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Introduction
Despite efforts to address the substantial health 
and economic burden of asthma in the United 
States and around the world, it remains a 
significant health issue. Previous epidemio-
logical studies trying to identify environmental 
triggers of asthma have relied upon aggregated 
and infrequently-reported asthma outcome 
measures, such as emergency department visits 
or hospitalizations, which lack temporal and 
spatial resolution due to aggregation to an 
annual basis and grouping to a ZIP code or 
county level. Other studies have used patient 
self-reported data to assess the location and 
frequency of symptoms; however, patient 
diaries have been demonstrated to be fraught 
with missing data, errors and are burden-
some for the patient (Jordan et al. 2006; 
Rockenbauer et al. 2001; de Marco et al. 
2002). Studies have also utilized a patient’s 
residential address as the primary location of 
exposure; however, exposure to known indoor 
and outdoor asthma triggers can occur in the 
community, at work, at home, at school, and 
elsewhere; therefore, residential address does 

not capture the full signature of exposure. 
Additionally, impacts from built environment 
factors other than the home cannot be effec-
tively assessed. These limitations make it chal-
lenging to identify when and where asthma 
symptoms occur, and how personal environ-
mental exposures might influence the pattern 
of symptoms (Guarnieri and Balmes 2014).

Patients with inadequately controlled 
asthma are at particularly high risk of exacer ba-
tions, hospitalization, and death, and they often 
have severely impaired quality of life (Peters 
et al. 2006). Asthmatic patients often use short-
acting bronchodilators (or “rescue” inhalers) to 
gain relief from acute symptoms such as cough, 
wheeze or shortness of breath. Electronic sensors 
fitted onto rescue inhalers, which can capture 
the time and location of use, offer an imme-
diate, objective signal of asthma activity and 
potential exposure and can contribute to public 
health surveillance and research (Nilsen et al. 
2012; Barrett et al. 2013; Kumar et al. 2013).

This feasibility study had three distinct 
objectives. First, we aimed to evaluate the 
feasibility of collecting rescue inhaler use data 

in space–time using inhaler sensors. Second, 
we aimed to evaluate whether these collected 
data could identify environmental triggers 
and built environment factors associated with 
rescue inhaler use, and whether these findings 
would be consistent with the existing litera-
ture. These two objectives were the primary 
focus of this paper. Third, the study aimed to 
assess the feasibility of using inhaler sensors 
and a mobile health platform to improve 
asthma outcomes for participants, such as the 
frequency of rescue inhaler use and symptom-
free days. These clinical objectives and results 
are discussed elsewhere and will not be the 
focus of this paper (Van Sickle et al. 2015).

Methods

Study Site

The city of Louisville, located in Jefferson 
County, Kentucky, ranks among the top 
20 “most challenging places to live with 
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asthma” in the United States (Asthma and 
Allergy Foundation of America 2013). 
Asthma surveillance activities driven by the 
local public health department must rely upon 
asthma hospitalization records and national 
survey prevalence data, which are aggregated 
at a ZIP-code level and are often more than 
a year old. In order to address these limited 
surveillance data and better understand local 
environmental drivers of asthma, municipal 
leaders in Louisville formed a public-private 
collaboration to improve asthma surveillance 
and inform policy decision-making (AIR 
Louisville 2015).

Participant Enrollment
The program recruited participants through 
convenience sampling from community 
events, clinics and retail pharmacies in 
Jefferson County. Participants were eligible if 
they reported a physician diagnosis of asthma 
and had a current prescription for a compat-
ible inhaled short-acting bronchodilator 
medication. Participants were excluded if they 
a) were under the age of 4; b) did not speak 
English; c) did not have access to the internet; 
or d) had substantial respiratory co-morbidity 
such as chronic obstructive pulmonary 
disease. The study was reviewed and approved 
by the Copernicus Group Independent 
Review Board, and received written informed 
consent from all participants, including 
written consent from guardians on behalf of 
children under 18. Demographic data were 
collected via surveys. The parents of children 
< 12 years old assisted with completing the 
survey. In general, the parents of children 
< 18 years old were also trained on the sensors 
and mobile health platform.

