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Introduction
Starting in the late 1980s, a large literature of 
time series studies have reported associations 
of daily air pollution concentrations with daily 
deaths (Analitis et al. 2006; Bell et al. 2004, 
2013; Carbajal-Arroyo et al. 2011; Dominici 
et al. 2005; Fischer et al. 2003; Krall et al. 
2013; Maynard et al. 2007; Peng et al. 2013; 
Samoli et al. 2006; Schwartz 2004a, 2004b; 
Stölzel et al. 2007; Zanobetti and Schwartz 
2008, 2009). The most consistent results have 
been that particle concentrations are associated 
with daily mortality.

Fewer studies have examined the effects 
of source-specific particle contributions 
or individual particle species. Several large 
multicity studies have reported stronger asso-
ciations for particle sulfate and nickel (Bell 
et al. 2014; Dai et al. 2014; Franklin et al. 
2008). The U.S. Environmental Protection 
Agency’s (EPA’s) recent transport regula-
tion has already produced substantial reduc-
tions in sulfate particles, and is scheduled to 
reduce remaining sulfur emissions further in 
the next few years (U.S. EPA 2016). As the 
sulfate contribution to particle mass declines 
and NOx (nitrogen oxides) controls affect 
secondary organic particle formation, local 

emissions of particulate and gaseous pollut-
ants will become a more important part of the 
pollution mix; thus it is important to enhance 
our understanding of their health impact.

The observational epidemiology studies 
cited above have been associational studies, 
which do not assess causality. In general, when 
arguing for the causality of observed asso-
ciations, authors have relied on Hill’s Criteria 
(Hill 1965). For example, Brook et al. (2010) 
state “Many potential biological mechanisms 
exist whereby PM exposure could exacer-
bate existing CVDs [cardiovascular diseases] 
and trigger acute cardiovascular events (over 
the short term) and instigate or accelerate 
chronic CVDs (over the long run).” Besides 
biological plausibility, the PM2.5 (particulate 
matter ≤ 2.5 μm) epidemiological studies 
were  relatively consistent, and exposure 
preceded effect.

The strength of the biological plausibility 
argument has grown over time (Brook et al. 
2004), and includes studies indicating that 
particle exposure can induce lung and systemic 
inflammation (Adamkiewicz et al. 2004; 
Adar et al. 2007a; Araujo 2010; Brook 2008; 
Driscoll 2000; Dye et al. 2001; Folkmann 
et al. 2007), increase blood pressure (Baccarelli 

et al. 2011; Bartoli et al. 2009; Brook et al. 
2009; Hoffmann et al. 2012; Schwartz et al. 
2012; Wilker et al. 2010; Zanobetti et al. 
2014), impair microvascular function (Brauner 
et al. 2008), increase coagulation and throm-
bosis (Baccarelli et al. 2007, 2008; Bind et al. 
2012; Bonzini et al. 2010; Carlsten et al. 2007; 
Chuang et al. 2007; Gilmour et al. 2005; 
Nemmar et al. 2002), produce autonomic 
changes (Adar et al. 2007b; Chahine et al. 
2007; Chan et al. 2004; Ghelfi et al. 2008; 
Zhong et al. 2015), accelerate atherosclerosis 
(Adar et al. 2010; Allen et al. 2009; Araujo 
et al. 2008; Bauer et al. 2010; Bhatnagar 2006; 
Hansen et al. 2007; Hoffmann et al. 2007; 
Sun et al. 2005, 2008; Suwa et al. 2002; Tzeng 
et al. 2007), and destabilize atherosclerotic 
plaque (Suwa et al. 2002).

There are fewer and less consistent studies 
assessing the effects of particle components. 
For example, Krall et al. (2013) and Bell 
et al. (2014) reported a greater toxicity for 
elemental (or black) carbon, a large fraction 
of which is associated with local traffic and 
domestic heating, whereas Franklin et al. 
(2008), Beelen et al. (2015) and Dai et al. 
(2014) found greater effects for sulfur and 
not elemental carbon.

