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Abstract

The asymmetric synthesis of amino acid precursors from complex organics have been performed. A gaseous mixture of carbon
monoxide, ammonia and water (molecules which are among those identified in the interstellar medium) was irradiated with
3.0 MeV protons to obtain amino acid precursors within high-molecular-weight complex organics of up to 3000 Da. The amino
acid precursor products synthesized were then irradiated with right (R-) or left (L-) ultraviolet circularly polarized light (UV–CPL)
obtained from a synchrotron radiation (SR) source. Glycine was a predominant product, and number of chiral amino acids
including alanine were identified following acid hydrolysis. R-UV–CPL preferentially produced D-alanine, while L-UV–CPL
produced more L-alanine. Enantiomeric excesses (% D–% L) of +0.44% and −0.65% were obtained by R-UV–CPL and L-UV–
CPL, respectively. These results imply that the origins of chirality in meteoritic amino acids could be accounted for by the
formation of asymmetric amino acid precursors from extraterrestrial complex organics by CPL in space.
© 2006 Elsevier B.V. Open access under CC BY-NC-ND license.
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1. Introduction

Since the time of Pasteur, the development of specific
chirality in terrestrial biomolecules has remained one of
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the most important problems with regard to our know-
ledge concerning chemical evolution. The one-handed-
ness of terrestrial amino acids and sugars is essential to
the formation, structure, and function of biopolymers
and is a defining molecular trait of life on the Earth.
Numerous hypotheses regarding the origins of homo-
chirality have been presented, from both biotic and abiotic
viewpoints [1]; according to the former, life initially was
based on achiral molecules and/or racemates and the use
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Fig. 1. Schematic diagram of the experimental setup for irradiating
(3 MeV proton) the gas mixtures simulating interstellar media in the
gas mixture. The irradiation was performed at ambient room
temperature.

Fig. 2. Experimental procedures of asymmetric synthesis of amino acid pre
single (⁎) and double (⁎⁎) stands for our previous result of [17] and [18], re
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of specific enantiomers came about through evolution,
whereas the latter theories propose that a tendency toward
homochirality was inherent in prebiotic chemical evolu-
tion. Meteorites, specifically carbonaceous chondrites,
carry abiotic records concerning the early organic
chemical evolution of the solar system. The successful
detection of amino acids in enantiomeric excess within
the Murchison and Murray meteorites spawned a
persuasive scenario for the exogenous origins of homo-
chirality; so far, L-enantiomeric excesses of the amino
acid were found to range from 0 to maxim 15.2% [2–4].
It was shown that the α-methyl-α-amino alkanoic acids
could have been significant in the origin of terrestrial
homochirality given their resistance to racemization and
the possibility for amplification of their enantiomeric
excesses suggested by the tendency of their polymers to
form chiral secondary structure [3,4].

Recent studies have documented the optical coun-
terpart of an isolated neutron star [5] and strong IR
polarization from the Orion molecular cloud [6,7]. From
a photochemical point of view, continuous circularly
polarized light (CPL) from supernovae, which are
elliptically and ultimately circularly polarized, may
have contributed to the origin of biomolecular asym-
metry [8,9]. In the first achievement of laboratory
experiments, UV–CPL photolysis (212.8 nm) has been
cursors from interstellar type complex organics. The asterisk mark of
spectively.



Fig. 4. Gel filtration chromatograms of proton irradiation products from
the gas mixture consisting of carbon monoxide (350 Torr), ammonia
(350 Torr) and water (20 Torr). Each peak is labeled with the molecular
weight, which was estimated by calibration with polyethylene glycols
and human serum albumin. (a) Proton irradiation product [18], (b)
Proton and UV–CPL irradiation product (this study). The same
analytical condition and injection volume were applied to (a) and (b).
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shown to give rise to enantiomeric excesses in racemic
leucine of 1.98% (right handed) and 2.50% (left handed)
with 59% and 75% overall decomposition, respectively
[10]. Several other investigations have attempted to
examine the possible asymmetric photolysis of free
amino acids in strong acidic solution [10–12] or in ice
film [9,13]. The verification of asymmetric amino acids
behavior as a chiral catalysts has been performed by
using threose and erythrose from glycolaldehyde [14].