Collection of Rescue Inhaler Use 
in Space and Time
Rescue inhaler use events were captured 
using a wireless inhaler sensor (Propeller 
Health, Madison, WI). The Propeller sensor 
and platform comprise a U.S. Food and 
Drug Administration (FDA) cleared digital 
therapeutic that combines inhaler sensors, 
mobile applications, and predictive analytics 
for patients and clinicians (Van Sickle et al. 
2013). The sensor is compatible with the 
majority of available metered dose inhalers, 
and it objectively records their use, capturing 
the date, time, and number of actuations. 
The sensor transmits the information via 
Bluetooth to a paired smartphone, which 
then records the geographic location of the 
use event. Participants without smartphones 
were not excluded from the study. Instead, 
they utilized a wireless hub, which trans-
mits actuation data but does not enable the 
capture of global positioning system (GPS) 
locations. The smartphone and hubs securely 
upload inhaler use data to encrypted servers. 

Following American Thoracic Society/
European Respiratory Society guidance, actu-
ations occurring within a 2 min time period 
were considered a single rescue inhaler use 
event (Reddel et al. 2009).

The digital health platform enables 
a participant to self-report information on 
perceived symptoms and triggers associated 
with a rescue inhaler use event, and report 
whether the inhaler was used pre-emptively. 
Before our analysis, we removed all rescue 
inhaler events marked as pre-emptive.

The Propeller Health System is consid-
ered an electronic Metered Dose Inhaler 
(MDI) Accessory according to the Code of 
Federal Regulations (FDA 2016) and required 
a 510(k) clearance reviewed by the FDA’s 
Center for Devices and Radiological Health 
(CDRH). Performance bench testing of 
sensor actuations and data capture demon-
strated reliable functionality according to 
applicable standards and testing, including 
Federal Communications Commission (FCC) 
licensing and wireless Bluetooth technology 
(FDA 2013).

Measurements of Environmental 
Triggers
Environmental triggers assessed in this 
study included air pollutants, pollen, mold 
and meteorological factors. We acquired air 
pollutant data from the U.S. Environmental 
Protection Agency’s (EPA) Air Quality 
System (AQS) for the following criteria 
pollutants: nitrogen dioxide (NO2), ozone 
(O3), sulfur dioxide (SO2), and particulate 
matter with aerodynamic diameter ≤ 2.5 μm 
(PM2.5) and ≤ 10 μm (PM10). We also 
collected Air Quality Index (AQI) data from 
the available monitoring stations (Figure 1). 
AQI is an index of daily ambient concentra-
tions of up to five criteria air pollutants (i.e., 
O3, PM, carbon monoxide, SO2, and NO2). 
It is a piecewise linear function of a pollutant 
concentration, and it ranges from < 50 (good 
air quality) to over > 400 (poor air quality). If 
multiple pollutants are measured at a moni-
toring site, then the highest pollutant level is 
reported for AQI at that location (U.S. EPA 
2013). The AQS pollutant data are collected 
at different temporal resolutions, including 
hourly concentrations for NO2 and SO2, 
daily concentrations for PM2.5 and PM10, 
a daily mean of 8 hr maximum for O3, and 
mean daily values for AQI. We used an 
inverse distance-weighting (IDW) algorithm 
to estimate pollutant concentrations for loca-
tions of rescue inhaler use per hour or per day 
using the AQS monitoring data (Figure 1). 
The spatially interpolated daily values were 
used to represent hourly measures of pollut-
ants when only daily data were available. 
The concentration of a pollutant at location 
j of rescue inhaler use during hour t (cjt) was 

calculated using all known monitoring sites 
(i = 1, 2, …, n) concentration measurements 
(cijt) (Equation 1):

 cjt = Σi (wij × cijt)/Σwij, [1]

where wij = 1/dij and dij is the distance 
between known monitoring station i and 
rescue inhaler use location j. For rescue 
inhaler use events without location data, daily 
or hourly regional mean statistics were used.

The pollen data for the study period were 
collected in Louisville by the staff at Family 
Allergy & Asthma from a monitoring station 
on the roof of the clinic (Figure 1), and 
included daily counts for mold spores, and 
tree, grass, and weed pollen. Because we were 
limited to daily data from just one moni-
toring location, all the inhaler-use events on 
a specific day were assigned the same pollen 
and mold counts.

We downloaded daily meteorological 
data, including wind speed, relative humidity, 
temperature, and atmospheric pressure, 
from U.S. EPA AQS sites (Figure 1). The 
IDW algorithm assigned daily meteoro-
logical conditions for the locations of rescue 
inhaler use. We also acquired daily precipi-
tation, snow, and wind direction data from 
the National Oceanic and Atmospheric 
Administration (NOAA) for the Louisville 
International Airport (Figure 1). Wind direc-
tion data (0–360°) were reclassified into eight 
categories: north, northeast, east, southeast, 
south, southwest, west and northwest.