There is biological support for a role of 
local traffic particles. Diesel particles have been 
shown to increase oxidative stress in endo-
thelial cells (Furuyama et al. 2006; Hirano 
et al. 2003), inducing the production of 
heme oxygenase-1, a rapid response part of 
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the body’s defense system against oxidative 
stress (Choi and Alam 1996). The viability of 
cell cultures of microvascular endothelial cells 
was also impaired by diesel particles with an 
accompanying large increase in induction of 
heme oxygenase-1 (Hirano et al. 2003).

A key gap in the analysis of the acute 
effects of local air pollution sources has been 
the lack of studies done in the framework 
of causal modeling, specifying potential 
outcomes, and basing their analysis on esti-
mating the difference or ratio of potential 
outcomes under different exposures. In this 
paper, we use a causal modeling framework 
to estimate the causal acute effects of local 
 pollution on daily deaths.

Methods

Causal Modeling

To establish causality specification of poten-
tial outcomes is required. We designate 
Yi

A = a as the outcome that would occur given 
an exposure A = a for the unit i, and Yi

A = a´ 
to be the outcome that would occur if the 
unit i were instead exposed to an alternative 
exposure, A = a´. Causal modeling seeks to 
estimate the ratio of the expected value of 
outcome in the population of subjects i under 
the exposure they received versus what it 
would have been had they received the alterna-
tive exposure: E(Yi

A = a)/E(Yi
A = a´). Because only 

one potential outcome is observed, various 
methods seek legitimate surrogates for the 
unobserved potential outcome (Hernán et al. 
2008). In this paper, we apply the approach 
of instrumental variables. An instrumental 
variable is a variable that is related to outcome 
only through the exposure of interest.

Instrumental Variables
Let Yt

A = a be the potential outcome (total 
deaths) in the population of a city exposed 
to A = a on day t, and let Yt

A = a´ be the 
potential outcome under the alternative 
exposure a´. We would like to estimate 
E(Yt

A = a)/E(Yt
A = a´), but only Yt

A = a is 
observed. We assume the potential outcome 
depends on predictors as follows:

 Log[E(Yt
A = a)] = θ0 + aθ1 + Φt, [1]

where Yt
A = a represents the potential outcome 

at time t under exposure a, θ0 and θ1 are the 
intercept and the slope of exposure, respec-
tively, and Φt represents all of the other predic-
tors of outcome. Unless we have measured 
all of the confounders, standard methods, 
including standard approaches to causal 
modeling, will give biased estimates of θ1. 
However, air pollution has many sources of 
variation. If there is a variable Z that is one such 
source of variation in exposure, and Z is associ-
ated with Y only through A, then Z is called 

an instrumental variable. Figure 1 shows the 
directed acyclic graph (DAG) for this scenario. 
Consequently, At can be expressed as follows:

 At = Ztδ + ηt, [2]

where ηt represents the other sources of varia-
tion in exposure, and particularly all of the 
exposure variations that are associated with 
other measured or unmeasured predictors of 
outcome. This follows because of the instru-
ment assumption, that Z is only related to Y 
through A. Formally, E(ZtΦt) = 0 because of 
the instrument assumption. Then let Z1 and 
Z2 be equal to Z such that:

 E(A|Z1) = a, and E(A|Z2) = a´.

Consequently,

Log[E(Yt
Z = Z1)] 

 = E(θ0 + θ1a +Φt |Z = Z1) 
 = θ0 + θ1a + E(Φt) [3]

and

log[E(Yt
Z = Z2)]  

 = E(θ0 + θ1a´ + Φt|Z = Z2) 
 = θ0 + θ1a´ + E(Φt)  [4]

therefore

log[E(Yt
Z = Z1)] – log[E(Yt

Z = Z2)] 
 = θ(a – a´). [5]

As a result, if we use Z as an instrument for A, 
we can recover a causal estimate for θ, which 
is the log rate ratio. Importantly, this is true 
even if there are unmeasured confounders.

