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Introduction
The adverse outcome pathway (AOP) is a 
conceptual framework originally developed 
with the goal of utilizing pathways-based data 
to support ecotoxicology research and risk 
assessment (Ankley et al. 2010). Researchers 
in a variety of disciplines have since used 
AOPs to describe impacts of a chemical on 
molecular targets and biochemical pathways 
in a sequential manner (Lapenna et al. 
2012; Vinken et al. 2013; Watanabe et al. 
2011). The AOP framework begins with a 
molecular initiating event (MIE), which is 
defined as the interaction between a xeno-
biotic and a specific biomolecule (Ankley 
et al. 2010), such as inhibition of an enzyme 
due to competitive binding of a chemical 
in the active site (Russom et al. 2014). 
The MIE is followed by a progression of a 
defined series of key events (KEs) that are 
measurable through in vitro or in vivo assays, 
necessary for the development of the toxico-
logical outcome, and connected by key 
event relation ships (KERs). These KEs and 

KERs then lead to an apical outcome that is 
relevant to regulatory purposes (Villeneuve 
et al. 2014). Such outcomes may be survival, 
development, and reproduction at the popu-
lation level in ecotoxicology; or disease and 
organ dysfunction in human individuals.

The power of the AOP framework arises 
from the knowledge that multiple chemi-
cals can act through common biochemical 
pathways. Because there are tens of thou-
sands of chemicals in commerce (Egeghy 
et al. 2012; U.S. EPA 2014b), starting from 
these common pathways provides a more 
rapid and cost-effective alternative for hazard 
screening compared with chemical-by-chemical 
approaches. Rather than relying on tradi-
tional toxicity tests conducted for individual 
chemicals (e.g., costly assays administered 
one at a time in animals), the AOP frame-
work can support the use of high-throughput 
in vitro assays to quickly measure the activity 
of numerous chemicals with respect to a 
given molecular target. The AOP itself is 
chemical independent to allow for a general 

interpretation of results based on common 
modes of action and biological pathways. 
Practical application of AOPs in chemical-
based risk assessment, however, will require 
extrapolation of an in vitro concentration 
expected to trigger an MIE to an in vivo biolog-
ically effective target tissue dose, which can 
then be used to estimate a regulatory-relevant 
external dose (i.e., using reverse toxicokinetics). 
This extrapolation cannot be made without 
considering exposure, as well as the absorp-
tion, distribution, metabolism, and excretion 
(ADME) properties of a chemical (Groh 
et al. 2015). The most active chemical in an 
in vitro assay may not induce in vivo toxicity if 
concentrations necessary to trigger an MIE are 
unlikely to be attained due to limited exposure 
or ADME-mediated processes. 

To augment the application of an AOP 
framework in chemical risk assessment, we 
developed a workflow to incorporate exposure 
and ADME considerations for refining 
outcomes from in vitro assays designed based 
on an MIE. We evaluated the utility of this 
workflow using in vitro assay results from the 
ToxCast™ data set for a previously established 
AOP, acetylcholinesterase (AChE) inhibi-
tion (Russom et al. 2014). First, the identities 
of the active chemi cals in the human AChE 

*These authors contributed equally to this work.
Address correspondence to Y.-M. Tan, 109 T.W. 

Alexander Dr., Mail Code E205-01, Research 
Triangle Park, NC 27709 USA. Telephone: (919) 
541-2542. E-mail: tan.cecilia@epa.gov

Supplemental Material is available online (http://
dx.doi.org/10.1289/ehp.1409450).

We thank D. Vil leneuve,  D. Lyons,  and 
R. Tornero-Velez for their review and comments. 

M.B.P. and J.A.L. were funded through the Oak 
Ridge Institute for Science and Education Research 
Participation Program at the U.S. EPA.

The U.S. EPA provided administrative review 
and approved this paper for publication. The views 
expressed in this paper are those of the authors and 
do not necessarily reflect the views of the U.S. EPA.

M.-R.G. and D.T.C. are employed by the 
Chemical Computing Group Inc., the publisher of 
the Molecular Operating Environment (MOE) soft-
ware. The other authors declare they have no actual 
or potential competing financial interests.

Received: 7 November 2014; Accepted: 13 May 
2015; Advance Publication: 15 May 2015; Final 
Publication: 1 January 2016.

