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Introduction
Over the past several decades, numerous 
studies have explored whether semen 
 parameters have declined (Carlsen et al. 
1992; Swan et al. 2000), and whether there 
are geographical differences in semen param-
eters both between (Jørgensen et al. 2001, 
2002) and within countries (Swan et al. 
2003). Recent literature has shown that 
serum concentrations of organochlorines 
(OCs), including dioxins, furans, and poly-
chlorinated biphenyls (PCBs), are associated 
with decreased semen parameters (Faure et al. 
2014; Meeker and Hauser 2010; Mocarelli 
et al. 2008, 2011; Paoli et al. 2015; Toft et al. 
2006). Despite efforts to limit dioxin emis-
sions and longstanding bans on PCB manu-
facture and use, there is still ongoing exposure 
through diet because these compounds 
bioconcentrate in the food chain due to 
their lipophilic properties and long half-lives 
(Schecter et al. 2001).

Among epidemiologic studies on OCs 
and semen parameters, the only one that 
explored childhood exposure and adult 
semen parameters was in Seveso, Italy, where 
an explosion in 1976 at a trichlorophenol 
manufacturing plant released up to 30 kg of 
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) 
(Mocarelli et al. 2008). The authors inves-
tigated the relationship of serum TCDD 
concentrations measured from blood samples 
taken in 1976 during childhood (1–9 years), 
puberty (10–17 years), or young adult life 
(18–26 years) with semen parameters and 
male reproductive hormones measured 
22 years later. They did not measure other 
dioxins, furans or PCBs. Mocarelli and 
colleagues found that acute high exposure 
to TCDD in childhood (1–9 years), but 
not during puberty (10–17 years) or adult-
hood (18–26 years), was associated with 
poorer semen parameters later in adulthood. 
These compelling results were key data in 

the U.S. Environmental Protection Agency 
(EPA) risk assessment for dioxins (U.S. EPA 
2009). These results suggested that during 
childhood, when the testes are still immature, 
the activation of aryl hydrocarbon receptors 
(AhR) in the testes by TCDD may interfere 
with maturation of the seminiferous tubules 
and spermatogenesis and demonstrates that 
the juvenile reproductive system may be 
particularly vulnerable to TCDD exposure 
(Woodruff et al. 2010).

Given the importance of childhood 
exposures on reproductive health later in life, 
we conducted a prospective cohort study of 
Russian boys with a wide range of exposure 
to dioxins, furans, and PCBs stemming 
from environmental contamination of their 
community. Specifically we assessed the 
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Background: Exposures to endocrine-disrupting chemicals during critical phases of testicular 
development may be related to poorer semen parameters. However, few studies have assessed the 
association between childhood organochlorine (OC) exposure and adult semen parameters.

oBjective: We examined whether peripubertal serum OC concentrations are associated with 
semen parameters among young Russian men.

Methods: From 2003 through 2005, 516 boys were enrolled at age 8–9 years and followed for up 
to 10 years. Serum OCs were measured in the enrollment samples using high-resolution mass spec-
trometry. At 18–19 years, 133 young men provided 1 or 2 semen samples (256 samples) collected 
approximately 1 week apart, which were analyzed for volume, sperm concentration, and motility. 
Unadjusted and adjusted linear mixed models were used to examine the associations of quartiles 
of lipid-standardized concentrations of dioxins [2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 
polychlorinated dibenzo-p-dioxins (PCDDs)], furans, polychlorinated biphenyls (PCBs), and 
 corresponding toxic equivalents (TEQs) with semen parameters.
results: The median (range) for TCDD was 2.9 (0.4–12.1) pg/g lipid and PCDD TEQ was 8.7 
(1.0–36.0) pg TEQ/g lipid. Higher quartiles of TCDD and PCDD TEQs were associated with 
lower sperm concentration, total sperm count, and total motile sperm count (p-trends ≤ 0.05). The 
highest quartile of peripubertal serum TCDD concentrations was associated with a decrease (95% 
CI) of 40% (18, 66%), 29% (3, 64%), and 30% (2, 70%) in sperm concentration, total sperm 
count, and total motile sperm count, respectively, compared with the lowest quartile. Similar asso-
ciations were observed for serum PCDD TEQs with semen parameters. Serum PCBs, furans, and 
total TEQs were not associated with semen parameters.
conclusion: Higher peripubertal serum TCDD concentrations and PCDD TEQs were associated 
with poorer semen parameters.
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associations of peripubertal (measured at age 
8–9 years) serum concentrations of dioxins, 
furans, and PCBs with semen parameters in 
young healthy men measured approximately 
10 years later.

