH summer
insolation, and may contribute to a better understanding of the mechanisms controlling ice age
terminations.
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.
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1. Introduction

Oxygen isotope (δ18O) records of stalagmites from several caves in
Chinahaveyieldedwell dated, high-resolution records of the timingand
amplitude of changes in East Asian Summer Monsoon (EASM)
precipitation during the last four glacial–interglacial cycles (e.g. Cheng
et al., 2009; Dykoski et al., 2005; Wang et al., 2001, 2008; Yuan et al.,
2004). Generally, these records revealed that the EASM follows
Northern Hemisphere (NH) insolation patterns. Similarly, various
climate-proxy records derived from loess–paleosol sequences from
the Chinese Loess Plateau have also documented changes in EASM
precipitation (e.g. An, 2000; Heslop et al., 1999; Porter and An, 1995;
Sun andHuang, 2006;Wuet al., 2002). The build-up of the loess plateau
relates to changes in monsoon intensity, varying temperature and
moisture conditions; loess is mainly deposited during cool and dry
periods, as a result of an intensified winter monsoon, whereas soil
formation takes place predominantly during the warmer and wetter
periods with strengthened summer monsoon (Porter and An, 1995).
The loess–paleosol records, as well as the stalagmite proxy records
match the climatic changes in the North Atlantic that are recorded in
Greenland ice-core records (Chen et al., 1997; Porter and An, 1995).

Although a large number of speleothem and loess records doc-
umenting EASM intensity have been generated, only little is known on
the development of atmospheric temperature over the East Asian
continent in relation to changes inmonsoon precipitation intensity. Soil
formation in loess sequences, caused by a substantial increase in
summer monsoon precipitation, has been found to lag NH insolation
(Heslop et al., 1999; Porter, 2001; Stevens et al., 2007). However, soil
formation is not only stimulated by intensified summer monsoon
precipitation, but by higher temperatures as well (Jenny, 1941).
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To gain more insight into the exact timing and amplitude of eastern
Asian continental temperature changes over the last glacial termination,
we used the recently developed MBT/CBT (methylation of branched
tetraethers/cyclisation of branched tetraethers) paleothermometer,
based on branched glycerol dialkyl glycerol tetraethers (GDGTs)
(Weijers et al., 2007b), in a loess–paleosol sequence of the Mangshan
loess plateau (Fig. 1) to reconstruct a continuous temperature record for
this area. BranchedGDGTs aremembrane lipids frombacteria that occur
ubiquitously in soils and peat (Weijers et al., 2006, 2007b), and air
temperatures can be reconstructed based on their distribution using the
Methylation index of Branched Tetraethers (MBT) and the Cyclisation
ratio of Branched Tetraethers (CBT) (Weijers et al., 2007b). The MBT/
CBT proxy works well in geothermally heated soils (Peterse et al.,
2009b) and branched GDGT distributions have been shown to reflect
the adiabatic cooling of air along altitude gradients (Hren et al., 2010;
Peterse et al., 2009a; SinningheDamsté et al., 2008). Also, when applied
to marine surface sediments, branched GDGT-derived temperatures
show good agreement with the annual mean air temperature of the
adjacent river drainage basins (Rueda et al., 2009;Weijers et al., 2007a).

The paleosol–loess sequence from the Mangshan loess plateau
investigated here mainly receives its sediment from the nearby Huang
He floodplain (Yellow River), which has a relatively humid climate
compared to the Central Loess Plateau. The availablemoisture enhances
soil formation, and values of the branched and isoprenoid tetraether
(BIT) index, that quantifies the content of soil-derived organicmatter in
a system, are therefore high for these soils (typically N0.8; Hopmans
et al., 2004). This makes the sequence suitable for the application of the
MBT/CBT proxy. This area is also ideal for a high-resolution reconstruc-
Fig. 1. Overview maps showing (A) China with the locations of the Mangshan Loess Plateau
Plateau, the Mo Us Desert and the North China Plain (NCP), and (C) the studied Mangshan lo
(2009).
tion, as sedimentation rates are generally high (17 to 29 cm/kyr during
the last 34 kyr; Prins et al., 2009; Zheng et al., 2007).