A Workflow to Investigate Exposure and Pharmacokinetic Influences 
on High-Throughput in Vitro Chemical Screening Based on Adverse 
Outcome Pathways
Martin B. Phillips,1* Jeremy A. Leonard,1* Christopher M. Grulke,2 Daniel T. Chang,3 Stephen W. Edwards,4 
Raina Brooks,5 Michael-Rock Goldsmith,3 Hisham El-Masri,4 and Yu-Mei Tan6

1Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA; 2Lockheed Martin, Research Triangle Park, North Carolina, 
USA; 3Chemical Computing Group Inc., Montreal, Quebec, Canada; 4National Health and Environmental Effects Research Laboratory, 
U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA; 5Department of Epidemiology, University of 
Alabama at Birmingham, Birmingham, Alabama, USA; 6National Exposure Research Laboratory, U.S. Environmental Protection Agency, 
Research Triangle Park, North Carolina, USA

Background: Adverse outcome pathways (AOPs) link adverse effects in individuals or  populations 
to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical 
application of AOPs in chemical-specific risk assessment requires incorporation of knowledge on 
exposure, along with absorption, distribution, metabolism, and excretion (ADME) properties 
of chemicals.

oBjectives: We developed a conceptual workflow to examine exposure and ADME properties in 
relation to an MIE. The utility of this workflow was evaluated using a previously established AOP, 
acetylcholinesterase (AChE) inhibition.

Methods: Thirty chemicals found to inhibit human AChE in the ToxCast™ assay were examined 
with respect to their exposure, absorption potential, and ability to cross the blood–brain barrier 
(BBB). Structures of active chemicals were compared against structures of 1,029 inactive chemicals 
to detect possible parent compounds that might have active metabolites.

results: Application of the workflow screened 10 “low-priority” chemicals of 30 active chemicals. 
Fifty-two of the 1,029 inactive chemicals exhibited a similarity threshold of ≥ 75% with their 
nearest active neighbors. Of these 52 compounds, 30 were excluded due to poor absorption or 
distribution. The remaining 22 compounds may inhibit AChE in vivo either directly or as a result of 
metabolic activation. 

conclusions: The incorporation of exposure and ADME properties into the conceptual workflow 
eliminated 10 “low-priority” chemicals that may otherwise have undergone additional, resource-
consuming analyses. Our workflow also increased confidence in interpretation of in vitro results by 
identifying possible “false negatives.”
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inhibition assay were obtained from the 
ToxCast™ data set (U.S. EPA 2012a). Next, 
the likelihood of these active chemicals to 
trigger an MIE in the brain was determined by 
sequentially considering their exposure poten-
tial, absorption potential, and ability to cross 
the blood–brain barrier (BBB) to bind to brain 
AChE. In addition, structural similarities of 
active chemicals were compared against struc-
tures of inactive chemicals using molecular 
fingerprint models to detect possible nonactive 
parents that might become biologically active 
after under going metabolism. This case study 
demonstrates the ongoing need for a more 
holistic approach that encompasses various 
considerations for improving toxicity predic-
tions based on in vitro measurements and for 
expanding the AOP framework to improve its 
utility in chemical-specific risk assessment. 

Methods
Conceptual structure of the exposure–ADME 
workflow. The exposure–ADME workflow 
incorporates exposure and ADME considera-
tions for linking chemical exposure with 
AOP activation through the MIE. The main 
utility of this workflow is to refine in vitro 
results, which can then be used to predict 
in vivo MIEs that would trigger an AOP. This 
workflow begins with the selection of an AOP 
of interest, such as one listed in the AOP 
Wiki (https://aopkb.org/aopwiki/index.php/
AOP_List). Next, active chemicals identified 
in a specific in vitro assay are examined as 
parent compounds (Figure 1) or metabolites 
(Figure 2). Given that these are “known” 
metabolites, it is assumed that a) they would 
be generated in the human body after 
exposure to their parent compounds, and 

b) the identity of their parent compounds 
is known. If the metabolite tests positive 
in vitro, its parent’s exposure and absorption 
potentials are examined, along with its own 
capability of reaching the molecu lar target 
(Figure 2). If the active metabolite can also be 
found in the environment, its own exposure 
potential and ADME-related properties are 
also examined (Figure 1).

Exposure. Each active chemical can be 
placed into one of three categories based on 
its exposure potential: widespread exposure, 
limited exposure (e.g., occupational exposures 
or patient exposures to specific drugs), or 
low/no potential of exposure (e.g., drugs that 
have failed clinical trials). Those chemicals 
with low/no exposure potential are considered 
“low priority.” The remaining chemicals are 
advanced to the next step of the workflow.