Methods

Study Population

The Russian Children’s Study is an ongoing 
prospective study of 516 males (Hauser et al. 
2008; Williams et al. 2010). Once enrolled at 
age 8–9 years, each boy underwent a physical 
examination, provided a blood sample for OC 
measurement, and together with his mother 
or guardian, completed health, lifestyle, and 
dietary questionnaires. Annual follow up 
examinations were conducted and question-
naires were completed. Of the original cohort 
of 516 boys, 124 (24%) were lost to follow-
up by their 10th annual follow-up visit at 
age 18–19 years, 59 (11%) were too young 
for semen collection, 49 (15%) declined to 
participate in the semen study, 144 (28%) 
were pending (did not respond yet to invita-
tion, temporarily relocated, or not yet sexually 
mature based on Tanner Stages and testicular 
volume), 4 had missing OC data, and 3 were 
excluded due to chronic disease. At ages 
18–19 years, 133 young men who had serum 
OC concentrations measured at age 8–9 years 
and provided 1 or 2 semen samples collected 
approximately 1 week apart (256 samples) 
were included in this analysis (Figure 1).

The study was approved by the Human 
Studies Institutional Review Boards of the 
Chapaevsk Medical Association (Chapaevsk, 
Russia); Harvard T.H. Chan School of Public 
Health, Brigham and Women’s Hospital 
(Boston, MA, USA), and University of 
Massachusetts Medical School (Worcester, 
MA, USA). At enrollment, the parent or 
guardian signed an informed consent, and 
each boy signed an assent before participa-
tion. At ≥ 18 years of age, the young man 
signed a consent form before providing the 
two semen samples.

Semen Parameters Assessment
The subjects’ self-reported information about 
abstinence period, fever, and any illnesses 
within the previous month was collected 
before semen sampling. Semen samples were 
provided by masturbation in a study room 
near the Andrology Laboratory and kept at 
37°C in an incubator until semen evalua-
tion, which began within 1 hr after ejacula-
tion (analysis for 88% of the samples began 
within 30 min). One hundred twenty-three 
men (92%) provided two semen samples 
collected approximately 1 week apart, and 10 
men (8%) provided one semen sample. The 
actual abstinence period was calculated from 
the date and time of previous ejaculation and 

the date and time of delivery of semen sample 
recorded by a technician.

Semen analysis was performed at the 
Andrology Laboratory according to the criteria 
recently updated (Björndahl et al. 2010) 
by the Nordic Association for Andrology 
(NAFA) and European Society of Human 
Reproduction and Embryology–Special 
Interest Group in Andrology (ESHRE-SIGA) 
(Kvist and Björndahl 2002). All samples 
were assessed by one technician (L.S.) who 
was blinded to the serum OC concentration. 
Semen volume was measured using a 1-, 5-, or 
10-mL disposable pipette. For sperm motility 
assessment, 10 μL of well-mixed semen was 
placed on a clean glass slide kept at 37°C 
and covered with a 22 × 22 mm coverslip. 
The slide was placed on the heated stage of 
a microscope at 37°C and immediately 
examined at 400× magnification in duplicate. 
At least 200 sperm per slide were classified as 
the four World Health Organization (WHO) 
classes: rapidly progressive motile (class A), 
slowly progressive motile (class B), locally 
motile (class C) or immotile (class D), taking 
the average value for duplicate measures 
(WHO 1999). Percent motile sperm was 
defined as the sum of WHO classes A, B, 
and C. Sperm concentration was measured 
using an Improved Neubauer Chamber 
Hemacytometer viewed at phase contrast 
(200× magnification).

Organochlorine Exposure 
Assessment
Fasting blood samples were collected at the 
initial visit (when boys were 8–9 years old), 
and the serum fraction was stored at –35°C 
until shipment for analysis at the National 
Center for Environmental Health at the 

Centers for Disease Control and Prevention 
(CDC; Atlanta, GA, USA). Analytes included 
7 polychlorinated dibenzo-p-dioxins (PCDDs, 
or dioxins), 10 polychlori nated dibenzofu-
rans (PCDFs, or furans), 4 co-planar PCBs 
(co-PCBs), 6 mono-ortho–substituted PCBs, 
and 31 other PCBs (non-dioxin-like PCBs) 
(Burns et al. 2009).

For dioxin-like analytes, sera, method 
blanks, and quality control samples (aliquots 
of pooled bovine sera) were spiked with 
a mixture of 13C12-labeled PCDDs/PCDFs 
and co-PCBs as internal standards, and serum 
analytes were isolated by solid phase extraction 
(SPE) followed by a multicolumn automated 
cleanup and enrichment procedure (Turner 
et al. 1997). Analytes were separated on a 
DB-5 MS capillary column (Phenomenex, 
Torrance, CA, USA) and quantified using 
selected-ion-monitoring (SIM)  high- resolution 
(10,000 resolving power) mass spectrom-
etry (HRGC-ID/HRMS; Thermo Electron 
North America, LLC, West Palm Beach, FL, 
USA) (Patterson et al. 1987). Quantification 
was by isotope dilution MS using calibration 
standards containing 13C12-labeled and unla-
beled analytes. A similar approach was used 
for mono-ortho and non-dioxin-like PCBs 
(Barr et al. 2003). Samples were spiked with 
13C12-labeled PCBs, extracted by either large 
(Turner et al. 1997) or small (Sjödin et al. 
2004) volume SPE, and analyzed using HR 
GC/MS in SIM (Barr et al. 2003).

