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Introduction
Asthma is globally the most common chronic 
disease in children, and it affects approxi-
mately 7.7% of the working-age population 
in the United States (Henneberger et al. 2011) 
and 3–9% of adults in Finland and in other 
parts of Europe (Boutin-Forzano et al. 2007; 
Jaakkola et al. 2002; Pallasaho et al. 2011). 
Allergies are even more common, with a preva-
lence of 20–40% among children (Aït-Khaled 
et al. 2009; Asher et al. 2006). Emerging 
climate change will influence temperature, 
precipitation, and the spatial distribution of 
pollen species with strong allergenic properties, 
and these changes may have profound effects 
on both the etiology of asthma and allergies 
and the occurrence of symptoms among 
subjects with these diseases (e.g., Beggs and 
Bambrick 2005; Cecchi et al. 2010; D’Amato 
et al. 2014; Gilmour et al. 2006).

Grass (Poaceae) pollen is the most wide-
spread group of pollen allergens worldwide, 
and is the most frequent cause of pollen allergy 
in Europe and one of the most common causes 
in the United States (D’Amato et al. 2007; 
White and Bernstein 2003). In general, most 
individuals suffering from allergic rhinitis 
experience seasonal pollen-related symptoms 
(Blomme et al. 2013). Pollen allergy has 

been identified in 80–90% of children with 
asthma and 40–50% of adults with asthma 
(Taylor et al. 2007). The importance of pollen 
is highlighted in urban environments, where 
the prevalence of allergy has been estimated 
to be higher than in rural environments (e.g., 
Majkowska-Wojciechowska et al. 2007; Priftis 
et al. 2007).

Conditions that promote plant growth and 
reproduction, such as higher temperatures and 
carbon dioxide concentrations (Singer et al. 
2005; Ziska et al. 2003), have been shown to 
increase pollen production and promote an 
earlier start of pollen season in urban areas 
compared with surrounding rural areas (Ziska 
et al. 2003). Importantly, there is evidence 
that the allergenic potential of polluted (urban) 
pollen is stronger than that of nonpolluted 
pollen grains (Aina et al. 2010; Majd et al. 
2004). Thus, relatively more favorable vegeta-
tion growth conditions, higher pollen counts, 
earlier start of pollen season, and greater 
allergenic potency may have a pronounced 
effect on the occurrence and the severity of 
allergic symptoms and on the risk of asthma 
and allergies in urban environments (Beggs 
2004; Gilmour et al. 2006; Ziska et al. 2003). 
The global trend of urbanization and forma-
tion of mega-cities will increase the human 

exposure to mixtures of chemical and biolog-
ical pollutants [World Health Organization 
(WHO) 2013].

Previous epidemiologic studies have 
predominantly assessed exposure on the basis 
of pollen data from only one or few monitoring 
stations (Caillaud et al. 2014; Delfino et al. 
2002). An additional limitation in several 
studies is that pollen data have been based on 
roof-level measurements (e.g., at the heights 
of 10–30 m) and thus do not reflect properly 
the most common exposure at breathing level 
(e.g., 1.5 m). Roof-level samplers collect parti-
cles from a larger geographic area, reflecting 
mainly the influences of regional sources of 
pollen grains (O’Rourke and Lebowitz 1984). 
Thus, roof-level data do not address intra-urban 
spatial heterogeneity of pollen concentrations, 
and they are less accurate for exposure assess-
ment when studying potential human health 
effects (Peel at al. 2013). Consequently, there is 
an urgent need for studies that can quantify the 
relations between environmental determinants 
and allergenic pollen concentrations across 
urban gradient at local (≤ 100–300 m) scales 
(Haberle et al. 2014; WHO 2013).

In recent years, there has been significant 
progress in the modeling of transportation and 
concentration of atmospheric pollen at large 
spatial scales (Kukkonen et al. 2012; Skjøth 
et al. 2013; Sofiev and Bergmann 2012; Sofiev 
et al. 2013). However, even the most sophis-
ticated current methods cannot estimate the 
concentrations of pollens at fine spatial scale. 
In this context, a land use regression (LUR) 
approach based on readily available geographic 
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information system (GIS) data could provide a 
cost-efficient and reasonably accurate method 
for predicting the variability of pollen concen-
trations at fine spatial scales (Beelen et al. 
2013; Richardson et al. 2013).

The overall objective of this study was 
to improve and evaluate the LUR method-
ology for the prediction of spatial variability 
of allergenic pollen concentrations in the 
urban area. We focused on grasses, as one of 
the most important allergenic plant groups. 
More precisely, we addressed the following 
specific objectives: a) to model intra-urban 
spatial variation of grass pollen concentrations 
and b) to determine the best environmental 
predictors of intra-urban variation in grass 
pollen concentrations.