2

2

Figure 1. Workflow for including exposure and ADME considerations into the AOP framework. The chemical of interest is a parent compound. Exposure, absorption, 
distribution, and metabolism are considered for the parent compound, and distribution of a known metabolite of an identified parent compound (described in 
Figure 2) is considered if the parent exhibits exposure and absorption potential. Each step is evaluated based on available data. When insignificant, the chemical is 
classified as “low priority.” If any step results in an unknown effect, further research is needed (i.e., high-throughput follow-up studies). “High-priority” chemicals 
should be further ranked according to relationships among rates of absorption or distribution, activating or detoxifying metabolic processes, and excretion from a 
biological system. Open circles represent converging steps in the workflow, and solid black circles represent diverging steps. 
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Absorption. Next, the physicochemical 
properties of the chemicals (e.g., lipophilicity 
or water solubility) are measured to assess 
absorption potential and bioavailability as 
related to primary routes of exposure. Many 
of these properties can be estimated using 
a combination of generalized molecular-
based methods, such as geometric opti-
mization and pharmaco phore modeling 
(Goldsmith et al. 2012). A number of public 
or commercial platforms can also be used 
to estimate such properties through specific 
ADME-related molecular descriptors based 
on reference two-dimensional (2D) and 
three-dimensional (3D) chemical structures. 
Some of these tools and resources include 
ChemSpider (http://www.chemspider.com), 

QikProp (http://www.schrodinger.com/
QikProp/), RDKit (http://www.rdkit.org), 
Dragon 6 (Mauri et al. 2006), and Chemistry 
Development Kit (Steinbeck et al. 2003).

Distribution. The likelihood that a 
chemical could be sequestered in certain 
tissues (e.g., fat or bone), bind to plasma 
proteins, and so on is assessed similarly using 
physico chemical properties. Chemicals that 
may be systematically distributed might 
require evaluation to see if they can access the 
molecular target. For example, if the target 
involves the central nervous system, a chemical 
must cross the BBB before binding. Chemicals 
not easily absorbed or distributed are consid-
ered “low priority.” The remaining chemicals 
are classified as “high priority,” as are those 

chemicals for which the data are insufficient to 
confidently assign “low-priority” status. When 
exposure, absorption, or distribution poten-
tial is uncertain, in silico approaches may be 
applied to generate estimates for guiding the 
prioritization process.

Metabolism. When a parent compound 
tests negative in an in vitro assay, it is still 
possible that its metabolite could reach a 
molecular target after the parent is absorbed 
into the body. Thus, our workflow suggests 
that known metabolites of inactive parents 
be subjected to in vitro testing (Figure 1). 
Predicting the likelihood of a compound being 
metabolized, as well as predicting the structures 
of its major metabolites, is challenging (Bertz 
and Granneman 1997; Shlomi et al. 2008). 

Figure 2. Workflow for including exposure and ADME considerations into the AOP framework. Exposure of the known metabolite is examined, and if exposure 
is possible the metabolite is then treated similar to a parent compound (described in Figure 1). If exposure of the metabolite is not possible, then its distribution 
is considered only if its identified parent exhibits exposure and absorption potential. Each step is evaluated based on available data. When insignificant, the 
chemical is classified as “low priority.” If any step results in an unknown effect, further research is needed (i.e., high-throughput follow-up studies). “High 
priority” chemicals should be further ranked according to relationships among rates of absorption or distribution, activating or detoxifying metabolic processes, 
and excretion from a biological system. Open circles represent converging steps in the workflow, and solid black circles represent diverging steps.
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In the best-case scenario, in vivo testing is used 
to confirm any predictions, and confirmed 
metabolites can then be subjected to in vitro 
toxicity testing (Figure 2). Unfortunately, this 
scenario requires a substantial investment of 
time and resources. Alternatively, computa-
tional programs [e.g., Meteor Nexus (Lhasa 
Limited)] or in vitro metabolism assays may be 
used to predict metabolites based on enzymatic 
activity. Similarity analyses may then be used 
to identify which predicted metabolites have 
structures similar to known active chemi cals, 
giving a preliminary indication that they might 
interact with the molecular target in a manner 
sufficient to trigger an MIE.

The previous steps of the workflow 
primarily address qualitative aspects of 
exposure and ADME to identify “high-
priority” chemicals for additional quantitative 
analyses. An example of quantitative analysis is 
generating surrogates for exposure and ADME 
behaviors based on chemical properties (e.g., 
predicted biological half-life may be used 
to extrapolate clearance rate, and a faster 
clearance rate could be interpreted as lower 
availability of the chemical to the molecular 
target). The “high-priority” chemicals, iden-
tified from the qualitative evalua tion, can 
then be ranked based on comparisons among 
measured or predicted intake doses, as well as 
relative rates of absorption/distribution and 
metabolism/excretion.