2. Material and methods

2.1. Sites and sampling

The Mangshan loess plateau lies 25 km west of Zhengzhou on the
south bank of the Huang He (Fig. 1). The loess plateau is about 18 km in
length (W–E) and 5 km in width (N–S), with its highest point reaching
approximately 150 m above the Huang He floodplain. The Mangshan
plateau receives ~645 mm precipitation per year, about 70% of which
falls during the summer monsoon season (May–September). The air
temperature is ~2 °C during the winter (December–February) and
varies between 20 °C (May) and 27 °C (July) during the summer
monsoon season. The mean annual air temperature is 15 °C (WMO,
2007). For this study, the upper part of the loess-pedogenic complex,
covering the S0 (Holocene paleosol), L1 (last glacial loess deposit), and
S1 (last interglacial paleosol) layers, has been sampled at two locations.
The northern loess section, MS2006 (34°57.5′N, 113°22.2′ E; Fig. 1C), is
exposed on the northern slope of the Mangshan plateau, where the
Huang He river and local gullies have cut through the loess, forming a
valleywith steep cliffs. The section is ~59 m thick andwas continuously
sampled in 36 partly-overlapping, freshly-dug, vertical trenches at a 5-
cm resolution (Prins et al., 2009). At a southern location, two sections
have been sampled, MS2008W (34°56.4′ N, 113°22.2′ E) and MS2008E
(34°56.1′ N, 113°22.4′ E; Fig. 1C). SectionsMS2008W andMS2008E are
~34 and ~14 m thick, respectively, and were sampled in total in 26
(white dot) and the Hulu, Sanbao, and Dongge caves (black dots), (B) the Chinese Loess
ess sections. A blow up of the insert in (B) is shown in (C), and modified from Prins et al.
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partly-overlapping vertical trenches at a 10-cm resolution. From field
observations it is clear that the top part of the MS2008W section (0 to
45 cm) is disturbed by ploughing, as also evidenced by grain size data.

2.2. Magnetic susceptibility, organic matter and carbonate analysis

Samples were oven dried at 50 °C, lightly ground and aliquots of
~8 g were analyzed using a Bartington MS2 magnetic susceptibility
meter at the School of Ocean and Earth Sciences, Tongji University.
The organic matter and carbonate content of the samples were
analyzed using a Leco TGA 601 at the VU University Amsterdam.
Aliquots of ~2 g of the samples prepared for magnetic susceptibility
analysis were used for thermo-gravimetric analysis (TGA).

2.3. Grain size analysis

Prior to the grain size measurement the samples were prepared
according to the methods described by Konert and Vandenberghe
(1997). Briefly, about 1–2 g of bulk sediment was pre-treated with
solutions of 30% H2O2 and 1 N HCl in deinonized water to remove
organicmatter and carbonates, respectively. In case of a violent reaction,
additional aliquots of H2O2 and/or HCl solution were added to ensure
complete removal of organic matter and/or carbonates. Consequently,
the results reflect the grain size distribution of the siliciclastic loess
fraction. All measurements were performed on a Fritsch Analysette 22
laser particle sizer at the VU University Amsterdam. The variation in
mean grain size for this particular instrument has been shown to be
b0.5% (Jonkers et al., 2009). Grain size distributions were reported with
56 size classes between 0.15 and 2000 μm.