For all analyses, quality control sample 
coefficients of variation combining between-
run and within-run reproducibility were 
generally < 15%. All concentrations were 
expressed on a per-lipid basis, with serum 
total cholesterol and triglycerides measured 
enzymatically, and total lipids were calculated 

Figure 1. Flow diagram of the Russian Children’s Study. 
Note: Information on BMI, smoking, and alcohol consumption was collected at the same visit year as the semen 
 collection for 84 (63%) men, and within 3 years before semen collection for 49 (37%) men.
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using the Phillips equation (Phillips et al. 
1989). Congener concentrations below the 
limit of detection (LOD) were assigned the 
sample-specific LOD divided by the square 
root of 2 (Baccarelli et al. 2005).

Statistical Analysis
Dioxin toxic equivalents (TEQs) were calcu-
lated on a lipid basis using the 2005 WHO 
toxic equivalency factors to weigh the potency 
of each congener relative to TCDD before 
summation (Van den Berg et al. 2006). 
Although our a priori hypothesis focused 
on TCDD, we also explored the association 
of eight additional exposure metrics with 
semen parameters. These included 1) total 
(summed) TEQ measures (pg TEQ/g lipid) 
for combined dioxin, furan, co-planar PCB, 
and mono-ortho PCB congeners; 2–4) total 
(summed) TEQs (pg TEQ/g lipid) for each of 
the dioxins, furans, and co-PCBs; 5–7) total 
(summed) concentrations (pg/g lipid) for each 
of the dioxins (∑PCDD), furans (∑PCDF), 
and co-PCBs (∑Co-PCB); and 8) total 
(summed) concentrations of non-dioxin-like 
PCBs, including mono-ortho–substituted 
PCBs (ΣPCBs) (ng/g lipid). OC measures 
were categorized into quartiles because of 
potential nonlinear associations.

We first summarized participant char-
acteristics using medians and interquartile 
ranges (IQR) for continuous variables, and 
number and percentages for categorical vari-
ables. Linear mixed models were used to 
examine the relation between OC exposure 

and semen parameters with adjustment for 
potential confounders; within-person corre-
lations in semen parameters across repeated 
samples were accounted for using random 
intercepts. We compared semen param-
eters (total sperm count, sperm concentration, 
percent motile sperm, total motile sperm 
count, and semen volume) for men with 

higher quartiles of serum OC concentrations 
to those within the lowest quartile. Total 
sperm count (volume × sperm concentration) 
and total motile sperm count (total sperm 
count × percent motile sperm) were calculated. 
Total sperm count, sperm concentration, and 
total motile sperm count were log-transformed 
to approximate a normal distribution. Results 

Table 1. Demographic characteristics and semen 
parameters of 133  young men contributing 
256 semen samples in the Russian Children’s Study.

Characteristic
Median (IQR) or  

n (%)
Demographic characteristicsa

Age (years ) 18.3 (18.1–18.7)
Body mass index (kg/m2) 21.0 (19.2–23.2)
Smoking statusb 68 (51)
Alcohol consumptionc 90 (68)

Semen parametersd
Volume (mL) 2.4 (1.8–3.5)
Sperm concentration (million/mL) 51.3 (26.6–78.8)
Total sperm count (million) 127 (61.0–222.0)
Sperm motility (A + B + C)e (%) 64.0 (57.0–68.0)
Total motile sperm count (million) 80.5 (35.8–141.0)
Abstinence time (days) 2.9 (2.0–6.0)

IQR, interquartile range. 
aAssessed at the time of semen collection (or at visit 
closest in time).
bQuestion was “In the past year, have you smoked a 
cigarette, even a few puffs?” In some cases, the ques-
tionnaire was filled out up to 3 years before the semen 
sample was collected.
cQuestion was “Have you drunk alcohol in the last year, 
including beer?” In some cases, the questionnaire was 
filled out up to 3 years before the semen sample was 
collected.
dTwo semen samples were collected from 123 (93%) 
young men.
eThis measure includes rapidly progressive motile 
(class A), slowly progressive motile (class B), and locally 
motile (class C).

Table 2. Serum concentrations and TEQs for dioxins, furans, and PCBs measured at study enrollment 
(age 8–9 years of age) for 133 young men in the Russian Children’s Study.