Measurements of Built 
Environment Factors
We identified built environment factors that 
might influence rescue inhaler use, such as 
land use, land cover, and property charac-
teristics. We acquired land use and property 
data from the Louisville/Jefferson County 
Information Consortium for 2014. For each 
rescue inhaler use location, corresponding 
land use characteristics (e.g., % residential) 
were calculated within a 250-m buffer, an area 
representing local  influence on an individual 
(Su et al. 2011).

We also acquired land cover data from 
the National Land Cover Database for 2011 
at a spatial resolution of 30 m. The land 
cover classes for vegetation included forest 
(deciduous, evergreen, and mixed), shrub 
land, and grassland/herbaceous cover. Our 
primary interest in including land cover was 
to examine the potential protective (e.g., 
reductions of air pollution by tree) or causal 
(e.g., pollen generation by weed) effect 
of vegetation on rescue inhaler use. Pollen 
counts were measured at the regional level 
and were temporally resolved (daily), while 
land cover vegetation classification data were 
spatially resolved using the 250-m buffer.
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Statistical Modeling
We first explored bivariate relationships 
between daily number of rescue inhaler use 
events and corresponding daily pollutant 
concentrations and meteorological condi-
tions with time series plots and scatterplots. 
To be consistent with subsequent statistical 
modeling, we used the ratio of rescue inhaler 
use events each day to the number of active 
participants on that day. We then assessed 
the association of environmental triggers and 
built environment factors with inhaler use 
by implementing zero-truncated negative 
binomial models, and validating these results 
using three sensitivity analyses, which we 
describe in further detail.

Detecting Environmental 
Associations With Rescue 
Inhaler Use
First, we identified the environmental triggers 
that might have an impact on rescue inhaler 
use through an unadjusted zero-truncated 
negative binomial model. Our goal was to 
model the number of events of rescue inhaler 
use of all active participants per day using 
average environmental exposures within the 
same day (Equation 2):

log(E (Yi)) = β0 + β1 × Xi + log(Ai) + εi, [2]

where E (Yi) and Xi are respectively the 
expected number of inhaler use events and 
the environmental predictor at the ith day. 
Negative binomial models were applied 
because initial data exploration identified that 
the data for rescue inhaler use were highly 
overdispersed, with the variance about 10 
times the mean. We used rate ratios (RR) 
in interquartile range (IQR) increments and 
corresponding 95% confidence intervals (CI) 
to identify the degree of impact of environ-
mental triggers on rescue inhaler use. RR is a 
relative difference measure used to compare 
the incidence rates of events. For environ-
mental triggers that were spatially resolved, 
a single mean statistic averaged from all the 
locations of rescue inhaler use each day was 
used. Ai is the total number of active partici-
pants at the ith day, representing the partici-
pants who were tracking their inhaler use on 
that day. An active participant was defined 
as having a sensor that was on and capable 
of transmitting data, however not all active 
participants used their rescue inhaler on any 
given day. We used the number of active 
participants each day as an offset to adjust for 
bias. εi is the model error term.

Second, we expanded the unadjusted zero-
truncated negative binomial models to include 
multiple environmental factors that might 
influence inhaler use simultaneously, including 
air pollution, pollen, and meteorological data 
(Equation 3):

log(E (Yi)) = β0 + β1 × X1i + β2 × X2i  
 + β3 × X3i + log(Ai) + εi, [3]

where X1i, X2i, and X3i are, respectively, 
vectors of air pollution, pollen, and mold 
spore counts, and meteorological informa-
tion for the ith day. The meteorological infor-
mation included wind speed, precipitation, 
temperature, and season. We used a polyno-
mial function for the impact of temperature. 
Again, rate ratios in IQR increments and 
95% CI were used to represent the relative 

impacts of environmental triggers on rescue 
inhaler use. Due to the collinearity between 
air pollutants, we developed separate models 
for AQI and each pollutant.