2.4. MBT/CBT analysis

Branched GDGTs were analyzed in the upper 5.9 m of section
MS2008E and the upper 4.8 m of section MS2008W, using high
performance liquid chromatography/atmospheric pressure chemical
ionization-mass spectrometry (HPLC/APCI-MS) as described by
Schouten et al. (2007), with minor modifications in the instrument
settings, as mentioned below. The loess samples from the MS2008W
sequence were freeze-dried. All loess samples from MS2008W and
MS2008E were then homogenized with a mortar and pestle, and
extracted (3×5 min) with a dichloromethane (DCM):methanol (9:1,
v/v) mixture using an accelerated solvent extractor (ASE 200, Dionex)
at 100 °C and 7.6×106 Pa. The total extracts were dried using a rotary
evaporator under near vacuum, then dissolved in DCM and passed
over a NaSO4 column to remove any remaining water. Known
amounts of an internal C46 GDGT standard were added according to
Huguet et al. (2006). Separation of the extracts in apolar and polar
fractions was done by passing them over an activated Al2O3 column
using hexane:DCM (9:1, v/v) and DCM:MeOH (1:1, v/v), respectively.
The polar fraction (containing the branched GDGTs and the internal
standard) was dried under N2, ultrasonically dissolved in hexane:
isopropanol (99:1, v/v) and filtered over a 0.45 μm PTFE filter. The
polar fractions were concentrated to about 3 mg/ml prior to analysis
by HPLC/APCI-MS on an Agilent 1100 series LC/MSD SL. Separation of
the branched GDGTswas achieved on an Alltech Prevail Cyano column
(150 mm×2.1 mm; 3 μm). The compounds were eluted isocratically
with 90% A and 10% B for 5 min (flow rate 0.2 ml/min), and then with
a linear gradient to 16% B for 34 min, where A=hexane and
B=hexane:isopropanol (9:1, v/v). The injection volume was 10 μl
for each sample. Selective ion monitoring of the [M+H]+ of the
different GDGTs was used to detect and quantify them. Absolute
quantificationwasachievedby calculating the area of the corresponding
peaks in the chromatograms, comparing themwith the peak area of the
internal standard, and correcting them for the different response factors
(cf. Huguet et al., 2006).
Air temperatures were calculated based on the MBT and CBT
indices and the following transfer function as defined byWeijers et al.
(2007b):

MBT = 0:122 + 0:187 × CBT + 0:020 × MAT r2 = 0:77
� �

: ð1Þ

The average analytical reproducibility of the MBT and CBT indices,
based on duplicate injections of a selected set of loess samples on the
HPLC/APCI-MS, is 0.003 for theMBT index and 0.004 for the CBT index,
resulting in an analytical error in temperature estimates of ca. 0.2 °C.
The error introduced due to scatter in the calibration of Eq. (1) ismuch
larger, ca. 5 °C (Weijers et al., 2007c), however, this uncertainty can be
considered mainly systematic, and is caused by the global spread of
the soils in the calibration set and the accompanying variation in
environmental parameters. When the proxy is applied on a relatively
small scale, like here on theMangshan plateau, this systematic error is
likely to be much smaller. However, an exact estimate of the error is
difficult to constrain, given that a local calibration of the MBT/CBT
proxy is not available. Nevertheless, absolute temperature estimates
should be interpreted with caution.

3. Results and discussion

3.1. Age model

The age model of the Mangshan loess–paleosol sequences is based
on the correlation of loess proxy records, i.e. magnetic susceptibility,
carbonate content and grain size characteristics, with the U–230Th dated
oxygen isotope records from Dongge, Sanbao and Hulu caves in central
China (Fig. 1A). The EASM δ18O record is dominated by 23,000-year-
long cycles that are synchronous (within dating errors) with summer
insolation at 65°N (Berger, 1978), and the cycles are punctuated by
millennial-scale strong summermonsoon events (Chinese interstadials;
Cheng et al., 2006) andweak summermonsoon events (correlativewith
North Atlantic cold events, i.e. the Heinrich events; Wang et al., 2001).
The ages of these events are exceptionally well constrained and may
thus, as suggested by Wang et al. (2008), serve as benchmarks for
correlating and calibrating climate records. The assumed match
between the East Asian monsoon proxy records from the Mangshan
loess–paleosol sequences and the Chinese speleothem records is
independently supported by radiocarbon dating of fossil carbonate
shells of land snails from a loess sequence close to site MS2006 for the
time interval ~15–41 kyr BP (Fig. 2; Gu et al., 2009).