Toxic equivalent/
concentration Min

Percentile

Max25th 50th 75th
TEQs (pg TEQ/g lipid)

TCDDa 0.35 1.77 2.9 4.2 12.1
PCDD TEQ 0.95 5.69 8.7 13.3 36.0
PCDF TEQ 0.55 3.20 4.8 7.1 50.6
Co-PCB TEQb 0.52 4.66 6.9 10.0 67.2
Total TEQc 1.88 16.8 21.9 33.3 107

Concentration (pg/g lipid)
PCDD 37.6 115 157 199 1,237
PCDF 14.4 29.4 44.5 63.3 406
Co-PCBd 62.5 131 188 273 965

Concentration (ng/g lipid)
ΣPCBse 58.3 152 235 352 1,500

aAverage limit of detection (LOD) for TCDD was 0.60 (pg TEQ/g lipid); 16 samples (12%) were below LOD for TCDD. 
bSum of co-planar PCB TEQs [International Union of Pure and Applied Chemistry (IUPAC) congeners: 77, 81, 126, 169]. 
cSum of TEQ measures for combined dioxin, furan, co-PCB and mono-ortho PCB congeners. 
dSum of co-planar PCB concentrations (IUPAC congeners: 77, 81, 126, 169). 
eSum of non-co-planar PCBs (IUPAC congeners: 18, 28, 52, 49, 44, 74, 66, 101, 99, 87, 110, 118, 105, 151, 149, 146, 153, 
138/158, 128, 167, 156, 157, 178, 187, 183, 177, 172, 180, 170, 189, 201, 196/203, 195, 194, 206).

Figure 2. Adjusted mean semen parameters among 133 men (contributing 256 semen samples) from the 
Russian Children’s Study, by childhood serum TCDD concentrations. Data are presented as predicted 
marginal means (95% confidence intervals) by quartiles of TCDD concentrations (represented by the 
medians) adjusted for BMI, smoking status, alcohol drinker, season of sample collection, and abstinence 
time at the mean level of continuous covariates and adjusted for frequency of categorical measures. 
Motile sperm and total motile sperm count models were further adjusted by time elapsed between semen 
collection and analysis.
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for these parameters were back-transformed 
to allow presentation of results in the original 
scale. Population marginal means (Searle et al. 
1980) were utilized to present marginal popu-
lation average semen parameters adjusted for 
the covariates (at the mean level for continuous 
variables and for categorical variables at a value 
weighted according to their frequencies) in the 
model. Tests for linear trends were conducted 
using quartile of serum OC concentrations as 
ordinal levels.

Potential confounding factors that were 
included in the models were selected primarily 
based on a priori evidence from the literature 
but supported empirically by associations with 
one or more of the semen parameters and/
or serum OCs. In addition, we decided to 
include abstinence time regardless of statistical 
significance since this is a well-known predictor 
of most semen quality parameters, and thus 
can improve the precision of the exposure 
estimates in the model (Schisterman et al. 
2009). Based on these criteria, all models were 
adjusted for body mass index (BMI) from the 
most recent physical examination, smoking 
status (yes vs. no, based on the response to the 
question “Have you smoked a cigarette, even 
a few puffs, within the past year?”), alcohol 
consumption (yes vs. no, based on the response 
to the question “Have you drunk alcohol 
in the last year, including beer?”), season of 
semen collection (autumn or winter vs. spring 
or summer), and abstinence time (< 2 days, 
2–5 days, ≥ 5 days). Percent of motile sperm 
and total motile sperm count models were 
further adjusted for the time elapsed between 
semen collection and semen parameter 
analysis. Information on BMI, smoking status, 
and alcohol consumption was collected at the 
same visit year as the semen collection for 84 
(63%) men, and within 3 years before semen 
collection for the remaining 49 (37%) men. 
BMI, smoking status, and alcohol consump-
tion were unchanged between the two semen 
samples collected approximately 1 week apart; 
season, abstinence time, and time elapsed 
between semen collection and analysis were 
considered as time-varying measures for each 
semen sample. We analyzed the data using 
SAS (version 9.2; SAS Institute Inc., Cary, 
NC, USA), and two-sided p-values ≤ 0.05 were 
considered statistically significant.

Results
At the time of semen collection, study 
participants were young men with median 
age (IQR) = 18.3 (18.1–18.7) years, 100% 
Caucasian, and the median (IQR) BMI was 
21.0 (19.2–23.2) kg/m2 (Table 1). Fifty-one 
percent of the participants had smoked ciga-
rettes (self-reported), and 68% had consumed 
alcohol (parental report) within the past year. 
One hundred thirty-three semen samples 
(52%) were above NAFA-ESHRE reference 

values for sperm counts (≥ 80 million) and 
motility (≥ 60%) (Björndahl et al. 2010). The 
median (IQR) values for sperm parameters 
were 51.3 million/mL (26.6–78.8) for sperm 
concentration; 127 million (61.0–222) for 
total sperm count; and 64.0% (57.0–68.0) 
for sperm motility. Median (IQR) abstinence 
time was just under 3 days (2–6) (Table 1).