For the environmental trigger models, 
we assessed the “immediate” effect of envi-
ronmental exposure before a rescue inhaler 
event occurred as well as the effect of 
time-lagged exposures 1–3 days preceding 
the rescue inhaler event. Immediate effects 
were defined as occurring within the hour 
preceding an inhaler event (e.g., using 

Figure 1. The relative location of Jefferson County, Kentucky, and its air pollution, pollen and weather 
monitoring sites.
For the rescue inhaler use location marked on the map (solid circle), the estimation of PM10 concentration as applied in 
Equation 3 can be obtained using the following method:

1 1 1 1 1 1C d c d c d c d d d1
1

2
2

3
3

1 2 3Rescue
PM10 # # #= + + + +/ ,c cm m  

where di and ci are respectively the distance to and concentration at the ith monitoring site. A hypothetical example is 
used here to demonstrate how we estimated exposure at a rescue inhaler use location through the inverse distance 
weighting algorithm. The figure was created by the authors of this paper using ArcGIS software (V9.3; Environmental 
Systems Research Institute, Redland, CA).
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pollutant concentrations at 1000 hours for 
a 1035 hours event). We used each discrete 
rescue inhaler event’s time and location to 
determine the environmental exposure. For 
pollutants with hourly data available, the 
concentrations at the specific space–time 
for which rescue inhaler use occurred were 
assigned. For pollutants with only daily data 
available, the interpolated daily concentra-
tions at the locations of rescue inhaler use 
were used. In our zero-truncated negative 
binomial modeling process, the exposure 
values from all rescue inhaler events occur-
ring in a single day were averaged to daily 
means. For assessing time-lagged exposures, 
lagged exposures were calculated by averaging 
concentrations measured from all the loca-
tions of rescue inhaler use that occurred on 
the respective preceding 1–3 days.

Detecting Built Environment 
Associations with Rescue 
Inhaler Use
We included property and land cover data 
in the models to identify the impacts of built 
environment characteristics, such as transpor-
tation infrastructure, land use or vegetation, 
on rescue inhaler use. We used the subset 
of rescue inhaler use data with geographic 
location data assigned to each event. A 
location of inhaler use at a specific time and 
day was linked to the land cover data based 
on the latitude and longitude information 
recorded by participants’ smartphones. 
Similar to the identification of environ-
mental triggers of rescue inhaler use, we built 
 unadjusted models to assess associations of 
rescue inhaler use with property types and 
land cover  characteristics using Equation 2.

Sensitivity Analyses
We tested the reliability of our findings by 
implementing three sensitivity analyses. To 
test the feasibility of using the individual 
observation as the unit of analysis, we used a 
subgroup of 80 participants for which we had 
demographic data and conducted two sensi-
tivity analyses to identify associations of envi-
ronmental triggers with rescue inhaler use. 
For each participant, we tracked their start 
date, end date, and the intervening active days 
the participant was in the program. First, we 
developed a generalized linear mixed model 
with repeated measures. For those active days 
on which an individual experienced a rescue 
inhaler use event (response = 1), we extracted 
the corresponding environmental exposure 
values based on the time and location of 
the event. If location data were not avail-
able, regional mean statistics at the time of 
exposure were applied. For those active days 
on which an individual did not experience 
a rescue inhaler use event (response = 0), we 
extracted the corresponding regional mean 

exposure statistics for each day. We tried 
to control for person-level confounding by 
including race/ethnicity, sex, smoking status, 
and pet ownership. Studies show that race/
ethnicity and smoking status are significantly 
correlated with disease severity and medi-
cation adherence and could be treated as a 
proxy for such measures (Boudreaux et al. 
2003; Bitsko et al. 2014; Crocker et al. 2009; 
Wells et al. 2008). The second sensitivity 
analysis evaluated the impact of time-lagged 
exposures (up to 3 days preceding an event) 
for each of the 80 participants through 
similar repeated regression models. Time-
lagged exposures were estimated using corre-
sponding regional mean exposure statistics for 
the lagged days. We also conducted a third 
sensitivity analysis, which implemented the 
zero-truncated negative binomial regression 
models using only the inhaler use data that 
had geolocation information.

Results

Feasibility of Collecting Rescue 
Inhaler Use in Space–Time

We recruited 140 volunteer participants across 
Jefferson County who passively recorded 
their rescue inhaler use from 13 June 2012 to 
28 February 2014. Of the 140 participants, 80 
of them provided demographic information 
via surveys. Participants self-reported their 
race/ethnicity as African American (31.3%), 
Non-Hispanic White (57.5%), Hispanic 
(1.3%), Native American (2.5%) or other 
(7.5%) (Table 1). Among those 80 partici-
pants, 62.5% were female. We examined 
smartphone device ownership and access 
among participants: 27.1% used an iPhone, 
while 37.8% used an Android phone, with 
Samsung (17.1%), High Tech Computer 
Corporation (HTC) (15.0%) and Motorola 
(5.7%) ranking as the most popular devices. 
35.1% of participants did not own a smart-
phone and used an alternative device or a 
wireless hub to transmit their data.