To match the proxy records of the Mangshan loess–paleosol
sequence with the EASM δ18O record, the carbonate and magnetic
susceptibility records are used as tracers of soil development during
humid interstadial and interglacial periods (cf. Maher and Thompson,
1992; Fig. 2). Consequently, carbonate minima and magnetic suscep-
tibility maxima are correlated in time with the Chinese interstadials
(speleothem δ18O minima). The grain size profile is a tracer of eolian
dust input, where clay contentminima reflect periods of enhanced dust
input and intensified winter monsoon, and is assumed to covary with
the Chinese stadials (speleothem δ18Omaxima). Hence,matching of the
loess proxy records of section MS2006 with the Sanbao/Hulu
speleothem δ18O record results in the age model shown in Fig. 2. The
agemodels of sectionsMS2008WandMS2008E, that correlate verywell
to section MS2006 (Supplementary Figure 1), have been constructed in
a similar way.

3.2. Continental air temperature record

The upper 5.9 m of loess–paleosol sequence MS2008E (Fig. 1C)
corresponds to the last 34 kyr according to our age model. Branched
GDGTs were detected throughout the whole loess–paleosol profile.
Their concentrations vary between 1 and 13 ng GDGTs/g dry weight
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loess (Table 1), and are higher in the paleosol layer than in the loess
layer. Although atmospheric dust from the loess plateau has not been
analyzed, branched GDGTswere below detection limit in a dust sample
from near the West coast of Central Africa, suggesting that these
components are unlikely to be transported through the atmosphere in
large amounts (Hopmans et al., 2004). Thus, the branched GDGTs are
likely produced in situ in the loess–paleosol sequence, and theMBT/CBT
record, therefore, reflects local conditions of theMangshan plateau area.

Calculation of the MBT and CBT indices and application of Eq. (1)
for the whole sequence, resulted in a continuous air temperature
record for the period covered by the MS2008E sequence (Fig. 3B;
Table 1). The MBT/CBT-derived temperature for the upper layer of
MS2008E compares well with the average present-day air tempera-
ture (~24 °C) of the summer season (May–September) on the
Mangshan plateau area (Fig. 3B), indicating that our record is most
likely representing mean summer air temperatures. Although it is still
unknown what group of bacteria is responsible for the production of
branched GDGTs, and what their season of optimum growth is,
microorganisms in general require moisture to live and grow. Since
the Mangshan plateau receives over 70% of the annual amount of
precipitation during the summer season (WMO, 2007), it is likely that
this season is most suitable for bacterial productivity and thus the
production of the branched GDGTs.

The MBT/CBT record reveals that summer air temperatures in the
Mangshan plateau area were on average ~17 °C during the last glacial
period,with aminimumof about14 °Cduring the LastGlacialMaximum
(LGM; ~21 kyr BP). The onset of deglacial warming around 19 kyr BP
shown by our record matches with Antarctic warming (Fig. 4E), and is

image of Fig.�2


Table 1
Depth, age, grain size (clay content), magnetic susceptibility (MS), organic matter (OM),
branched GDGT abundance, and MBT/CBT-derived temperatures of paleosol–loess
sequence MS2008E.

Depth
(cm)

Age
(kyr BP)

b8 μm
(%)

MS OM
(%)

Branched GDGTs
(ng/g dwt loess)

MBT/CBT-derived MAT
(°C)