Serum concentrations of dioxins, furans, 
and PCBs among participants at ages 8–9 years 
are presented in Table 2. The median (range) 
values for TCDD and PCDD TEQs were 
2.9 (0.4–12.1) pg/g lipid and 8.7 (1.0–
36.0) pg TEQ/g lipid, respectively. Sixteen 
samples (12%) were below the LOD for 
TCDD. The median (range) of total serum 
TEQs was almost three times higher than 
levels among European children of similar age 
(Table 2) (Leijs et al. 2008; Link et al. 2005). 
The correlation between TCDD and PCDD 
TEQs was r = 0.78 (p < 0.01) and between 
PCDD TEQs and total TEQs was r = 0.89 
(p < 0.01). The correlation between total TEQs 
and co-PCB TEQs was r = 0.78 (p < 0.01). 
Correlations among the dioxin and PCB 
congeners were lower (r = 0.42–0.57, p < 0.01) 
(data not shown). When we compared baseline 
serum organochlorine concentrations adjusted 
by birth year between those young men who 
contributed semen samples and those who did 

not, there were no significant differences (data 
not shown).

Higher serum TCDD and PCDD TEQs 
were associated with significantly lower semen 
parameters 10 years later in both unadjusted 
models (see Table S1) and models adjusted 
for BMI, smoking status, alcohol intake, 
season, and abstinence time (Figures 2 and 3 
and Table 3). In adjusted models, on average, 
men in the highest quartile of serum TCDD 
TEQs had 40% lower sperm concentration 
(p-trend = 0.005), 29% lower total sperm 
count (p-trend = 0.05), and 30% lower total 
motile sperm count (p-trend = 0.05), compared 
to those in the lowest quartile (Figure 2). 
Similarly, men in the highest quartile of serum 
PCDD TEQs had a decrease of 39% in sperm 
concentration (p-trend = 0.02), 36% in total 
sperm count (p-trend = 0.04), and 40% in total 
motile sperm count (p-trend = 0.05), compared 
with the lowest quartile of PCDD TEQs 
(Figure 3).

There were no significant associations for 
summed concentrations of PCDDs, PCDFs, 
co-PCBs, or ΣPCBs with semen parameters in 
unadjusted (see Table S1) or adjusted models 
(Table 3). PCDF TEQs, co-PCB TEQs, or 
total TEQs were also not significantly associ-
ated with semen parameters in unadjusted (see 
Table S1) or adjusted models (Table 3).

Figure 3. Adjusted mean semen parameters among 133 men (contributing 256 semen samples) in the 
Russian Children’s Study, by childhood serum PCDD TEQs. Data are presented as predicted marginal 
means (95% confidence intervals) by quartiles of PCDD TEQs levels (represented by the medians) adjusted 
for BMI, smoking status, alcohol drinker, season of sample collection, and abstinence time at the mean 
level of continuous covariates and adjusted for frequency of categorical measures. Motile sperm and total 
motile sperm count models were further adjusted by time elapsed between semen collection and analysis.



Mínguez-Alarcón et al.

464 volume 125 | number 3 | March 2017 • Environmental Health Perspectives

Discussion
Our prospective cohort study showed that 
higher peripubertal serum TCDD and 
PCDD TEQs were associated with lower 
sperm concentration, total sperm count, and 
total motile sperm count measured 10 years 
later in healthy young men. Serum TCDD 

and PCDD TEQs were not associated with 
percent motile sperm, so the association with 
total motile count was largely driven by the 
association with total sperm count. We did 
not observe associations of semen param-
eters with serum concentrations of PCDDs, 
PCDFs, co-PCBs, or ΣPCBs, nor with PCDF 

TEQs, co-PCB TEQs, or total TEQs. The 
lack of association of semen parameters with 
total TEQs was surprising given the high 
correlation between PCDD TEQs and total 
TEQs. However, this might be explained by 
the fact that PCDDs account for slightly less 
than 40% of the total TEQs (Burns et al. 

Table 3. Multivariable adjusted mean semen parameters by quartiles (Q)a of serum dioxins, furans, and PCBs among 133 young men in the Russian Children’s 
Study contributing 256 semen samples.

Toxic equivalent/
concentration

Volume  
(mL)

Sperm concentration  
(million/mL)

Total sperm  
count (million)

Motile sperm  
(%)

Total motile  
sperm count (million)

TEQs (pg TEQ/g lipid)
TCDD

Q1 (0.35–1.70) 2.7 (2.2, 3.2) 57.0 (45.0, 72.1) 128 (95.6, 173) 61.6 (58.6, 64.7) 78.0 (56.0, 109)
Q2 (1.77–2.45) 2.9 (2.5, 3.4) 51.8 (42.4, 63.3) 136 (105.0, 175) 65.4 (63.4, 67.4) 87.9 (67.1, 115)
Q3 (3.00–3.40) 2.6 (2.1, 2.9) 38.6 (28.2, 52.9)* 85.8 (60.4, 122) 59.5 (56.0, 62.9) 50.1 (33.5, 74.8)
Q4 (4.40–5.80) 3.1 (2.5, 3.7) 34.5 (25.0, 47.7)* 91.6 (63.5, 132) 60.1 (56.6, 63.7) 54.1 (36.0, 81.4)
p-trend 0.55 0.005 0.05 0.17 0.05