The inhaler sensors collected a total of 
10,475 actuations, which were grouped 
into 5,660 unique rescue inhaler use events. 
Of the rescue inhaler events logged, 100% 
successfully recorded information on the 
date, time, and the number of actuations. A 
subset of the inhaler use events were assigned 
GPS locations (23%), which enabled a kernel 
density analysis of the geographic distribution 
of the rescue inhaler use events (Figure 2). Of 
all participants, 35.1% did not own a smart-
phone and transmitted data via an alternate 
device or wireless hub, which are not capable 
of collecting GPS locations. We explored the 
patterns of geographic data capture across 
sex, race/ethnicity, time of day, and type of 
smartphone transmission device. We did 
not find any significant differences in GPS 

data capture for men vs. women, for race/
ethnicity, for time of day (day 0600–2000 
hours vs. night) or for type of smartphone.

Detecting Environmental 
Associations with Rescue 
Inhaler Use
We first assessed the correlation coefficients 
(r) between environmental triggers and found 
that air pollutants had r values between 0.28 
and 1.00, while their correlations with pollens 
from grass, tree, weed, and mold were < 0.20 
(see Table S1). AQI was heavily impacted 
by PM10 (r = 1.0) and PM2.5 (r = 0.75). We 
overlaid the daily number of rescue inhaler 
use events with daily pollutant concentra-
tions and temperature in time series plots (see 
Figures S1–S3), and explored the relationship 
between rescue inhaler use and temperature 
(see Figure S4).

We also identified the feasibility of using 
sensor-collected data to detect possible asso-
ciations with environmental triggers, including 
air pollution, pollen, and mold, in the unad-
justed zero-truncated negative binomial models 
(see Table S2). All the modeling results are 
expressed as RR (95% CI) through corre-
sponding IQR increments. We found that 
AQI [1.201 (95% CI: 1.156, 1.248)], PM10 
[1.204 (95% CI: 1.158, 1.251)], and NO2 
[1.033 (95% CI: 1.000, 1.066)] were posi-
tively associated with inhaler use, but O3 
had a negative association [0.913 (95% CI: 
0.878, 0.950)] for immediate exposures, all 
significant at the 0.05 level. We also found that 
weed pollen [1.005 (95% CI: 1.004, 1.006)] 
and mold [1.153 (95% CI: 1.104, 1.203)] had 

Table 1. The descriptive statistics of a subset of 
the participants and the phone types of all the 
participants enrolled in the feasibility study.

Participant characteristics n (%)
Sexa

Male 30 (37.5)
Female 50 (62.5)

Race/ethnicitya
Black 25 (31.3)
White 46 (57.5)
Hispanic 1 (1.3)
Native 2 (2.5)
Other 6 (7.5)

Smoking statusa
Smokers 21 (26.3)
Nonsmokers 59 (73.7)

Pet ownershipa
With pets 42 (52.5)
Without pets 38 (47.5)

Phone typeb
Non-smartphone/hub 49 (35.1)
HTC 21 (15.0)
Motorola 8 (5.7)
Samsung 24 (17.1)
iPhone 38 (27.1)

Note: HTC, High Tech Computer Corporation. 
aThe statistics are for the 80 participants who submitted 
answers to initial surveys.
bPhone types are statistics for the 140 patients.
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positive associations but tree pollen [0.982 
(95% CI: 0.977, 0.987)] and grass pollen 
[0.992 (95% CI: 0,985, 0.998)] had negative 
associations. In addition, we identified that 
the impacts of time-lagged exposures were 
similar to the immediate impact of daily 
 exposures for all variables (see Table S2).

Next we built an adjusted environmental 
trigger model that also included meteorolog-
ical variables (see Table S2). After including 
these additional environmental factors, AQI 
[1.055 (95% CI: 1.003, 1.108)] and PM10 
[1.054 (95% CI: 1.002, 1.109)] were still 
positively and significantly associated with 
rescue inhaler use. O3 had a positive asso-
ciation for lag exposures of 1 day [1.082 
(95% CI: 1.021, 1.146)] and 2 days [1.073 
(95% CI: 1.012, 1.136)]. Tree pollen main-
tained a negative association [0.991 (95% CI: 
0.985, 0.998)], but grass pollen [1.012 
(95% CI: 1.004, 1.019)] and weed pollen 
[1.005 (95% CI: 1.004, 1.007)] demonstrated 
a positive association.