Simulation experiments have suggested, however, that
not free amino acids but complex organic compounds
containing amino acid precursors are formed in interstel-
lar environments. Only trace amounts of amino acidswere
detected among the products of simulation experiments
prior to hydrolysis [15,16]. Additionally, we preliminary
reported that the irradiation products included amino acid
precursors in the high-molecular-weight complex organ-
ics [17,18]. The molecular weight distribution ranged
from several hundreds to a maximum of 3000, and wide
variety of amino acids were detected after acid-hydrolysis
[18]. Thus, the primary irradiation products were not free
amino acids having high-molecular-weight distribution.
Here, we report novel possible pathway of chiral amino
acid precursors via asymmetric synthesis using UV-CPL.
These results imply that the chirality in meteoritic amino
acids could be accounted for by the formation of
asymmetric amino acid precursors from extraterrestrial
complex organics by CPL in space.

2. Experimental

2.1. Sample preparation

A Pyrex glass tube (400 ml) was filled with the
following components: 350 Torr of carbon monoxide,
Fig. 3. Transmittance (%) curve of fused quartz window versus
wavelength (nm) [37].
350 Torr of ammonia over liquid water (5 ml), which
provided 20 Torr of water vapor at room temperature
[17,18], as shown in Fig. 1. The whole experimental
procedures to evaluate asymmetric synthesis of amino
acid precursors from interstellar type complex organics
are shown in Fig. 2. Ultra-pure grade carbon monoxide
and ammonia gases were purchased from Nihon Sanso
Co. Initially, gas mixtures were irradiated with high
energy protons (4.0 MeV) generated using a van de
Graaff accelerator (Tokyo Institute of Technology) in an
effort to synthesize complex organic compounds
[17,18,20]. Energy of protons were decreased to ca.
3 MeV after passing through Havar foil, a concave
window, and the air gap between them (Fig. 1). The total
energy deposited to the gas mixture was 4.4 kJ, which
was given as the product of the number of the particles
Fig. 5. Ultraviolet absorbance of proton irradiation products. Peaks of
at 195 nm and 265 nm were observed [17].



Fig. 6. Two-dimensional transmission electron microscopy (TEM)
images of aggregated high-molecular-weight complex organic materi-
als synthesized by proton irradiation. The elemental composition of the
complex organics was also investigated using a Parkin Elmer Series II
CHNS/O analyzer with the following results: C, 28.9%; H, 8.1%; N,
30.9%; O, 28.2%. The number of racemic proteinous and non-
proteinous amino acids (50.0:50.0 mixtures of D- and L-amino acids)
found in the proton-irradiated product following acid hydrolysis is
shown in Table 1.
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delivered and the ionization energy loss of a single
particle in the gas mixture. The irradiation was per-
formed at ambient room temperature for 2 h.

Deionized water was further purified with a Millipore
Milli-Q LaboSystem™ and a Millipore Simpli Lab-UV
(Japan Millipore Ltd., Tokyo, Japan) in order to remove
both inorganic ions and organic contaminants. Prior to
use, all glassware was newly purchased and heated in a
high temperature oven (Yamato DR-22) at 500 °C for
2 h in order to eliminate any possible contaminants.