Put less formally, in an observational study 
the exposure is not randomly assigned, so it 
may be correlated with other predictors of the 
outcome. However, air pollution (and other 
exposures) varies for many reasons. Some of 
them may be correlated with other predic-
tors of daily deaths. For example, worse-than-
average traffic on 1 day will increase both air 
pollution and stress. However, some sources 
of variation in air pollution may not be corre-
lated with other predictors of daily deaths. For 
example, wind speed is unlikely to be corre-
lated with daily stress, smoking, and the like. 
Hence, if this is true, the fraction of air pollu-
tion variation that is produced by wind speed 

is randomized with respect to confounders, 
including unmeasured ones; and if that 
fraction is associated with daily deaths, the 
estimated effect should be causal. We discuss 
this further below.

Planetary Boundary Layer and 
Wind Speed as Instruments
The difficulty with instrumental variable 
analyses is finding a valid instrument that is 
associated only with outcome through the 
exposure of interest. Mendelian randomiza-
tion is an example of an instrumental variable 
successfully applied in epidemiology, and 
is justified by knowledge that the biological 
pathway by which the genotype is associ-
ated with exposure is not associated with 
other predictors of outcome (Holmes et al. 
2014). Hence external knowledge is critical to 
the technique.

The air pollution above a city is a mix of 
locally emitted pollutants and pollutants trans-
ported from elsewhere. The lowest part of the 
atmosphere, along with its behavior, is influ-
enced by its contact with a planetary surface, 
which is called planetary boundary layer (PBL) 
and is characterized by strong vertical mixing 
(Finlayson-Pitts and Pitts 1986). Above the 
PBL lies the free atmosphere, which is mostly 
nonturbulent. The transport of pollutants from 
the boundary layer to the free atmosphere is 
slow relative to their vertical mixing within the 
boundary layer (Seinfeld and Pandis 1998). 
Therefore, the impact of local emissions on 
pollutant levels is directly related to the height 
of the PBL (e.g., for the same local emissions, 
concentrations of locally emitted pollutants 
are higher when the boundary layer is low 
and vice versa) (Seinfeld and Pandis 1998). 
As a result, the influence of the local emis-
sions is modified by the atmospheric condi-
tions. Over land, the PBL height exhibits a 
strong diurnal variability, with lower values at 
night. In addition, the mean PBL height varies 
substantially from day to day (Seinfeld and 
Pandis 1998). Besides the vertical transport 
(influenced by the PBL), locally emitted air 
pollutants are also transported horizontally, 
where the influence of local sources increases 
with decreasing wind speed and vice versa. It 
is hard to imagine how the PBL height can be 
directly related to health except through air 

Figure 1. Directed acyclic graph illustrating an instrumental variable Z. The association between Z and Y is 
not confounded by C. By calibrating the instrument to A, estimates of causal effects of increases in A can 
be obtained.
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pollution. Similarly, outside of extreme events, 
wind speed is an unlikely predictor of health 
other than through air pollution. As such, 
PBL height and wind speed represent attrac-
tive options as instruments for local pollution. 
However, PBL height and wind speed may 
vary seasonally and with temperature and other 
meteoro logical parameters. We believe that 
within strata of month and deciles of tempera-
ture, further association with predictors of 
health is unlikely. Hence we looked at local 
air pollution variation only within month-by-
year strata and within deciles of temperature 
(for the full period), and calibrated that varia-
tion with our instruments—that is, we assume 
short-term predictors of mortality such as 
smoking, anger, and the like to be uncorrelated 
with PBL height on a day-to-day level, within 
month-by-year and decile of temperature. Our 
analysis took this into account.

A low PBL height and low wind speed are 
associated with increases in the concentrations 
of all locally emitted pollutants. Hence, when 
combined into an instrument, it can tell us 
that local pollution increases mortality rates 
(or not), but it will be difficult to identify 
which pollutants are responsible for the 
changed mortality rate.