PCDD TEQ
Q1 (0.95–5.62) 3.2 (2.7, 3.6) 64.7 (53.5, 78.2) 172 (136.0, 217) 63.4 (60.7, 66.1) 108.0 (82.5, 141)
Q2 (5.69–8.42) 2.6 (2.1, 3.1) 37.3 (27.6, 50.4)* 85.0 (58.9, 123)* 59.4 (56.1, 62.8) 49.2 (32.6, 73.5)*
Q3 (8.68–13.3) 2.4 (2.1, 2.8)* 41.9 (32.2, 54.8)* 87.7 (63.0, 122)* 63.3 (60.5, 66.1) 54.9 (38.1, 79.1)*
Q4 (13.7–36.0) 3.2 (2.6, 3.8) 39.4 (28.9, 53.6)* 109 (78.7, 150)* 60.7 (57.2, 64.3) 65.1 (45.1, 93.8)*
p-trend 0.89 0.02 0.04 0.55 0.05

PCDF TEQ
Q1 (0.55–3.20) 2.9 (2.6, 3.4) 49.3 (36.4, 66.7) 128 (93.2, 176) 63.4 (60.8, 65.9) 80.3 (56.6, 114)
Q2 (3.29–4.66) 2.3 (1.9, 2.8) 43.3 (32.3, 58.0) 83.1 (57.2, 121) 59.3 (55.7, 62.9) 48.1 (31.8, 72.6)
Q3 (4.76–6.87) 3.1 (2.5, 3.6) 39.1 (30.9, 49.6) 103 (76.7, 140) 61.1 (58.2, 63.9) 62.3 (44.6, 87.2)
Q4 (7.10–50.6) 3.0 (2.5, 3.6) 47.8 (36.2, 63.1) 126 (94.5, 168) 63.0 (59.6, 66.5) 78.2 (56.5, 108)
p-trend 0.48 0.78 0.82 0.90 0.82

Co-PCB TEQ
Q1 (0.52–4.63) 2.8 (2.3, 3.4) 56.5 (44.0, 72.6) 131 (97.6, 175) 63.1 (60.3, 66.0) 81.9 (59.6, 112)
Q2 (4.66–6.87) 2.9 (2.5, 3.3) 36.9 (26.2, 51.8) 95.6 (64.1, 142) 60.8 (57.8, 63.7) 57.0 (36.5, 89.0)
Q3 (6.88–9.97) 2.8 (2.2, 3.3) 37.4 (27.9, 50.2) 88.4 (62.2, 125) 62.1 (58.6, 65.6) 53.7 (36.0, 80.1)
Q4 (10.1–67.2) 2.9 (2.4, 3.4) 51.4 (40.1, 65.9) 127 (95.3, 168) 60.9 (57.3, 64.6) 76.0 (54.7, 106)
p-trend 0.89 0.73 0.88 0.47 0.77

Total TEQ
Q1 (4.88–16.8) 3.0 (2.5, 3.5) 51.9 (38.3, 70.4) 131 (94.4, 181) 61.8 (58.7, 64.9) 80.4 (55.5, 116)
Q2 (17.0–21.4) 2.6 (2.2, 3.1) 38.9 (28.7, 52.6) 85.9 (57.9, 128) 61.4 (58.4, 64.3) 51.8 (33.8, 79.4)
Q3 (21.7–32.5) 2.9 (2.4, 3.5) 42.1 (33.9, 52.2) 102 (78.2, 132) 61.2 (58.1, 64.4) 60.8 (45.2, 82.0)
Q4 (33.3–107) 2.8 (2.3, 3.3) 44.8 (33.4, 60.2) 112 (82.4, 151) 61.9 (58.1, 65.6) 67.7 (47.8, 95.9)
p-trend 0.84 0.61 0.68 0.99 0.68

Concentration (pg/g lipid)
PCDD

Q1 (37.6–115) 2.9 (2.4, 3.3) 52.0 (39.4, 68.7) 130 (94.5, 180) 64.3 (61.9, 66.8) 83.1 (58.8, 118)
Q2 (118–157) 2.6 (2.0, 3.2) 43.2 (33.9, 55.0) 91.0 (65.8, 126) 58.9 (55.7, 62.0) 52.6 (37.0, 75.7)
Q3 (158–200) 3.3 (2.7, 3.8) 37.6 (28.0, 50.6) 108 (76.8, 151) 63.2 (60.4, 66.0) 67.2 (46.0, 98.3)
Q4 (201–1,237) 2.7 (2.2, 3.2) 47.2 (35.9, 62.1) 109 (81.3, 146) 60.4 (56.7, 64.0) 64.3 (46.3, 89.3)
p-trend 0.81 0.48 0.59 0.30 0.49