ToxCast™ background and AChE assay 
results. ToxCast™ is a multi year effort 
led by the U.S. Environmental Protection 
Agency (EPA) to test thousands of chemi-
cals in hundreds of assays, including enzyme 
inhibition assays (U.S. EPA 2014a). To 
date, > 2,000 chemicals have been tested 
in > 700 in vitro assays covering approxi-
mately 300 signaling pathways (U.S. EPA 
2014a). Chemicals considered within 
ToxCast™ include, but are not limited to, 
additives, pesticides and anti microbial agents, 
plasticizers, and pharmaceuticals that are in 
various stages of clinical testing or have been 
introduced into the commercial market. A 
full inventory of the chemicals used in the 
ToxCast™ program, of which the 1,059 
considered in this study is a subset, is avail-
able online (http://www.epa.gov/ncct/dsstox/
sdf_toxcst.html), with more chemicals to 
be added in the future. Detailed informa-
tion regarding analytical quality control of 
procured ToxCast™ chemicals is provided 
in Supplemental Material, “Chemical 
quality control.”

The Novascreen acetylcholinesterase 
(AChE) analysis in ToxCast™ consists of an 
in vitro cell-free biochemical assay that detects 
the inhibition of human-derived AChE 
enzyme, as determined colorimetrically by 
enzyme reporter activity using the substrate 
acetyl choline and a positive control of 

physo stigmine (U.S. EPA 2014a). Additional 
details of the assay procedures can be found 
in Supplemental Material, “Chemical assays.” 
Thirty of the 1,059 chemicals tested in the 
AChE inhibition assay were found to be 
active (3%).

Prioritization of active chemicals in AChE 
inhibition assay. The inhibition of AChE 
by parent compounds and known metabo-
lites was considered to comprise the MIE 
(the first step in Figures 1 and 2). Literature 
collected from PubMed, PubChem, Web 
of Science, and technical documents was 
used to categorize exposure potential of the 
30 active chemicals (Table 1). Data collected 
included primary route of exposure, chemical 
use category and history, prevalence of usage 
across the general population, and docu-
mented adverse health effects. Chemicals with 
low/no exposure potential were designated 
“low priority.”

When comprehensive review resulted in 
greater confidence that a chemical (or the 
parent of a tested metabolite) would exhibit 
widespread or limited exposure, its poten-
tial for absorption into the body was queried 
using the ADMET Predictor™ (Simulations 
Plus Inc.). These chemicals’ 2D simplified 
molecular-input line-entry system (SMILES) 
structures were entered into the ADMET 
Predictor™ to estimate their physico chemical 
properties, such as water solubility, octanol-
water partition coefficient (log Kow), plasma 
protein binding, pKa, and skin permeability. 
Chemicals with negligible absorption were 
designated as “low priority.”

Next, BBB permeability (i.e., distribution 
to the molecular target) was queried using 
the ADMET Predictor™ for the remainder 
of the chemicals (those not considered “low 
priority”), as well as inactive chemicals 
structurally similar to the original 30 active 
chemicals. Molecular structures of these 
chemicals were washed of extraneous salts, 
had protonation states rebalanced, had explicit 
hydrogen atoms augmented, and had their 
energy states minimized through conversion 
into a 3D conformation using Molecular 
Operating Environment (MOE) software 
(Chemical Computing Group) before being 
entered as a predictive data set in the ADMET 
Predictor™. The chemical space of SMILES 
structures of washed and energy-minimized 
chemicals was compared to that of the 
ADMET Predictor™ S+BBB filter (a binary 
classifier of “high” or “low” permeability 
collected from 1,942 chemicals from multiple 
sources and with a classification concordance 
value of 93%). Chemicals deemed unable to 
cross the BBB were designated “low priority.” 
Chemicals with widespread or limited 
exposure, possible absorption into the body, 
and potential to reach brain AChE were desig-
nated as “high priority” candidates, which can 

be further ranked in the future based on their 
relative rates of absorption/distribution and 
metabolism/excretion.

Similarity analysis. We identified inactive 
chemicals falling within a related functional 
or structural class as active chemicals, along 
with parent compounds of known metabo-
lites that exhibited a positive response in the 
AChE inhibition assay, by evaluating their 
structural similarities to such active chemicals. 
Similarity tests were conducted through 
use of MOE, in which molecular finger-
prints were selected based on the presence 
or absence of one of the 166 public MDL 
Information Systems’ structural Molecular 
Access System (MACCS) keys (Willett 
et al. 1998). The fingerprint of each of the 
30 active chemicals was used to identify the 
nearest neighbor inactive chemical using a 
Tanimoto similarity threshold of 75%, which 
is considered to be an appropriate cut-off 
value for fingerprint searches (Rahman 
et al. 2009). Briefly, the Tanimoto simi-
larity threshold coefficient is the ratio of the 
number of bit-key charac teristics common to 
both sample sets (the size of the intersection) 
divided by the number of bit-key charac-
teristics found in either or both sets (the size 
of the union), and thus explains the similarity 
and diversity of the sample sets (Baldi and 
Nasr 2010).