2.2. Asymmetric synthesis of amino acid precursors

After recovery of proton-irradiated sample by twice
time extraction with 5 ml of pure ion-exchanged water,
a liquid portion of the whole proton-irradiated 5 sam-
ple was subjected to irradiation with right (R-) or left
(L-) continuum ultraviolet circularly polarized light
(UV–CPL) obtained from a synchrotron radiation (SR)
source. The volume of the all quartz container used
was 14 ml, and the thickness of the liquid layer was
10 mm. In order to make no headspace, the liquid
completely filled the container. The UV–CPL used was
generated from the ABL-6A beam line of a normal
conducting accelerator ring (NAR) at NTT's SR facility
[19]. The SR is an electromagnetic wave with a wide
range of wavelengths, and can be used to simulate a
variety of radiation, such as that emitted by a neutron
star. A fused quartz window mounted at the beam exit
from a vacuum chamber (b10−9 Torr) passed the ultra-
violet component (λN200 nm) of the SR beam as shown
in Fig. 3. A portion of the UV–CPL sample was injected
into a gel filtration chromatograph (GFC) system [17] in
an effort to estimate the molecular weight of the
irradiation products. The GFC Systems was composed
of a High Performance Liquid Chromatography (HPLC)
pump (TOSOH DP-8020) and a UV detector (TOSOH
UV-8020). The columns used were TSKgel G2000
SW×L (7.8 mm i.d.×300 mm) for gel filtration, and
Inertsil ODS-3 (4.6 mm i.d.×250 mm) for reversed-
phase partition chromatography. The mobile phase was
a mixture of 25 mM acetonitrile (25%) and 0.1% tri-
fluoroacetic acid (75%). Molecular weights were cali-
brated using several molecular weights of polyethylene
glycol (PEG) and human serum albumin.

2.3. Chiral separation of amino acid enantiomers

After UV–CPL irradiation, an aliquot of the aqueous
irradiated solution containing amino acid precursors was
hydrolyzed with 6 M HCl at 110 °C for 24 h. Following
acid hydrolysis and evaporation to dryness, the
hydrolyzed fraction were dissolved in 0.1 M HCl and
subsequently applied to a Bio-Rad AG-50W-X8 cation
exchange resin column (200–400 mesh) for desalting.
The amino acid fraction was eluted from the column
with 10% NH3 aqueous solution, evaporated to dryness
and then re-dissolved in 0.1 M HCl. Amino acid enan-
tiomers were separated by Reversed-Phase High Perfor-
mance Liquid Chromatography (RP-HPLC) following
derivatization with o-phthalaldehyde and N-acetyl-L-
cysteine in sodium acetic acid buffer. RP-HPLC was
composed of high performance liquid chromatograph
pumps (TOSOH CCPM II) attached with a reversed
phase column (YMC-pack Pro C18 4.6 mm i.d.×
250 mm) and TOSOH FS 8020 detector (excited wave-
length: 355 nm and emission wavelength: 435 nm).
An aliquot of the pretreated sample was mixed well
with o-phthalaldehyde and N-Acetyl-L-cysteine in a



Fig. 7. Three-dimensional atomic force microscopy (AFM) images of aggregated high-molecular-weight complex organic materials synthesized by
proton irradiation.
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glass vial and injected into the HPLC column. Gra-
dient elution was applied using the following eluents;
A: 40 mM sodium acetic acid buffer (pH 6.5), B:
100% methanol (ultra-pure HPLC grade). The gra-
dient program was as follows: 10 min (Eluent B:
0%) –25 min (Eluent B: 10%) –65 min (Eluent B:
20%) –80 min (Eluent B: 20%) –85 min (Eluent B:
40%) –115 min (Eluent B: 60%) –120 min (Eluent
B: 80%) –135 min (Eluent B: 0%). Multiple ex-
perimental runs were performed (7 times for each,
and 21 times in total).

2.4. Microscopic study of complex organics

After proton irradiation, an aliquot of the radiation
products was dried at ambient temperature and ambient
pressure in clean bench. Application of transmission
electron microscopy (TEM, Philips CM-12, USA) and
atomic force microscopy (AFM, Seico Instruments Inc.,
SII SPA 400 unit, Japan) were also performed to the
yellow colored residue of proton irradiation product.

3. Results and discussion

3.1. Synthesis of interstellar type complex organics

Complex organics resembling those found in inter-
stellar dust containing amino acid precursors were
synthesized by proton irradiation of interstellar compo-
nents in the gas phase at room temperature. The
molecular weight distribution ranged between several
hundreds and 3000 Da, with peaks corresponding to