If a single variable is used as an instrument, 
that variable can obtain the estimated causal 
effect of exposure on the outcome by regressing 
the outcome on the instrument, and the instru-
ment on the exposure of interest. The product 
of those coefficients is the estimated causal 
effect per unit increase in exposure. Because 
we have four instrumental variables (PBL and 
wind speed at lag 0 and lag 1), we regressed 
the pollution against the four variables first, 
and used that result (the variation in pollution 
explained by the four instrumental variables) 
to generate a single instrumental variable for 
regression on the outcome. We have chosen 
to use these variables as instruments for PM2.5 
(particulate matter with aerodynamic diameter 
≤ 2.5 μm) as the pollutant most strongly associ-
ated with daily deaths. However, this does not 
demonstrate that the results are attributable 
exclusively to particles. We evaluated two alter-
native air pollutant exposures as a sensitivity 
analysis: black carbon (BC), which represents 
traffic particles, a large fraction of them locally 
emitted, and nitrogen dioxide (NO2), which is 
mostly from local combustion.

Data

Mortality Data

We analyzed data from the Boston metro-
politan area, which includes the following 
counties: Middlesex, Norfolk, and Suffolk. 
Mortality data were obtained from the 
Massachusetts Department of Public Health 
for the years 2000–2009. The mortality files 
provided information on the exact date of 

death and the underlying cause of death. We 
chose all-cause non-accidental daily mortality 
[International Classification of Diseases, 
9th Revision (ICD-9) codes 0–799] as our 
outcome to ensure sufficient statistical power.

Air Quality Data
PM2.5 and BC measurements were conducted 
at the Harvard Supersite located on the roof 
of the Countway Library of the Harvard 
Medical School near downtown Boston. 
Ambient BC was measured continuously 
using an aethalometer (Magee Scientific), 
and PM2.5 was measured continuously using 
a tapered element oscillating microbalance 
(model 1400a; Rupprecht & Pataschnick 
Co). Daily averages were computed from 
the hourly values. We used publicly available 
daily data on the height of the PBL obtained 
from the NOAA (National Oceanic and 
Atmospheric Administration) Reanalysis Data 
(NOAA 2010). Ambient temperature and 
wind speed were obtained from the Logan 
Airport meteorological station.

Analysis
First we orthogonalized our local air pollution 
exposures to season and temperature by fitting 
them to a model with dummy variables for 
each month of each year, and for each decile of 
temperature. We used four individual variables 
to derive one single pollution-calibrated instru-
mental variable: PBL height and wind speed 
on the day of death (lag 0) and PBL height and 
wind speed on the day before death (lag 1). To 
do this, we used a support vector regression 
(SVM) (Cortes and Vapnik 1995) with a radial 
kernel to estimate the remaining variation in 
PM2.5 (or in BC or NO2) that was explained 
by those four variables and their products 
including potential nonlinear dependencies on 
the predictors. This approach (support vector 
kernel regression with the radial basis kernel) 
combines our four instruments into one pollu-
tion calibrated instrument, and allows us to 
compare interquartile range (IQR) changes in 
the instruments for local pollution computed 
using each of the pollutants (PM2.5, BC, or 
NO2) as an indicator. The kernel regression 
also incorporates a ridge penalty to shrink the 
coefficients of the multiple terms to avoid over-
fitting and collinearity problems. We chose the 
parameters of the SVM to maximize 10-fold 
cross-validated R2. We used the svm function 
in the R package e1071 (version 3.2; R Project 
for Statistical Computing). We checked the 
R2 of the instrument predicting exposure to 
ensure our instrument was not too weakly 
associated with exposure to detect an effect. 
Because previous literature has most commonly 
used the mean of PM2.5 on the day of death 
and the day preceding death as the exposure 
of interest, we used the mean of the instru-
mental variable on the day of death and the 

day preceding the death as our exposure, and 
fit a quasi-Poisson regression (allowing for over-
dispersion) predicting all-cause mortality. We 
stratified by each month of each year and by 
deciles of temperature, using indicator variables, 
and estimated the rate ratio for the instrument.