3.75 0.4 13.3 7.4 0.9 1.5 23.4
3.85 1.3 12.5 7.6 0.8 1.6 22.9
3.95 2.2 13.3 7.7 0.9 1.8 22.7
4.05 3.2 14.0 8.4 0.9 3.1 23.7
4.15 4.2 19.7 10.3 1.3 6.3 26.0
4.25 5.7 24.0 12.3 1.5 13.1 26.3
4.35 8.7 25.9 11.9 1.6 11.9 26.5
4.45 9.7 23.5 9.2 1.3 10.8 25.8
4.55 10.4 22.0 8.3 1.2 9.6 26.0
4.65 11.0 21.2 7.6 1.1 10.6 25.3
4.75 11.5 21.4 8.2 1.1 8.2 26.5
4.85 12.0 19.2 7.2 1.1 11.0 26.7
4.95 12.4 17.9 5.8 0.9 6.0 27.2
5.05 12.8 19.5 7.1 1.0 3.9 26.1
5.15 13.2 18.7 6.7 1.0 3.2 25.8
5.25 13.6 16.1 5.3 0.9 2.5 25.1
5.35 14.0 17.8 6.1 1.0 3.0 24.4
5.45 14.3 15.2 4.5 0.9 1.7 24.6
5.55 14.6 19.1 6.7 1.0 1.9 24.3
5.65 14.8 16.0 4.3 0.8 2.5 23.8
5.75 15.0 16.4 4.7 0.8 2.8 24.5
5.85 15.1 14.9 3.7 0.7 1.2 22.3
5.95 15.2 14.2 4.8 0.8 1.8 20.8
6.05 15.3 14.9 4.2 0.8 2.7 21.6
6.15 15.3 15.3 4.2 0.8 2.5 22.6
6.25 15.4 13.7 4.0 0.8 2.0 21.5
6.35 15.5 12.9 3.6 0.8 2.0 20.9
6.45 15.5 13.5 3.8 0.8 2.0 21.1
6.55 15.7 12.5 3.9 0.8 2.1 19.4
6.65 15.8 11.8 4.2 0.7 2.1 20.4
6.75 16.0 12.8 3.9 0.7 1.6 20.0
6.85 16.3 13.8 4.1 0.7 1.6 19.1
6.95 16.7 13.7 4.0 0.7 1.7 18.7
7.05 17.2 14.1 4.1 0.7 1.7 19.3
7.15 17.6 13.8 4.3 0.7 3.1 15.3
7.25 18.0 14.4 4.3 0.8 2.6 19.5
7.35 18.3 14.1 4.6 0.7 2.7 17.5
7.45 18.5 14.0 4.7 0.8 4.0 14.7
7.55 18.8 13.2 4.5 0.8 2.4 15.3
7.65 19.1 13.6 4.3 0.8 2.0 15.6
7.75 19.4 13.3 4.2 0.7 1.7 14.9
7.85 19.7 13.1 3.9 0.7 1.3 17.3
7.95 20.1 13.4 3.9 0.7 1.4 15.9
8.05 20.5 13.5 4.1 0.7 2.5 15.1
8.15 20.9 13.3 4.2 0.7 2.4 15.0
8.25 21.3 12.9 4.6 0.7 2.0 13.5
8.35 21.8 12.9 4.2 0.7 1.9 16.3
8.45 22.4 13.5 4.5 0.7 1.0 16.8
8.55 22.9 13.2 4.2 0.8 0.8 15.6
8.65 23.5 13.0 4.1 0.6 1.6 16.2
8.75 24.2 13.1 4.2 0.6 0.9 17.1
8.85 25.0 13.7 4.1 0.7 2.1 15.3
8.95 25.9 14.1 4.2 0.7 1.8 18.1
9.05 27.0 14.6 4.0 0.7 1.5 18.1
9.15 28.2 15.8 4.6 0.7 2.4 19.0
9.25 29.4 15.4 4.7 0.8 2.7 17.9
9.35 30.5 15.7 4.6 0.8 1.8 18.9
9.45 31.5 15.9 –a 0.8 2.2 18.1
9.55 32.6 16.5 4.8 0.8 2.3 18.4
9.65 33.6 16.2 5.0 0.8 2.9 16.9