Fig. 7 (continued).
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2800, 1100 and 800 Da being observed, as shown in
Fig. 4(a). The yellow-colored proton-irradiated product
was soluble in water, suggesting that the high-
molecular-weight complex organics contained hydro-
philic functional groups such as –OH and –NH2 bonds.
In our previous study [17], the maximum UV
absorbance was observed at 195 nm with a slight
shoulder peak on 265 nm (Fig. 5). The peak at 195 nm is
typical of organic compounds. The peak around 265 nm
might suggest the presence of cyclic compounds, such
as aromatic or heterocyclic compounds. Two-dimen-
sional and three-dimensional images of aggregated
high-molecular-weight complex organics were per-
formed by transmission electron microscopy (TEM,
Philips CM-12 unit, USA) and atomic force microscopy
(AFM, Seico Instruments Inc., SII SPA 400 unit, Japan)
as shown in Figs. 6 and 7, respectively. These TEM and
AFM images of irradiated samples show amorphous
particulate cottony images of high-molecular-weight
complex organics.

Glycine was predominant among the hydrolyzed
amino acids with G-values (number of molecules per
deposited energy of 100 eV) in the order of 10−2

[17]. Since glycine is achiral, the enantiomeric excess
(% D–% L) of alanine, which is the predominant chiral
amino acid, was precisely determined instead. When a
portion of an unhydrolyzed fraction was subjected to
RP-HPLC analysis, only trace amounts of glycine were



Fig. 8. RP-HPLC separation of D- and L-alanine enantiomers obtained
from Right-UV–CPL irradiation of putative interstellar components.
In order to determine the statistical significance, multiple experimental
runs were performed (7 times for each, and 21 times in total).
Abbreviations: Gly, glycine; D-Ala, D-alanine; L-Ala, L-alanine; β-Ala,
β-alanine.

Table 2
Molar ratio of hydrolyzed amino acids (mol%) versus total hydrolyzed
amino acids by before UV–CPL irradiation (only proton irradiation)
and after UV–CPL irradiation

Amino acid (mol%) Before UV–CPL After UV–CPL

None RCPL LCPL

Asp 1.13 1.43 1.10
Thr 0.02 0.04 tr.
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detected. D- and L-alanine, together with glycine and
various other amino acids, were detected following
acid hydrolysis, which indicated that combined amino
acid analogs (rather than free amino acids) were pre-
sent in the UV–CPL-irradiated samples.

3.2. Asymmetric formation of chiral amino acids from
complex organics

Fig. 8 shows a typical RP-HPLC chromatogram for
the R-CPL-irradiated mixture following hydrolysis,
where D- and L-alanine were clearly separated. The re-
sults of multiple analyses relating to the enantiomeric
excess of D, L-alanine are shown in Table 1. Enantio-
meric excesses (%D–% L) of +0.44% and −0.65%were
convincingly obtained by Right-UV–CPL (R-CPL) and
Table 1
Enantiomeric excess of D, L-alanine in the complex organics formed by
ultraviolet circularly polarized lights (UV-CPL) obtained from a
synchrotron radiation (SR) source

UV–CPL Energy
deposit

Enantiomer
ratio

Enantiomeric
Excess

Beam eV %D %L %D–%L σ
None None 50.00 50.00 0.00 ±0.35
RCPL 1.57×1010 50.22 49.78 +0.44 ±0.31
LCPL 1.57×1010 49.68 50.34 –0.65 ±0.23