The three sensitivity analyses demon-
strated associations that largely aligned with 
the zero-truncated negative binomial models. 
In the first sensitivity analysis (subgroup of 
80 participants with demographic data), after 
controlling for race/ethnicity, sex, smoking 
status and pet ownership, AQI, and PM10 
were found to maintain their positive and 
significant association with rescue inhaler 
use (see Table S3). Tree pollen maintained 
a negative association while weed pollen and 
mold maintained a positive association, all 
significant. In the second sensitivity analysis 
(time-lagged exposures), these relationships 
were also maintained (see Table S3). In the 
third sensitivity analysis (restricted to only 
geographically-defined data), the results were 
also largely maintained, except that the asso-
ciation with O3 was positive and significant, 
which was opposite of the result from the 
original analysis (see Table S4).

To summarize the consistent results from 
the two primary analyses and three sensitivity 
analyses, AQI, PM10, and weed pollen were 
found to be positively and significantly associ-
ated with rescue inhaler use in all five models. 
Mold was found to be positively and signifi-
cantly association with inhaler use in four 
of the five models. Additionally, tree pollen 
demonstrated a negative and significant 
 association in all five models.

Detecting Built Environment 
Associations with Rescue 
Inhaler Use
In the unadjusted models of built environ-
ment factors (see Table S5), we found 
that vegetation cover [0.829 (95% CI: 
0.800, 0.857)], which included trees, herba-
ceous and shrubland, was negatively associ-
ated with rescue inhaler use. When examined 

individually, tree cover [0.825 (95% CI: 
0.796, 0.854)] and herbaceous cover [0.901 
(95% CI: 0.872, 0.929)] were negatively asso-
ciated with rescue inhaler use, but shrubland 
[0.993 (95% CI: 0.955, 1.025)] exhibited no 
significant associations.

We also found that industrial land use 
[0.992 (95% CI: 0.987, 0.996)] and resi-
dential land use categories [0.880 (95% CI: 
0.829, 0.933)] had significant and negative 
associations, while public utilities [1.009 
(95% CI: 1.005, 1.013)] and exempt land 
use categories [1.153 (95% CI: 1.113, 1.194)] 
had positive and significant associations. 
Public utilities included areas such as rail-
roads, pipelines, electricity delivery, and other 
utilities. Exempt properties include those 
owned by communities, churches, hospi-
tals, colleges, cities, counties, state or federal 
authorities. Upon further investigation into 
the detailed exempt properties, we found that 
educational institutions [1.008 (95% CI: 
1.002, 1.013)], religious gathering places 
[1.094 (95% CI: 1.068, 1.121)], residential 
condominium master lots (e.g., a central 
courtyard surrounded by the residential build-
ings) [1.014 (95% CI: 1.009, 1.020)], and 

metro government sites [1.054 (95% CI: 
1.045, 1.063)] were all significantly and 
 positively associated with rescue inhaler use.

Discussion and Conclusion

Feasibility of Collecting Inhaler 
Use Data
In this study, we tested the feasibility of using 
inhaler sensors to collect rescue inhaler use 
data in space–time, and to use these data 
to detect environmental triggers and built 
environment factors associated with asthma 
symptoms. We found that the sensors are 
reliable in collecting medication use data: 
100% of the 10,475 rescue inhaler actua-
tions successfully recorded the date and time. 
Geographic data were not captured on all 
events primarily because participants without 
smartphones used alternative devices or 
wireless hubs (35.1%), which are not capable 
of collecting GPS data. It was known before 
the study started that these participants would 
not be collecting GPS data, but the study 
chose not to exclude participants based on 
lack of smartphone ownership. Additionally, 
we chose to exclude a subset of GPS data 

Figure 2. Hotspots of rescue inhaler use events in Jefferson County, Kentucky, generated using a kernel 
density function based on the locations where rescue inhaler use events occurred from June 2012 to 
February 2014. The figure was created by the authors of this paper using ArcGIS software (version 9.3; 
Environmental Systems Research Institute, Redland, CA).
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points to be conservative. If the data trans-
mission between sensor and smartphone 
occurred more than 10 min after the rescue 
inhaler event, we disregarded the geolocation 
because sufficient time had passed to allow 
movement away from the original location 
of rescue inhaler use and could misrepre-
sent the location. Lastly, geolocations were 
not captured if the smartphone was not 
communicating fully with the sensor (e.g., 
phone battery expired, Bluetooth turned off, 
location services deactivated, or insufficient 
cell or Wi-Fi networks). In these scenarios, 
all actuations and their date and time data 
were still collected and stored on the sensor 
for future transmission, so these data were 
never lost. Smartphone ownership was the 
key predictor of GPS data collection; there 
were no differences in other predictors such as 
sex, race, smartphone type or time of day.