a Not determined.
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similar in timingwithmid-latitude glacier retreat at the end of the LGM,
as indicated by 10Be exposure dates of boulders in moraines on both
northern and southernhemispheres (Schaeffer et al., 2006).Also, TEX86-
inferred lake surface temperature reconstructions for lakes Malawi and
Tanganyika suggest a similar timing of deglacial warming in southern
Africa (Powers et al., 2005; Tierney et al., 2008), while atmospheric
warming in tropical central Africa, reconstructed with the MBT/CBT
proxy, may have started slightly later (Weijers et al., 2007a; Fig. 4D).
The reconstructed summer air temperatures in the Mangshan
plateau area show an increase from ~15 °C at the onset of deglacial
warming to ~27 °C at the beginning of the Holocene (~12 kyr BP),
with an average rate of almost 2 °C/kyr. The difference between the
present-day mean summer temperature (~24 °C) and the recon-
structed air temperature during the LGM (~17 °C) is in agreement
with other studies from this region: estimates based on pollen studies
and permafrost limits in central China suggest 7–10 °C cooler air
temperatures during the LGM (Zhou et al., 1998), whereas other
pollen assemblage (Sun et al., 1997) or phytolith-based (Lu et al.,
2007) temperature reconstructions suggest that the air temperature
at that time was 4.5–9 °C cooler than present.

Maximum air temperatures on the Mangshan plateau occurred at
the loess (L1) to paleosol (S0) transition that marks the beginning of
the Holocene (Fig. 3). During the Holocene climatic optimum, which
was around 6–7 kyr BP for this part of China (An, 2000), air
temperatures were ca. 3 °C higher compared to present. This
temperature difference is slightly larger than the ca. 1 °C suggested
by the modelling study of Tao et al. (2010), although the proxy data
that they use to compare their model with, suggest 2–3 °C higher
temperatures (Tao et al., 2010 and reference therein), which is again
in agreement with the MBT/CBT-derived record. Similar temperature
estimates are reported based on pollen records (Zhou et al., 1998;
1–6 °C warmer than present, depending on the geographical location),
and phytoliths (Lu et al., 2007; 1–2 °C warmer than present).

Evidence for the robustness of our temperature record, next to the
generally good fit with previously published temperature estimates
and trends, is provided by the analysis of the upper 4.8 m of the
nearby loess–paleosol sequence MS2008W (Fig. 1C). According to our
age model, this sequence covers the last 16 kyr. Since the top 45 cm is
disturbed because of ploughing, the upper 3 samples are excluded
from the discussion. The branched GDGT concentrations varied
between 2 and 27 ng/g dwt loess (Table 2), showing the same
variations with depth as seen in the MS2008E sequence. Comparison
of the two resulting temperature records shows a similar timing and
magnitude of deglacial warming, as well as absolute temperature
estimates (Fig. 4B,C; Table 2).

3.2. Comparison with NH summer insolation, loess–paleosol proxy
records and stalagmite δ18O records

Our MBT/CBT record shows that summer air temperatures at the
Mangshan plateau area have developed in phase with NH summer
insolation throughout the whole record (Fig. 3), and that the onset of
atmospheric warming is parallel in timing with that on Antarctica.
Interestingly, the clay fraction, magnetic susceptibility, and organic
carbon content that were measured for the MS2008E sequence, lag
the onset of atmospheric warming, and start to only slowly increase
from ~16 kyr BP onwards (Monsoon Intensification 1, Fig. 3; Table 1).
This implies that during the first period of significant warming, the
climate at the Mangshan plateau was still relatively dry, and limited
soil formation was taking place, like previously suggested byWu et al.
(2002) based on mollusc studies. Pedogenic processes intensified at
the start of the Holocene (~12 kyr BP), resulting in the formation of
the S0 paleosol. This signifies that only then summer monsoon
precipitation intensified to such an extent that conditions became
substantially wetter (Monsoon Intensification 2, Fig 3), as is also
shown in other Chinese loess records (Stevens et al., 2007). Similar
lags have been reported for Africa, where deglacial warming after the
LGM seems to coincide with the temperature increase in Antarctica,
but where the onset of increased precipitation, in contrast, matches
with northern hemisphere climatic changes (Gasse, 2000; Tierney
et al., 2008).