PCDF
Q1 (14.4–29.2) 2.7 (2.2, 3.1) 53.1 (38.9, 72.5) 122 (86.2, 173) 63.7 (61.1, 66.3) 76.8 (53.1, 111)
Q2 (29.4–43.6) 2.6 (2.2, 3.0) 41.8 (32.1, 54.2) 89.6 (63.2, 127) 60.3 (57.0, 63.6) 53.0 (35.6, 78.9)
Q3 (44.5–63.0) 3.5 (2.9, 4.1) 37.2 (28.2, 48.9) 112 (80.8, 155) 60.0 (56.5, 63.3) 65.9 (45.4, 95.0)
Q4 (63.3–405) 2.6 (2.2, 3.0) 48.6 (37.2, 63.4) 115 (84.9, 155) 63.0 (59.8, 66.2) 71.3 (51.0, 100)
p-trend 0.47 0.60 0.93 0.79 0.98

Co-PCB
Q1 (62.5–126) 2.6 (2.1, 3.1) 59.7 (45.8, 77.8) 128 (92.5, 179) 62.5 (59.4, 65.6) 79.1 (54.9, 114)
Q2 (130–184) 2.6 (2.2, 3.0) 39.3 (28.8, 53.7) 88.4 (61.8, 126) 61.5 (58.6, 64.4) 53.6 (36.0, 79.7)
Q3 (187–274) 3.3 (2.7, 3.8) 38.9 (29.7, 51.0) 108 (78.0, 149) 61.4 (58.6, 64.2) 65.0 (45.6, 92.7)
Q4 (275–965) 3.0 (2.5, 3.5) 43.9 (34.4, 56.1) 114 (86.3, 151) 61.5 (57.8, 65.1) 69.1 (49.9, 95.7)
p-trend 0.09 0.11 0.79 0.67 0.75

Concentration (ng/g lipid)
ΣPCBs

Q1 (58.3–151) 2.9 (2.4, 3.5) 52.5 (39.8, 69.3) 122 (87.4, 171) 62.6 (59.6, 65.7) 79.9 (55.9, 114)
Q2 (152–236) 2.6 (2.1, 3.0) 47.4 (34.8, 64.5) 103 (69.8, 152) 62.5 (59.9, 64.9) 65.1 (42.9, 98.8)
Q3 (239–352) 2.7 (2.3, 3.2) 33.8 (25.8, 44.3)* 84.3 (61.8, 115)* 61.5 (57.9, 65.1) 48.5 (33.4, 70.4)
Q4 (356–1,500) 3.0 (2.4, 3.6) 45.3 (34.3, 59.9) 110 (79.4, 152) 59.6 (55.9, 63.3) 68.6 (49.7, 94.7)
p-trend 0.81 0.24 0.47 0.19 0.36

aData are presented as predicted estimates (95% confidence intervals) adjusted for BMI, smoking status, alcohol drinker, season, and abstinence time at the mean level of continuous 
covariates and adjusted for frequency of categorical measures. Motile sperm and total motile sperm count models were further adjusted by time to start semen analysis.
*p < 0.05.
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2009). This suggests that the associations we 
found may be more specific to PCDD TEQs 
than to overall TEQs, which also included 
contributions of PCDFs and co-planar- and 
mono-ortho-PCBs, which were not indepen-
dently associated with semen parameters. 
Although cross-sectional studies on PCBs have 
reported negative associations with semen 
parameters (Meeker and Hauser 2010), we 
did not find longitudinal associations between 
childhood serum concentrations of PCBs and 
semen parameters in our cohort.

Similar to our TCDD results, those of 
Mocarelli et al. (2008) showed that men from 
the Seveso cohort who were acutely exposed 
to very high levels of TCDD during child-
hood (ages 1–9 years) had impaired semen 
parameters. Specifically, they had a 27% 
decrease in sperm concentration (p = 0.025), 
a 20% decrease in sperm motility (p = 0.001), 
and a 39% decrease in total motile sperm 
count (p = 0.01) 22 years later, compared 
with men in the control group without acute 
high exposure. In contrast, the Seveso boys 
exposed to high levels of TCDD during 
puberty (ages 10–17 years) had higher total 
sperm count and total motile sperm count 
than did men in the control group. These 
results suggest a differential effect of TCDD 
by age at exposure. The OC measurements in 
the Russian Children’s Study reflect cumula-
tive exposure up to age 8–9 years, whereas 
the boys in the Seveso cohort were exposed 
at a specific time point before age 10 years 
(mean age at exposure, 6.2 years); therefore, 
we can speculate that the Russian boys and 
this subset of Seveso boys were exposed before 
pubertal onset or very early during pubertal 
development. Both the Seveso study and our 
results suggest that the peripubertal period 
may be particularly susceptible to the delete-
rious effects of TCDD on adult semen param-
eters. In the Mocarelli et al. (2008) study, 
the median serum TCDD concentrations 
among the exposed group of children was 
210 pg TEQ/g lipid and the control group 
had serum TCDD < 15 pg TEQ/g lipid. In 
contrast, for boys in our study, the median 
serum TCDD was 2.9 pg TEQ/g lipid, about 
70-fold lower than exposed Seveso boys. 
Therefore, our results showed that childhood 
serum TCDD TEQ levels much lower than 
those measured in the Seveso study had a 
negative association with adult semen param-
eters. In addition, we found negative associa-
tions between childhood serum PCDD TEQs 
with sperm concentration, count and motile 
count, indicating that childhood exposure to 
other dioxins may also negatively affect semen 
parameters in adult life.