“None” indicates the proton irradiation product defined as the standard
of racemic alanine. Enantiomer ratios were compared to a standard
solution corrected to D-/L- to 50.00/50.00. Plus–minus (±) represents
standard deviation (σ) of multiple analyses.
Left-UV–CPL (L-CPL), respectively. R-UV–CPL pref-
erentially produced D-alanine, while L-UV–CPL pro-
duced more L-alanine. The standard deviation (σ) of
enantiomeric excesses reflected the high precision of
the present RP-HPLC technique, and the standard de-
viation (σ) of the sample without UV–CPL irradiation,
and for R- and L-CPL-irradiated samples were ±0.35,
±0.31 and ±0.23, respectively. Analytical bias was
eliminated by multiple analysis (each seven times) and
parallel running of the non-irradiated sample along with
the UV–CPL-irradiated samples. As shown in Fig. 4(b),
the distribution in molecular weight of the complex
organics following CPL-irradiation was similar to that
prior to UV–CPL irradiation, with peaks corresponding
to 2800, 1100 and 800 Da being observed after UV–
CPL irradiation. The peak corresponding to 1100 Da
remained predominant, while that corresponding to
800 Da decreased slightly following UV–CPL irradi-
ation. Thus, the proton-irradiated product consisted of a
mixture of complex organics with high-molecular-
weight and was quite resistant to photolysis. Table 2
shows molar ratio of hydrolyzed amino acids versus
total hydrolyzed amino acids. The molar ratio distribu-
tion was also similar to that prior to UV–CPL
irradiation while about 10% of determined overall
amino acids were quantitatively newly yielded by UV–
CPL irradiation. Consequently, the present study is
essentially different from previous photolysis experi-
ment using monomer amino acid components [9–13].
Ser 1.14 1.04 1.13
Glu 0.06 0.15 0.07
α-AAA 0.10 0.41 0.07
Gly 88.88 88.25 89.55
Ala 4.73 3.79 4.76
α-ABA 3.16 2.98 2.71
Val 0.15 0.19 tr.
β-Ala 0.60 1.68 0.59
γ-ABA 0.03 0.03 0.03
Total 100.00 100.00 100.00

Abbreviations. Asp, aspartic acid; Thr, Threonine; Ser, serine; Glu,
glutamic acid; α-AAA, α-aminoadipic acid; Gly, glycine; Ala, alanine;
α-ABA, α-aminobutyric acid; Val, valine; β-Ala, β-alanine; γ-ABA,
γ-aminobutyric acid. The same analytical conditions were quantita-
tively applied to the both portion of before and after UV–CPL
irradiation.
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The organic component of the proton-irradiated
product was preliminarily examined by employment of
a curie-point pyrolysis gas chromatographic-mass
spectral analysis technique (Pyr-GC-MS). A wide
variety of organic compounds, including a number of
alkyl amide and cyclic compounds, were detected by the
pyrolysis of complex organics [17]. In brief, the
detection of biologically interesting compounds, such
as glycolamide (HOCH2CONH2) [17] in organic matter
is also cosmochemically interesting as these may have
acted as possible precursors of amino acids and/or
sugars [21]. Polycyclic aromatic hydrocarbons (PAHs),
naphthalene (C10H8), phenanthrene (C14H10) and phen-
anthrene (C14H10) were also detected using select ion
monitoring (SIM) mode. The chemistry of PAHs is of
particular interest, since PAHs represent one of the most
abundant forms of carbon in the interstellar medium,
and many variations of these molecules have been
detected in meteorites [22–25]. When exposed to
ultraviolet irradiation, monomeric PAHs are converted
into secondary products consisting of alcohols, qui-
nones and ethers [23].

4. Conclusions

The present enantiomeric excesses were less than
1.0%, respectively. It has been reported, however, that
there are possible amplification pathways that yield high
enantiomeric enrichment. In typical experiments using
auto-catalytic reactions, an initial small enantiomeric
excess was successfully enlarged to high enantiomeric
excess of the products [26,27]. Thus, even a very small
enantiomeric excess generated from extraterrestrial
environments may act as a seed of homochirality in
terrestrial environments, and is followed by the
emergence of life on the Earth. Cometary organics are
considered to be a possible source of the terrestrial
biosphere [28]. Although complex organic compounds
were discovered in the coma of Comet Halley, the
presence of free amino acids was not confirmed [29].
Recent simulation experiments have shown that not free
amino acids but complex organics containing amino
acid precursors were formed by proton irradiation
[5,18], UV irradiation [30–32] and gamma-rays irradi-
ation [33,34] under simulated interstellar environments.
It has also been shown that bound amino acid analogs
were photochemically much more stable under gamma-
rays and UV irradiation environment than free amino
acid analogs [35].

Our work has implications and suggests that the large
amount of exogenous organic carbon [36], including
complex precursors of asymmetric amino acids deliv-
ered by comets and meteorites, may have played a
significant catalytic role [14] in the origin of biomolec-
ular chirality in the early stages of chemical evolution on
the Earth.
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