The considerable continental warming during the last glacial
termination (up to 13 °C), may potentially have had an imprint on the
δ18O values recorded by the Chinese cave stalagmites, as this signal is



Fig. 3. Air temperature changes over the past 34 kyr for the Mangshan loess plateau area compared with Northern Hemisphere insolation and summer monsoon intensity. Records
represent (A) Northern Hemisphere July insolation at 65°N (Berger, 1978), (B) 3 point moving average MBT/CBT-derived summer air temperatures for the MS2008E loess–paleosol
sequence, with bars indicating the analytical error (C) grain size (expressed as clay content), (D) magnetic susceptibility, and (E) organic matter content for the MS2008E sequence,
and (F) δ18O records from Dongge (green; Dykoski et al., 2005), Sanbao (orange SB26, purple SB10, dark blue SB3; Wang et al., 2008), and Hulu Caves (light blue; Wang et al., 2001).
For comparison, the Hulu and Dongge δ18O records are plotted 1.6‰ more negative to account for the higher δ18O values in the Hulu and Dongge records compared to the Sanbao
record (cf. Wang et al., 2008). Grey bars indicate the onset of warming (~19 kyr BP) during the last glacial termination, and phases of increased summer monsoon precipitation at
~15 kyr BP (MI1) and at the start of the Holocene (~12 kyr BP; MI2) reflected by changes in the loess–paleosol proxy records. L0, S0 and L1 represent the Holocene loess, Holocene
paleosol and last glacial loess layer, respectively, of the loess–paleosol sequence on the Mangshan Plateau.
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not only influenced by precipitation, but also by temperature.
Although care has to be taken in extrapolating our air temperatures
to those of caves, the 5–6 °C increase in temperature from ~17 kyr BP
onwards to the peak of the Bølling–Allerød interstadial at ~14 kyr BP
in the composite speleothem record could potentially have shifted the
corresponding part of the δ18O records by ~1.3‰ towards more
negative values (−0.24‰/°C, according to Friedman and O'Neil,
1977). This would imply that the intensification of EASM precipitation



Fig. 4. Air temperature changes over the past 34 kyr for two loess–paleosol sequences from the Mangshan loess plateau area compared with Northern Hemisphere insolation, air
temperatures from tropical Africa, and Antarctic and Arctic climate signals. Records represent (A) Northern Hemisphere July insolation at 65°N (Berger, 1978), (B) 3 point moving
average MBT/CBT-derived air temperatures for the MS2008E and (C) the MS2008W loess–paleosol sequence, with bars indicating the analytical error. Disturbed samples from the
MS2008W section are coloured black. (D) Air temperatures for the Congo Basin (Weijers et al., 2007a), (E) the EPICA Dome C δD record indicative of Antarctic air temperature
changes (Jouzel et al., 2007) and (F) the Greenland Ice Sheet Project 2 (GISP2) δ18O record indicative of Greenland air temperature fluctuations (Stuiver and Grootes, 2000).
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during the initial stages of deglacial warming (Fig. 3; MI 1) would
have been less intense than suggested by the δ18O records. The
substantial decrease in speleothem δ18O values at the Younger Dryas
to Holocene transition is only accompanied by minor air temperature
changes, suggesting a large increase in EASM precipitation (Fig. 3;
MI 2). This agrees well with the observed formation of the S0 paleosol,
starting at ~12 kyr BP in our loess–paleosol record, as well as in other
loess–paleosol records (Porter, 2001; Stevens et al., 2007). Thus, it
seems that temperature has indeed affected the stalagmite δ18O
record, especially during times of rapid and large changes, i.e. during
MI1.
Our records indicate that there is a considerable delay (up to
~7 kyr) in the intensification of EASM precipitation compared to
continental warming and NH insolation. Several complexmechanisms
have been put forward to explain the delayed response of EASM
precipitation during glacial terminations. For example, latent heat
export from the Southern Hemisphere Indian Ocean as well as glacial
boundary conditions could have delayed the EASM onset (Clemens
and Prell, 2007; Liu et al., 2006). It has also been hypothesized that the
lag may have been caused by cold anomalies generated by
disintegrating ice sheets and sea-ice formation in the North Atlantic
region (Cheng et al., 2009). This would have generated a colder North

image of Fig.�4


Table 2
Depth, age, branched GDGT abundance, and MBT/CBT-derived temperatures of
paleosol–loess sequence MS2008W.