Boston has lower than average pollu-
tion levels for a U.S. city, and there were 
no violations of the NO2 annual National 
Ambient Air Quality (https://www.epa.gov/
criteria-air-pollutants/naaqs-table) standard 
of 53 ppb during the study period. There 
were 19 days which exceeded the new U.S. 
EPA PM2.5 daily standard of 35 μg/m3. 
To assure our results apply to low-dose 
exposures, we repeated the analyses with 
the instrument excluding days when PM2.5 
exceeded 30 μg/m3 to ensure that even with 
measurement error the exposure was below 
the ambient standard. This excluded 39 days. 
There are currently no standards for BC.

Granger causality is not a true causal 
modeling approach, but a heuristic one that 
argues that omitted covariates that are corre-
lated with time-varying exposure and outcome 
are as likely to be correlated with tomorrow’s 
exposure as with yesterday’s exposure. Hence, 
if no association is found between future values 
of exposure and outcome, that suggests there is 
no omitted confounder. Flanders et al. (2011) 
give a stronger causal framework using DAGs, 
and note that the Granger causality approach 
assumes that, conditional on exposure and 
all confounders, exposure after the outcome 
should be uncorrelated with the outcome. 
However, exposure after the outcome and 
exposure before the outcome are both associ-
ated with the confounders, as illustrated in the 
DAG in Figure 2. Therefore, in the presence 
of omitted confounders an association may 
be expected with the future exposure. Hence, 
if we fit a model with the past exposure and 
the future exposure and find an association 
only with the past exposure, that would 
argue against such omitted confounders, and 
vice versa. We tested this approach by rerun-
ning our instrumental variable model with the 
mean of the instrument (lags 0 and 1) and the 

Figure 2. Directed acyclic graph for the Granger 
causality model. Confounder U2 is measured and 
controlled, but confounder U1 is not. POLb is pollu
tion before the outcome (O), and POLa is pollution 
after the outcome. If U1 is not controlled, there is 
a backdoor path from O to POLa, and an associa
tion would be expected. Hence, failure to find an 
association is evidence of a lack of confounding 
(i.e., no U1).
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mean value of the instrument on the second 
and third days after death. We left 1 day 
between the exposure before the event and the 
exposure after the event to produce more stable 
estimates for each association, given the serial 
correlation in pollution.

We also conducted a sensitivity analysis 
to test our assumption that we had a valid 
instrument. Looking at Figure 1 again, we see 
that the instrumental variable (Z) is associated 
only with the outcome through the exposure 
(A) (the assumption for instrumental vari-
ables). That is, the exposure can be viewed 
as a mediator of the association of the instru-
mental variable with the outcome. Then if we 
control for A, there should be no association 
with the instrument any longer (no direct 
effect) by that assumption. If, in contrast, 
an association remains, then there is another 
path from Z to the outcome, through some 
confounder. We tested this by fitting a model 
with both our instrument and the original 
exposure variable (PM2.5).

To put our results in context, we performed 
a quantitative health impact assessment. 
Specifically, we estimated the reduction in 
deaths during the 10 years of study for an IQR 
reduction in our instrumental variable (after 
ensuring that such a reduction from the mean 
would result in an exposure above zero). This 
was estimated as 

change in deaths = 1
RR

RR Total Deaths-

where RR is the rate ratio for the change in 
exposure, exp(b1 × IQR) where b1 is the 
coefficient of the instrumental variable, and 
IQR is its interquartile range. This approach 
is standard in risk assessment (Fann et al. 
2011; GBD 2013 Risk Factors Collaborators 
et al. 2015; U.S. EPA 1999). We computed 
the total deaths during follow-up (204,386) 
from our data.

Results
Table 1 shows descriptive statistics for the 
variables in our study. Air pollution concen-
trations were low, and almost always well 

below the current U.S. EPA standards (results 
not shown). Table 2 shows the correla-
tions among the covariates. The correlation 
between PM2.5 and BC was 0.65, between 
PM2.5 and NO2 was 0.45, and between BC 
and NO2 was 0.57. The correlation between 
air pollution and the candidate instruments 
were modest. For example, for PM2.5, the 
correlation with PBL height was –0.35, and 
with wind speed was –0.28.