Results
The ToxCast™ human AChE assay had 
30 active chemicals. Following the steps in our 
workflow, seven active chemicals were assigned 
as “low priority” due to a low likelihood of 
exposure to the general population or workers 
(Table 1). A majority of these “low-priority” 
chemicals were pharma ceuticals that had failed 
in clinical trials. Eight chemicals had a low 
likelihood of exposure to the general popu-
lation, but might be of concern to workers 
who regularly come into contact with them 
or to individuals with special medical condi-
tions that would require their use. Another 
8 chemicals were considered as presenting a 
high exposure potential to the general public. 
The exposure potential of the 7 remaining 
chemicals was unknown. These chemicals 
included pesticides for which manufacture or 
distribution have been cancelled but may still 
be present in the environment or that may 
have derivatives that are still in use, as well as 
pharmaceuticals that may be cleared for public 
use after the later stages of clinical safety trials.

Most of the 23 chemicals with high/
limited exposure potential were predicted to 
have significant oral absorption, followed by 
inhalation. Only anthralin and bendiocarb 
are expected to have greater dermal than oral 
absorption. Six chemicals were predicted 
to have barriers to absorption as a result of 
physico chemical properties such as excessive 



Exposure and ADME AOP framework

Environmental Health Perspectives • volume 124 | number 1 | January 2016 57

charge, high molecular weight, or a high 
degree of lipo philicity (Table 1). Two of these 
6 chemicals—raloxifene hydrochloride and 
pentamidine isethionate—were also predicted 
to have low potential for BBB penetration. 
The third chemical with predicted inability 
to cross the BBB was anthralin (Table 1). The 
remaining 4 chemicals with limited absorp-
tion were retained as “high priority” chemi-
cals but can be assigned a lower ranking in 
future quantitative analysis. Application of 
our workflow resulted in a total of 10 “low-
priority” chemicals (7 due to low exposure 
potential and 3 due to low BBB perme-
ability), leaving approximately 67% to be 
further analyzed.

Metabolism was shown to affect a chemi-
cal’s activity in several ways. It was an acti-
vating step for some chemicals such as the 
organo phosphate (OP) pesticide chlorpyrifos 
(Table 1), which is metabolized to the most 
active chemical in the AChE assay, chlor-
pyrifos oxon. For other chemicals, metabo-
lism was a detoxifying step (Table 1), as was 
the case for the OP pesticide naled, which 
is metabolized to the less potent chemical 
dichlorvos before being further metabolized 
and excreted from the body.

Fifty-two of the 1,029 inactive chemi-
cals exhibited a similarity threshold > 75% 
with their nearest active neighbors. Twenty-
nine chemicals were structurally similar to 
bis(2-ethylhexyl) decanedioate (a “low-
priority” chemical), which has very limited 
absorption through the primary exposure 
routes of skin and lungs and little to no 
adverse toxicity upon incidental oral inges-
tion (NIOSH 1983). Although individuals in 
the general public may be exposed by using 
products containing this chemical, it would 
not be absorbed through the skin (Clayton 
et al. 1994). Thus, these 29 chemicals that 
are structurally similar to bis(2-ethylhexyl) 
decanedioate were also designated as “low 
priority.” Zamifenacin (an M3 selective 
muscarinic antagonist) demonstrated 76% 
similarity with the poorly absorbed and 
distributed “low-priority” chemical raloxi-
fene hydrochloride, so it was also given a 
“low-priority” status, leaving 22 chemicals 
remaining on the list of “possible false nega-
tives” (see Supplemental Material, Table S1, 
for similarity scores for these 22 chemicals). 
The elimination of 30 chemicals using our 
prescreening approach allowed focus on the 
more relevant “false negatives.”

Examples of these “false negatives” of 
interest included chlorpyrifos, which showed 
91% similarity with its oxon metabolite; 
dichlorvos, which showed 83% similarity 
with its parent naled; and aldicarb, which 
showed 88% similarity with the carbamate 
methomyl (see Supplemental Material, 
Table S1). At least two of these inactive 
chemicals—chlorpyrifos and chlorpyrifos 
methyl—were parents of active metabolites 
likely to inhibit AChE. In addition, at least 
four of these inactive chemicals—aldicarb, 
trichlorfon, dichlorvos, and phosalone—were 
themselves known as moderate to weak AChE 
inhibitors in vivo.