Depth
(cm)

Age
(kyr BP)

Branched GDGTs
(ng/g dwt loess)

MBT/CBT-derived MAT
(°C)

0.05a 0.4 13.3 17.2
0.15a 1.1 12.8 21.0
0.25a 1.9 9.9 22.9
0.55 3.7 14.2 25.7
0.65 4.2 13.7 25.4
0.75 4.6 15.4 26.0
0.85 5.1 21.9 27.7
1.15 7.2 26.8 27.7
1.45 9.1 17.5 27.3
1.55 9.5 9.1 27.4
1.85 10.5 7.0 27.0
2.05 11.2 7.6 26.4
2.15 11.5 6.9 26.5
2.25 11.9 3.5 23.5
2.35 12.3 3.0 24.6
2.45 12.7 4.0 25.3
2.75 13.9 3.0 22.8
2.85 14.3 2.6 22.8
2.95 14.6 5.8 22.9
3.05 14.8 2.2 19.7
3.15 15.0 3.1 20.8
3.25 15.0 2.7 18.8
3.35 15.1 3.3 22.6
3.45 15.2 2.7 19.7
3.75 15.4 2.1 18.9
3.85 15.5 3.0 19.0
3.95 15.5 5.2 19.4
4.05 15.6 3.8 18.2
4.15 15.6 1.6 19.7
4.25 15.6 3.0 17.3
4.35 15.7 2.4 18.5
4.45 15.7 3.6 18.2
4.55 15.7 2.1 16.3
4.65 15.8 3.8 15.1
4.75 15.8 1.8 14.6

a Disturbed sample.
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Atlantic that, through atmospheric teleconnections, has led to a
weakening of the East Asian summer monsoon intensity. The records
from the Mangshan plateau indicate that over the last deglaciation,
intensification of the East Asian summer monsoon was mainly
influenced by northern hemisphere climatic changes, whereas
atmospheric warming coincides with the temperature increase on
Antarctica. Our results thus support the statistical evaluation of the
controls of East Asian monsoon variability by Rohling et al. (2009),
who suggested a southern hemisphere ‘push’ during glacial times
when the monsoon is weak, i.e. between ~28 and ~16 kyr BP.

Regardless of the exact mechanisms, our data suggest that the
factors controlling the onset of deglacial atmospheric warming and
the intensification of EASM precipitation may have been different.
Generation of MBT/CBT records in high sedimentation rate loess–
paleosol sequences, such as those from the Mangshan Plateau, now
offers the opportunity to constrain the timing and magnitude of
continental temperature changes in eastern Asia. They can be used to
Table 3
Calibrated radiocarbon dates of fossil aragonitic land snail shells in the MS2006 loess–
paleosol sequence, inferred from Gu et al. (2009).

Depth
(m)

Snail shells, calibrated age
(kyr)

Error

2.175 14.6 1.1
4.975 22.1 1.1
7.775 24.3 1.3
10.075 28.2 1.3
11.525 33.3 2.1
13.825 40.9 4.4
obtain a more accurate assessment of hydrological and thermal
changes in this climatologically important area.

Conclusions

The application of theMBT/CBT proxy on paleosol–loess sequences
from the Mangshan loess plateau has resulted in a continuous, high-
resolution air temperature record that provides an insight in the
climate development of eastern Asia during the last 34,000 yr. The
record shows that the onset of deglacial atmospheric warming is
similar in timing with previous continental temperature records from
e.g. Antarctica and Africa, and that air temperature varied in phase
with Northern Hemisphere summer insolation. However, deglacial
intensification of the East Asian Summer Monsoon, based on loess
proxy records obtained from the same paleosol–loess sequence and
δ18O speleothem records, clearly lagged that of warming by N3 kyr.
Intense soil formation (i.e. development of the Holocene paleosol S0),
depending on both higher temperatures and available moisture, even
lagged deglacial warming by ~7 kyr. Our data and new MBT/CBT-
derived temperature records may give us the opportunity to better
understand the driving forces of deglacial warming and the monsoon
system in eastern Asia.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.epsl.2010.11.010.
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