Instrumental Variable Model
If a model predicting a variable is over fit 
(e.g., uses too many degrees of freedom), then 
one would expect the predicted R2 on left-out 
monitors to be noticeably smaller than the 
model R2 in the training data set. The cross-
validated R2 of the instrumental variable 
predicting PM2.5 was 0.180, little changed 
from the R2 in the training data (0.189). 
Although low, this is consistent with the fact 
that most of the PM2.5 in Boston is trans-
ported rather than locally emitted, and with 
PM having other important sources of varia-
tion besides PBL and wind speed (Masri et al. 
2015). Overfitting was avoided because the 
tuning parameters of the model calibrating 
the instrument to PM2.5 were chosen by 
cross-validation, and because the SVM uses 
a ridge penalty, where a penalty term is added 
to the cost function proportional to the sum 
of the square of the regression coefficients. 
This penalty constrains the coefficients from 
varying wildly, or growing too large.

As expected, PBL height and wind speed 
were better predictors of BC (a large fraction 
of which is locally emitted) than of PM2.5. 
The cross-validated R2 of the SVM model 
for BC was 0.36, versus 0.37 without cross- 
validation. Similarly, the SVM model for 
NO2 had a cross-validated R2 of 0.39, versus 
0.40 without cross-validation.

Mortality Model
An IQR change in the instrument for local 
PM2.5 was associated with a 0.90% increase 
in daily deaths [95% confidence interval (CI): 
0.25, 1.56], whereas an IQR change in the 
instrument for BC was associated with a 0.90% 
increase in daily deaths (95% CI: 0.08, 1.73). 
For NO2, an IQR increase in the instrument 
was associated with a 0.62% increase in daily 
deaths (95% CI: –0.12, 1.64). We compared 
IQR changes for the instrumental variables to 

have some basis for comparing effects between 
the models for PM2.5, BC, and NO2. When 
the mortality analysis was restricted to days 
when PM2.5 was < 30 μg/m3 (which excluded 
39 days), we found a 0.84% increase in daily 
deaths for the same increase in the instrument 
(95% CI: 0.19, 1.50).

When we used the Granger causality 
approach, the estimated effect of an IQR 
change in the instrument for PM2.5 remained 
the same (0.90%; 95% CI: 0.25, 1.96), 
whereas the forward lagged instrument 
was not associated with mortality (0.18%; 
95% CI: –0.45, 0.81), suggesting no omitted 
confounders. Although the power for a Granger 
causality test may not be strong, the much 
smaller effect size as well as lack of significance 
both indicate a lack of confounding.

Finally, when we added the mean of PM2.5 
on lags 0 and 1 to the model in addition to 
the instrumental variable, the instrumental 
variable was far from significant (p > 0.29) 
while the PM2.5 variable was significant. This 
indicates that there was no path from instru-
ment to the outcome except through PM2.5, 
and hence that the instrumental variable 
 assumption was valid.

Discussion
Using a framework based on potential 
outcomes, we have estimated the causal 
effect of an IQR increase in local air pollu-
tion on daily deaths in Boston. The increase in 
deaths for an IQR increase in the instrument 
for exposure was about 0.90% using either 
particle measure to calibrate the instrument; 
for NO2 it was lower (0.62%) with confidence 
intervals that crossed zero. Using the approach 
of Granger causality, we saw no change in 
the estimated effect of our instrument when 
controlling for exposure on future days and the 
association with future exposure was close to 
zero and far from significant. Further, the asso-
ciation persisted when restricted to days well 
below the recently tightened U.S. EPA 24-hr 
standard for PM2.5 (35 μg/m3), and in a city 
that never violated the hourly NO2 National 
Ambient Air Quality standard during the study 
period. Hence, these effects are evident at levels 
below currently permissible limits.

A key advantage of the instrumental 
variable approach is that it provides protec-
tion against unmeasured confounders. We 
have approached this in three ways. First, we 

Table 2. Correlation matrix of the exposures.