The period of sexual differentiation and 
reproductive tract organization during fetal 
development is highly sensitive to endo-
crine disrupting exposures which can 

affect reproductive-tract development and 
subsequent pubertal timing (Sharpe 2006). 
However, childhood and adolescence may also 
be vulnerable to such exposures due to the 
developmental changes of pubertal maturation 
that occur at these ages (Bin-Abbas et al. 1999; 
Grumbach 2002). Previously, we reported 
that higher peripubertal serum dioxins were 
associated with delayed pubertal onset and 
sexual maturity in the Russian cohort (Burns 
et al. 2016; Korrick et al. 2011). The prolif-
eration and differentiation of Sertoli cells, the 
support cells of the seminiferous tubules, are 
peripubertal androgen-dependent processes 
that are critical for spermatogenesis (Sharpe 
et al. 2003). Dioxins can inhibit testosterone 
biosynthesis (Svechnikov et al. 2010), and 
may have direct testicular actions as the AhR 
is widely expressed in the testes (Schultz et al. 
2003). AhR-mediated disruption of androgen 
activity could affect proliferation of the Sertoli 
cells and their subsequent differentiation, 
and pubertal maturation of the seminiferous 
tubules (Sharpe et al. 2003; Woodruff et al. 
2010). These mechanisms could contribute 
to the observed decrease in sperm count in 
adults who were exposed to TCDD and 
PCDD TEQs as young children (Mocarelli 
et al. 2008).

Our findings are in agreement with 
animal data showing TCDD inhibition of 
testicular development and function during 
critical periods of reproductive-tract develop-
ment, including fetal, neonatal (Arima et al. 
2009; Faqi et al. 1998), pubertal (el-Sabeawy 
et al. 1998), and adult stages (Oguz et al. 
2013; Sönmez et al. 2011). Moreover, child-
hood exposures to dioxins, furans, and PCBs 
have been shown to adversely affect other 
key maturational processes, such as somatic 
growth and pubertal timing in our cohort 
(Burns et al. 2011, 2016; Korrick et al. 2011).

Our study has several potential limitations. 
First, we did not measure prenatal exposure to 
OCs, when sexual differentiation and repro-
ductive tract organization occur. Nevertheless, 
childhood is also a vulnerable developmental 
period. Second, we excluded boys with 
severe chronic illnesses at study entry. If their 
diseases were caused by or at least partially 
attributable to pre- or perinatal exposure to 
dioxins, furans, and/or PCBs, the association 
of these exposures with semen parameters 
may be underestimated in our analyses. Third, 
in our study, the boys’ median serum total 
TEQ concentrations were three times higher 
than the geometric mean in the U.S. National 
Health and Nutrition Examination Survey for 
males 12–19 years of age (no data were avail-
able for children < 12 years of age) (Patterson 
et al. 2008), and three times higher (using 
1998 WHO total TEQs) than levels among 
similarly aged German boys (Link et al. 
2005). This makes it difficult to investigate 

the effects of very low exposures in our cohort. 
However, despite this, our concentrations of 
TCDD were much lower than those in the 
Seveso study, which was used by the U.S. 
EPA in their dioxin risk assessment document 
(U.S. EPA 2009).

The strengths of our study include its 
prospective design and long-term serial follow-
up of participants which minimizes the risk of 
reverse causation, the consistency in analysis of 
semen samples by the same laboratory techni-
cian which prevents interobserver variation, 
the comprehensive adjustment for possible 
confounding variables collected using physical 
examination and questionnaire data, and the 
availability of two semen samples on almost all 
participants (93%).

Conclusions
Our results showed an association of peripu-
bertal serum concentrations of TCDD with 
poorer semen parameters. Our results, along 
with toxicological evidence, suggest that 
peripubertal exposure to TCDD and dioxins 
may adversely impact adult semen parameters. 
We found this association at much lower 
TCDD concentrations than in the Seveso 
study, suggesting that moderate concentra-
tions may also impact semen parameters 
and providing evidence that would be useful 
for risk assessment. Semen parameters are a 
marker of fertility and future studies on the 
impact of TCDD and dioxins on male fertility 
are warranted.
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