Discussion
In an AOP framework, known adverse 
outcomes may be linked via KEs to an 
upstream MIE. Knowledge of an MIE can 
be used to design high-throughput in vitro 
assays to screen for chemicals able to trigger 
that MIE. However, exposure potential 
and ADME properties that may influence a 
chemical’s ability to reach a molecular target 
in vivo are rarely considered beyond in vitro 
outcomes. In the present study we attempted 
to address this issue through the develop ment 

Table 1. Inhibition activity (in decreasing order), exposure probability, and ADME properties of thirty compounds extracted from ToxCast™ data set identified as 
acetylcholinesterase inhibitors.

Compound AC50 (μM) Exposurea Absorptionb Distributionc Priority Metabolismd Source
Chlorpyrifos oxon 0.149 1 Yes Yes High + Eaton et al. 2008; Smegal 2000
PharmaGSID_47259 0.287 4 NA NA Low – U.S. EPA 2010
Carbofuran 0.416 3 Yes Yes High ± Hussain et al. 1990; U.S. EPA 2008
Anthralin 0.512 2 Yes No Low – McGill et al. 2005
Naled 1.01 1 Yes Yes High – Duprey et al. 2008; U.S. EPA 2006
Carbosulfan 1.21 1 Limited Yes High ± Abass et al. 2010
Raloxifene hydrochloride 1.85 2 Limited No Low – Kosaka et al. 2011
1-Benzylquinolinium chloride 2.48 2 Yes Yes High U U.S. EPA 2012b
Besonprodil 3.49 3 Yes Yes High – Ouattara et al. 2009
Bendiocarb 4.09 3 Yes Yes High – Berman et al. 2011, 2012
SB236057A 4.63 4 NA NA Low – Roberts et al. 2001
GW473178E 4.79 4 NA NA Low – U.S. EPA 2010
SSR241586 4.86 3 Limited Yes High – Métro et al. 2011
SSR69071 5.05 4 NA NA Low – Kapui et al. 2003
Mevinphos 5.11 3 Yes Yes High ± Cochran et al. 1996; U.S. EPA 1994
Azamethiphos 6.6 2 Yes Yes High ± EMEA 1999
Oxamyl 7.4 2 Yes Yes High – EXTOXNET 1993; Schilmann et al. 2010
Gentian violet 7.65 1 Yes Yes High + TOXNET 2013
Toluene-2,4-diisocyanate 8.78 2 Yes Yes High ± U.S. EPA 2013
Didecyldimethylammonium chloride 12.1 1 Limited Yes High – Dejobert et al. 1997; Houtappel et al. 2008
Propoxur 12.7 1 Yes Yes High ± Ostrea et al. 2014
Methomyl 13.9 3 Yes Yes High – EXTOXNET 1996; Van Scoy et al. 2013
Pentamidine isethionate 16.8 2 Limited No Low NA Beach et al. 1999; Montgomery et al. 1990
bis(2-Ethylhexyl) decandioate 17 4 NA NA Low = NIOSH 1983
SR125047 17.6 4 NA NA Low – Kohlhaas et al. 2006
PharmaGSID_48172 18.3 4 NA NA Low – U.S. EPA 2010
Dodecylbenzenesulfonic acid 19.3 1 Limited Yes High ± TOXNET 2002
SSR150106 20.9 3 Yes Yes High + R & D Focus Drug News 2007
Mercuric chloride 23.1 2 Yes Yes High + Bernhoft 2012; Boscolo et al. 2009
Bronopol 23.3 1 Yes Yes High ± Cui et al. 2011; Travassos et al. 2011

Abbreviations: AC50, concentration of chemical necessary to reduce maximum activity of the AChE enzyme by 50%; ADME, absorption, distribution, metabolism, and excretion; BBB, 
blood–brain barrier; NA, not applicable.
aExposure conditions are as follows: 1, widespread exposure to public; 2, occupational-only or special cases of exposure; 3, unknown exposure; 4,  low likelihood of exposure (no 
further analysis). bAbsorption considers whether chemicals are free of violations (“Yes”) of the “Rule of 5” code (Lipinski et al. 1997); properties that violate these rules include 
large size and molecular weight, high number of rotatable bonds, and an excessive number of hydrogen bond donors or hydrogen bond acceptors. cDistribution considers whether 
chemicals can cross (“Yes”) the BBB. dMetabolism is considered to be transformation to an active metabolite (+), detoxification (–), possibility of activation or detoxification (±), 
metabolite with same toxicity as parent (=), parent excreted with no metabolism (NA), or unknown (U). 
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of a conceptual workflow that provides 
general guidance for considering exposure 
and ADME when interpreting in vitro results. 
The utility of this workflow was demonstrated 
using the active chemicals from the human 
AChE inhibition assay in the ToxCast™ data 
set. Ten of 30 chemicals were designated as 
“low priority” from our analyses: 7 had very 
low exposure potential, and 3 were unlikely to 
cross the BBB. Those remaining were desig-
nated as “high priority” and can be subjected 
to future ranking based on quantitative 
considerations of ADME.