PM2.5  
(μg/m3)

BC  
(μg/m3)

NO2  
(ppb)

PBL  
(m)

Temperature 
(°C)

Wind speed 
(knots)

PM2.5 (μg/m3) 1
BC (μg/m3) 0.65 1
NO2 (ppb) 0.45 0.57 1
PBL (m) –0.35 –0.52 –0.35 1
Temperature (°C) 0.30 0.26 –0.25 –0.23 1
Wind speed (knots) –0.28 –0.52 –0.37 0.54 –0.28 1

Table 1. Descriptive statistics of the data: air 
pollution and daily deaths in Boston, 2000–2009.

Variable Mean ± SD Min Max
Daily deathsa 55.8 ± 9.5 27 94
PM2.5 (μg/m3)b 9.8 ± 5.8 0.2 67.2
BC (μg/m3)b 0.70 ± 0.41 0.10 4.70
NO2 (ppb)c 18.4 ± 6.4 4.0 46.9
PBL (m)d 770 ± 356 110 2,392
Temperature (°C)e 10.8 ± 9.4 –16.9 31.5
Wind speed (knots)e 9.6 ± 3.2 2.5 26

Abbreviations: max, maximum; min, minimum.
aData from MA Department of Public Health.
bData measured at Harvard Supersite.
cData from MA Department of Environmental Protection.
dData from NOAA North America Reanalysis data set 
(NOAA 2010).
eData from National Climatic Data Center. 



Causal effects of local pollution

Environmental Health Perspectives • volume 125 | number 1 | January 2017 27

have shown that if we have a valid instru-
ment, then the association will be causal even 
in the presence of unmeasured confounders. 
We focused on the variation in local pollu-
tion within deciles of temperature and also 
stratified on each month of each year. We 
then chose as instruments variables (PBL 
height and wind speed) we believed, based on 
external knowledge, are unlikely to be associ-
ated with mortality except through air pollu-
tion. Second, we have confirmed that values 
of the instrument following the day of death 
are not significantly associated (p = 0.57) with 
daily deaths, and that control for them did 
not change the estimated effect of the instru-
ment. This assures that omitted confounders 
with the same broad temporal variability are 
not confounding our instrument. And third, 
we have tested the instrument assumption 
(that the association of the instrument is only 
through air pollution) by controlling for air 
pollution, and showing that no significant 
association with the instrument remained 
(p > 0.29). We believe that this makes a 
strong case for a causal effect.

Support for this causal interpretation 
also comes from an extensive toxicological 
and human exposure literature on some of 
these local pollutants. For example, Furuyama 
et al. (2006) found increased oxidative 
stress in endothelial cells exposed to diesel 
exhaust, and in humans Rossner et al. (2007) 
reported increased levels of F-2 isoprostane 
and 8-OHdG (8-hydroxy-2′-deoxyguanosine) 
in bus drivers compared with controls. The 
human study contrasted urinary 8-OHdG in 
50 bus drivers and 50 controls measured in 
three successive seasons in Prague. In logistic 
regression analysis, PM2.5, but not volatile 
organic compound or polycyclic aromatic 
hydrocarbon exposure, was associated with 
8-OHdG. Romieu et al. (2008) measured 
malondialdehyde in exhaled breath condensate 
at 480 visits in a panel of 108 children with 
asthma seen every 2 weeks, and found it was 
positively associated with PM2.5 at the nearest 
monitoring station within 5 km of their home 
and school. 

Increased atherosclerosis has also been 
reported in animals with long-term exposure 
to particles, much of which was from traffic 
(Sun et al. 2005, 2008). Another study (Soares 
et al. 2009) placed hyperlipemic mice in two 
exposure chambers 20 m from a road. One 
chamber was filtered to remove particles and 
the other was not. After 120 days of exposure 
they documented increased oxidation of low-
density lipoprotein, increased thickness of the 
arterial wall, and greater plaque growth and 
instability (Soares et al. 2009). Along with 
the increased oxidative stress, atherosclerosis, 
and plaque instability, increased thrombosis 
has also been associated with local pollu-
tion. Nemmar et al. (2002, 2003) found 

that both diesel and ultrafine particles were 
associated with increased thrombosis in an 
animal model, and Carlsten et al. (2007, 
2008) found that controlled exposure to diesel 
exhaust increased coagulation markers and 
thrombosis in human volunteers. Ischemia 
has likewise been produced experimentally by 
diesel exposure in a double-blind randomized 
crossover exposure of 20 people with previous 
myocardial infarction to 1 hr of dilute diesel 
exhaust or filtered air (Mills et al. 2007).