The geographic data enabled analyses that 
were not possible previously, such as a kernel 
density analysis of inhaler use, which high-
lighted those neighborhoods with the most 
frequent rescue inhaler use. Additionally, 
these data also enabled an analysis of the asso-
ciations of built environment factors with 
rescue inhaler use. These data could improve 
upon the limitations of previous studies by 
identifying nonresidential locations of expo-
sures and even the protective effects of built 
environment factors.

Statistical Approach
Negative binomial regression models, 
including unadjusted and adjusted models, 
have been used in previous studies to identify 
asthma exacerbations (Casale et al. 2015). 
We tested the reliability of our findings from 
the unadjusted and adjusted zero-truncated 
negative binomial models against three sensi-
tivity analyses that used different statistical 
approaches or subsets of the data. In all three 
sensitivity analyses, we demonstrated consistent 
and significant findings. AQI, PM10, mold, 
and weed pollen were found to be positively 
and significantly associated with rescue inhaler, 
while tree pollen and tree cover demonstrated a 
negative and significant association.

In our primary analysis, we did not use 
the individual rescue inhaler use event as the 
unit of analysis because we needed to control 
for the differences across individuals in asthma 
severity and sensitivity to environmental 
triggers, but did not have these data. Instead, 
we used the number of active participants 
per day as an offset to address the impacts of 
individual user variability. The offset controls 
for situations when similar exposures between 
two different days result in dissimilar number 
of rescue inhaler use events due to differences 
in participant composition. In our sensitivity 
analysis using just the subset of the data with 
demographic information, we could control 

for variability across individuals using race/
ethnicity, sex, smoking status, and pet owner-
ship information and found consistent results. 
In future studies, we will have access to demo-
graphic, socioeconomic, asthma severity, 
and self-management information on all 
participants, which will allow us to use the 
individual rescue inhaler use event as the unit 
of analysis and control for variability across 
individuals, which will greatly enhance the 
utility of these data.

Consistency with Previous Evidence
The modeling results indicated that data 
collected by the inhaler sensors have the 
potential to identify environmental triggers 
associated with inhaler use. The results 
presented here are largely consistent with 
findings from previous studies that demon-
strate that environmental triggers such as air 
pollution, mold, and weed pollen signifi-
cantly contribute to asthma symptoms. AQI 
and PM10 have been found to be positively 
and significantly associated with rescue 
inhaler use (Shadie et al. 2014; Esposito et al. 
2014; Brunekreef et al. 2009), as have weed 
pollen and mold (Toh et al. 2014; Jariwala 
et al. 2014).

The distribution of vegetation, specifically 
tree cover, was found to be protective against 
asthma rescue inhaler use in Louisville. 
These results add an interesting finding to 
the literature, given the conflicting results 
demonstrated in the few existing studies on 
this topic. In one study, street tree cover was 
found to be positively associated with asthma 
and allergic sensitization (Lovasi et al. 2013), 
but negatively associated with childhood 
asthma prevalence in another study (Lovasi 
et al. 2008). More broadly, the benefits of 
tree cover have been demonstrated in other 
health and environmental outcomes, such as 
increased physical activity and social interac-
tion in green spaces, reduced psychophysio-
logical stress and depression, ameliorated 
noise and air pollution levels, and regulated 
microclimates (i.e., moderating ambient 
temperature and urban heat island effects) 
(Bowler et al. 2010).

We found inconsistent associations 
for O3, with negative associations in some 
models and positive associations in others. 
In previous studies, O3 has been shown to 
negatively impact health (Lee et al. 2013; 
Jerrett et al. 2013; MacIntyre et al. 2011), 
including asthma (Brandt et al. 2014; Perez 
et al. 2012). The inconsistent O3 results were 
likely due to insufficient O3 sampling data; 
O3 data were only available from three loca-
tions throughout Jefferson County at 8-hr 
intervals. We plan to address this limitation 
in the next implementation of this study 
by deploying stationary ozone monitors in 
specific neighborhoods of interest.