The value added by considering exposure 
and ADME properties of a chemical to refine 
high-throughput in vitro results can be illus-
trated using the top five active chemicals in 
the ToxCast™ assay. PharmaGSID_47259 is a 
failed pharmaceutical for which little informa-
tion is available to the public. Because of a 
high likelihood of no exposure potential, it 
was designated as “low priority.” Anthralin 
is a topical medication approved for treating 
psoriasis; it is sequestered in the mitochondria 
of keratinocytes, where it triggers apoptosis 
and promotes the growth of new skin tissue 
(Sehgal et al. 2014). Due to its lipophilicity 
and sequestration in dermal tissues, anthralin 
is unlikely to enter the systemic circulation 
to a significant extent and is also predicted 
to have low BBB permeability, resulting in 
it being a “low-priority” chemical. The other 
three chemicals—carbofuran, naled, and chlor-
pyrifos oxon—are known AChE inhibitors. 
Carbofuran is a metabolite of carbosulfan, 
another highly reactive compound, and is 
itself metabolized to the equally toxic form 
3-hydroxy carbo furan through hydroxylation, 
or to the less toxic moiety 3-ketocarbofuran 
through oxidation (Gupta 1994). Naled is 
metabolized to dichlorvos or to the non toxic 
chemicals dimethyl phosphate and bromo-
dichloroacetaldehyde (Roberts and Hutson 
1999). The most interesting case, however, 
involves chlorpyrifos oxon.

Chlorpyrifos oxon is a chief metabolite 
of chlorpyrifos after enzymatic activity occurs 
within the body, and humans are exposed to 
trace amounts of oxon directly as chlorpyrifos 
is environmentally degraded (Mackay et al. 
2014). It is well-established that AChE inhi-
bition is the AOP arising from chlor pyrifos 
exposure (U.S. EPA 2011). Chlorpyrifos 
itself is not an AChE inhibitor, as shown in 
both in vivo and in vitro studies (Chambers 
and Carr 1993). From an in vivo perspective, 
chlorpyrifos can be considered a “false 
negative” as a result of its inability to demon-
strate reactivity in the AChE in vitro assay, 
but its metabolite exhibits potent activity. 
This chemical highlights the critical need to 
consider ADME, especially metabolism, in 
establishing a more holistic interpretation 
of high-throughput in vitro results based on 

AOPs. In our study, structural similarities of 
inactive and active chemicals were compared 
in order to detect “true in vitro negatives, but 
false in vivo negatives,” such as chlorpyrifos, 
that might become biologically active when 
accounting for metabolism. 

The carbamate pesticide aldicarb is a 
known AChE inhibitor in vivo (Wyld et al. 
1992) but is considered to be inactive in the 
AChE inhibition assay. From our analysis, 
it was identified as a possible false negative 
because it was structurally similar to methomyl 
(88%). Although aldicarb was banned in the 
United States in 2010, distribution from the 
manu facturing company is not expected to 
be completely eliminated until 2017 (Cone 
2010), suggesting that exposure to the popula-
tion remains possible until then. Two other 
inactive chemicals identified in similarity 
analysis were the OPs trichlorphon (86% 
similar to naled) and phosalone (81% similar 
to azamethiphos). Trichlorphon and phosalone 
are considered moderate to weak AChE inhibi-
tors in vivo and represent other examples of 
“possible false negatives.”

In a prior analysis of 309 ToxCast™ chemi-
cals, 14 were considered AChE inhibitors in 
both rat and human in vitro assays (Knudsen 
et al. 2011). Eight of these chemicals were 
included in our current “high-priority” list, 
and the 6 remaining chemicals were very 
weak human AChE inhibitors, 2 of which, 
aldicarb and dichlorvos, were identified as 
possible “false negatives” from our simi-
larity analysis at a threshold of 75%. If this 
threshold was further decreased to 60%, an 
additional 3 chemicals would be selected, 
leaving only malaoxon (56% similarity with 
mevinphos) unidentified from our analysis. 
The compari son of our results with those of a 
previously published study demonstrates the 
usefulness of similarity analysis in detecting 
possible “false negatives” from in vitro data. 
A logical next step to enhance the utility of 
our workflow would be to compare these 
possible “in vivo false negatives” with in silico 
predictions [e.g., quantitative structure–activity 
relation ship (QSAR) or protein-docking 
models] that are built to identify initiation of 
MIEs by chemical classes rather than by indi-
vidual chemicals. In vitro assays and in silico 
models are complementary approaches able 
to incorporate high-throughput analyses into 
AOP frameworks.