An intervention trial in Beijing had 
15 young adults (median age, 28 years) 
walk the streets for 2 hr twice, once wearing 
a particle-filtering mask, and once without 
a mask. Blood pressure was measured 
continuously during the two 2-hr walks 
and was 7 mmHg lower when wearing the 
mask (Langrish et al. 2009). These results, 
combined with the instrumental variable 
approach and Granger causality model, 
support a causal interpretation.

The weaker association of the instru-
mental variables when calibrated to NO2 than 
to particles suggests that local particles may be 
more important in this relationship, but no 
definite conclusions can be drawn.

To put this result in context, the mean 
PM2.5, NO2, and BC (9.8 μg/m3, 18.4 ppb, 
and 0.7 μg/m3) were all greater than their 
IQRs (6.32 μg/m3, 8.4 ppb, and 0.50 μg/m3, 
respectively), indicating that IQR changes 
in the pollutant concentrations would result 
in levels above zero, and hence are plausible. 
Computing the attributable risk for an IQR 
change in exposure to the instrument, we 
estimated that local air pollution was respon-
sible for 1,826 deaths in the Boston metro-
politan area during the study period. This is a 
substantial public health burden.

Local air pollution in Boston has multiple 
sources, including traffic, combustion of fuel 
oil and residual oil for heating, and wood 
burning (Masri et al. 2015). Traffic pollu-
tion has fallen because of reduced U.S. EPA 
emission standards on vehicles, low-sulfur 
diesel oil requirements, the retrofit of particle 
filters onto buses, and the introduction of 
compressed natural gas buses for part of the 
fleet (Masri et al. 2015; U.S. EPA 2012). 
Continuing retirement of older vehicles will 
likely continue this trend. Wood burning, on 
the other hand has increased and now accounts 
for 19% of particles in Boston (Masri et al. 
2015), and though the U.S. EPA has proposed 
new emission standards for future stoves and 
furnaces, there is no retrofit requirement. 
Heating oil, while similar to diesel oil, is still 
allowed much higher sulfur content. Hence, 
there are opportunities for local action to 
reduce this public health burden.

There are several limitations to our study. 
First, we have assumed we have a valid instru-
ment. Although we have good evidence that 

this is the case, one can never guarantee it. 
It is possible that behavior is modified on 
low-PBL or low–wind speed days in a way 
that affects mortality risk. A second limita-
tion is that we have provided our proof that 
an instrumental variable protects against 
unmeasured confounding in the context of 
a log-linear model between mortality and air 
pollution, and assume that model is correct. 
This is the traditional approach for daily death 
counts, but we cannot be sure it is correct. In 
addition, all-cause mortality includes some 
causes of death unlikely to be associated with 
air pollution. This decreases power in our 
analysis, but still leaves us with a valid estimate 
of the impact on all deaths. The air pollutants, 
PBL, and wind speed were measured at only 
one location, which may introduce some error 
into the instrumental variable, which, if the 
instrument assumption is valid, should result 
in an underestimate of risk. Power is always an 
issue, and the power for a Poisson regression 
depends on the total number of events. In our 
case, there were 204,386 deaths during the 
study period, which indicates good power for 
our hypothesis tests.

In summary, we have used causal methods 
to estimate the acute effect of local air pollution 
on daily deaths, and found that concentrations 
below current limits are associated with impor-
tant increases in daily deaths. If, when stratified 
by month and temperature, our instrument 
is independent of other causes of mortality, 
this association is causal, an interpretation 
supported by toxicological studies.
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