The feasibility study also identified 
areas for future research into built environ-
ment influences on asthma. For example, we 
determined that public places such as public 
utilities and railroads may be associated 
with higher rescue inhaler use. Interestingly, 
other frequently-used public spaces such as 
educational sites, religious gathering places, 
metro government sites, and residential 
courtyards were also associated with higher 
inhaler use. These areas represent locations 
in which people typically spend a significant 
amount of time, so this relationship requires 
further exploration when we can assess quan-
titatively how long people have spent in these 
locations. To capture a better assessment of 
such exposures in the expanded study, we are 
logging participants’ daily locations, with their 
consent, by recording geolocation informa-
tion from their smartphones every 2 hr. These 
data will provide valuable information for 
characterizing exposure in space–time for each 
participant, and will allow for more accurate 
interpretation of the built environment 
effects. In the future, these findings may offer 
ideas for specific municipal interventions in 
these areas, such as controlling weed growth, 
reducing exposure to air pollution through 
improved indoor air filtration, and enhancing 
tree canopy coverage.

Limitations and Future Directions
This feasibility study had several key limita-
tions. A larger implementation of this study 
is currently underway, and the lessons learned 
from this feasibility study have informed the 
design of that expansion. First, collection of 
participant information will be more complete 
in the expansion. The expanded study is 
requiring participant data collection during 
enrollment, including race/ethnicity, date of 
birth, sex, home neighborhood, and census-
based income, and educational levels. Other 
participant characteristics, such as asthma 
severity, controller medication adherence, 
and self-management levels, will be collected 
throughout the study. We can use these data 
to address the variability in asthma severity 
and environmental sensitivity across partici-
pants. These data will allow us to develop 
models that include individual rescue inhaler 
use events as the unit of analysis, which will 
greatly enhance our dataset.

Second, the expanded study will enroll 
a larger sample that is more balanced. The 
expanded study will enroll more than 
500 participants in the Louisville area, and 
aims to achieve balance in participants’ 
geographic, demographic, and socioeconomic 
representation to match the composition of 
Jefferson County.

Third, geographic data collection will be 
enhanced by expanding the number of partici-
pants with smartphones. Recent national 
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surveys indicate that smartphone penetration 
is increasing, with 64% of all American adults 
owning a smartphone. Of these smartphone 
owners, 62% have used their phone to look 
up health information (Smith 2015). We are 
also collecting individuals’ home addresses, 
which will enable us to explore assigning 
home geolocations to nighttime rescue inhaler 
use events if location data are missing.

Fourth, we will be able to characterize 
participants’ exposure signature with much 
more accuracy, instead of using regional mean 
statistics for environmental exposures. We 
will collect snapshots of participants’ loca-
tions every 2 hr, only with their consent, to 
characterize each participant’s exposure in 
space–time. By being able to characterize the 
locations in which participants spend their 
time, we will be able to provide more insight 
on the impact of built environment factors on 
rescue inhaler use.

Fifth, we could not identify if a partici-
pant was indoors or outdoors, and we did not 
have indoor air pollution data, so we were 
limited to addressing outdoor exposures only. 
In future studies, by taking a more frequent 
snapshot of location and by asking for self-
reported data from participants on perceived 
triggers and activities, we will begin to identify 
these differences in exposure signature.

Sixth, next generation sensor technology 
has improved data collection. The sensor 
used in this study has since been retired. The 
current sensor uses Bluetooth LE, a more 
efficient and low-energy protocol, and has a 
battery life of > 18 months, which improves 
the user experience by making it more passive 
and seamless.

Seventh, we plan to address the limited 
air pollution monitoring data by deploying 
stationary pollutant monitors in specific 
neighborhoods of interest and by exploring 
mobile monitoring as well. Local advocacy 
groups in Louisville have already begun testing 
stationary sensors.

Conclusions
In summary, our study identified that it is 
feasible to use electronic sensors to record 
asthma inhaler use in space and time. The 
ability to track rescue inhaler use offered a 
wireless and passive data collection method 
that was more objective and less burdensome 
than traditional patient diaries or aggregated 
utilization data. The study also confirmed that 
it is feasible to use data collected by the inhaler 
sensors to investigate the relationships among 
asthma rescue inhaler use, environmental 
triggers, and built environment factors. Several 
environmental triggers were found to be asso-
ciated with increased inhaler use, such as AQI, 
PM10, weed pollen, and mold. Conversely, 
tree cover demonstrated protective effects. The 
lessons learned from this feasibility study have 

informed the design of the expanded study 
currently underway in Louisville, and will 
help investigate these associations further. The 
application of these new technologies has the 
potential to improve our understanding of 
asthma, both for clinical disease management 
and public health.
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