There is often some difficulty in the 
extrapolation of in vitro and in silico results 
to in vivo observations due to a variety of 
factors. Sometimes, in silico predictions 
contradict in vitro results, and further evalua-
tion of the appropriateness of either approach 
is necessary. A possibility exists that the 
fundamental assumptions in either or both 
approaches are inadequate. For example, 
the use of 2D descriptors alone in predictive 

in silico QSAR models may lack the required 
specificity to account for protein–ligand 
interactions observed in homochiral protein 
environments (Chang et al. 2012; Vedani and 
Smiesko 2009). Domain of applicability issues 
may also arise for chemicals that fall outside 
the chemical descriptor space that was used 
to build QSAR models (Dragos et al. 2009; 
Jaworska et al. 2005; Stanforth et al. 2007; 
Tan et al. 2012). Identification of factors 
responsible for inter assay variability is necessary 
to also avoid interpretation errors of in vitro 
results (Beresford et al. 2000; LeBlanc et al. 
2011). Human error or, more often, promis-
cuous chemicals that can bind or interfere with 
assay reagents and targets may lead to incor-
rect conclusions derived from in vitro results. 
Such problems were discovered by Baell and 
Walters (2014) when applying in vitro testing 
to drug develop ment, and similar problems 
are likely to exist with environmental chemi-
cals as well. For example, pan-assay interfer-
ence compounds (PAINS) can show signs of 
activity in assays due to redox cycling, degrada-
tion, or other non specific processes that lead 
to a signal, even when not truly binding to a 
molecular target’s active site (Baell and Walters 
2014). In the present study, the SMILES 
strings of the 20 high priority chemicals were 
entered into the open-source BioActivity Data 
Associative Promiscuity Pattern Learning 
Engine (BADAPPLE plugin) (UNM 2014) 
and into MOE to evaluate the promiscuity of 
these chemicals. Both programs yielded high 
promiscuity scores for gentian violet, likely due 
to interference of the dye with assay absorption 
spectra (Baell and Holloway 2010), as well as 
for the fracking agent 1-benzylquinolinium. 
Although 1-benzylquinolinium may be toxic, 
it is unlikely to specifically inhibit AChE. 
Recognition of promiscuous compounds 
allowed for further reduction in our list of 
“high-priority” chemicals.

Finally, when both in silico and in vitro 
methods suggest the same outcome, considera-
tion of ADME-mediated behaviors of chemi-
cals continues to be important, because it 
is difficult for either approach to depict the 
complexity of biological processes. Much like 
the concept of prodrugs (Rautio et al. 2008), 
an inactive parent may become active through 
metabolic processes, or a compound consid-
ered active may not reach its molecular target 
as a result of limited absorption or rapid clear-
ance. Therefore, our workflow can be used to 
examine outcomes predicted by in silico and 
in vitro approaches.

Excretion, although a critical compo-
nent of ADME, was addressed only briefly 
in the present study because we investigated 
only quali ta tive aspects of ADME in detail. 
Qualitative consideration of excretion alone 
does not sufficiently predict the ability of a 
chemical to reach its molecular target. Rather, 
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it is the rate of excretion compared with the 
rate of absorption that will determine whether 
a chemical can bind with its molecular target 
at a concentration sufficient to trigger an 
MIE. Thus, rate of excretion, along with rates 
of metabolism, absorption, and distribution 
will be addressed in a future work to illustrate 
the quantitative aspects of our workflow.

Conclusions
The importance of incorporating exposure 
and ADME properties in refining results 
of high-throughput in vitro assays designed 
based on an MIE was demonstrated through 
our developed workf low. Twenty of 
30 possible active chemicals identified in a 
human AChE inhibition assay were priori-
tized for future quantitative testing. Similarity 
analysis allowed 22 inactive chemicals from 
the in vitro assay to be identified as possible 
“false negatives.” Some of these chemicals 
are either parents of potential active metabo-
lites or weak AChE inhibitors in vivo. Our 
workflow improves the reliability of in vitro 
testing by identifying false negatives (e.g., 
inactive parents of active metabolites) and 
reduces cost and time by screening out false 
positives (e.g., active chemicals with no 
exposure potential) that may otherwise have 
undergone unnecessary analyses.
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