Methods

Study Area

The study was conducted in the Helsinki 
metropolitan area (1.1 million inhabitants), 
southern Finland (60°10′15″N, 24°56′15″E) 
(Figure 1). The study area includes both 
constructed urban environments with a limited 
amount of vegetation and natural environ-
ments covered by diverse vegetation. The study 
area has the characteristics of both maritime 
and continental climates. The mean annual 
temperature is 5.9˚C and the mean annual 
precipitation is 655 mm (1981–2010; Pirinen 
et al. 2012). The area belongs to the temperate 
coniferous–mixed forest zone. Grasses are 
typical pioneer plant groups (i.e., those that 
are the first to colonize newly exposed land 
surfaces) in the ground layer of the area.

Data Collection
Grass pollen data. Two sampling lines, each 
with a length of 3 km, were placed within 
the cities of Helsinki and Espoo (Figure 1). 
The selected sampling sites differed from each 
other with respect to land use and vegetation 
type. These two categories of urban envi-
ronments (urban environment in central 
Helsinki, and residential suburban area in 
Espoo) were selected for evaluation because 
grass pollen exposures in these areas may be 
representative of the exposures experienced by 
many urban populations. Altogether, pollen 
grains were monitored at 16 different sites 
(1.5 m above ground surface) during the grass 
pollen season in 2013. The sampling was 
conducted daily (except on rainy days) from 
27 June through 21 July 2013, during the 
peak grass pollen season. See Supplemental 
Material, Table S1, for a summary of weather 
conditions during the sampling period.

Rotorod-type samplers were used for 
pollen monitoring (Rantio-Lehtimäki et al. 
1992). To minimize problems with overs-
ampling (Sterling and Lewis 1998), samples 
were collected at each site for only 30 min 

each morning (between 0800 and 1130 hours) 
and each afternoon (between 1300 and 1630 
hours). On each day the specific sampling time 
differed among the individual sites, and the 
specific sampling times at each site differed 
from day to day. In addition, sampling days 
alternated between the eight Helsinki sites and 
the eight Espoo sites (Figure 1). For additional 
details, see Supplemental Material, “Sampling 
of grass pollen data.” Pollen measurements were 
converted into volumetric equivalents expressed 
as the concentration of pollen grains per cubic 
meter of air sampled. The grass pollen data were 
subdivided into three subsets that each repre-
sented the average concentration of pollens at 
the breathing zone (1.5 m) at each one of the 
16 sampling sites during a 2-week period. The 
first was used to calibrate the LUR model, and 
included data collected June 27–July 9 during 
the afternoon sampling period (1300–1630 

hours). The second and third were used for 
independent evaluation of the model, with the 
second collected 27 June–9 July during the 
morning sampling period (0800–1130 hours), 
and the third collected 10–21 July during the 
morning and afternoon sampling period. In 
the calibration data set, average pollen concen-
trations for 2 of the 16 sites were very high 
(120.2 and 1758.0 grains/m3) compared with 
average concentrations for the other 14 sites 
(1.4–23.9 grains/m3). Therefore, in addition 
to analyzing the data from all 16 sites (hereafter 
referred to as the n = 16 data set), we performed 
a second set of analyses after excluding the data 
from the 2 sites with very high concentrations 
(hereafter referred to as the n = 14 data set) in 
order to assess the robustness of our model with 
regard to potential outliers.

Environmental determinants. Altogether, 
eight GIS-based geospatial environmental 

Figure 1. Land use of the study area and the location of the monitoring sites for grass pollen [ESRI Data 
& Maps 9.3; ArcWorld Supplement; National Land Survey of Finland (http://www.maanmittauslaitos.fi/
en/kartat)]. Urban land use refers to high-density (e.g., block of flats, commercial and industrial) land use 
types, parks to managed grasslands, fields to cultivated fields, and wasteland to unmanaged grasslands.

  
 
  

Finland

Espoo Helsinki

60°10'15'' N
24°56'15'' E

 

 

© National Land Survey of Finland, 2011

N

2 km

Pollen monitoring site

Traffic area

Urban land use

Parks

Fields

Forest
Wasteland

Other

500 km

Table 1. Environmental determinants computed to explore the intra-urban variation of grass pollen 
concentrations. 

Environmental 
variable Unit Description Source
TC brightness Index Land use/cover with high albedo (overall brightness 

of the image)
Landsat TM5 

TC greenness Index Amount of photosynthetically active green vegetation Landsat TM5
Wasteland m2 Unmanaged grasslands (e.g., meadows and power lines) SLICES land use classification
Park m2 Managed grasslands (e.g., urban parks and sports fields) SLICES land use classification
Field m2 Cultivated fields (e.g., wheat and barley fields) SLICES land use classification
Deciduous forest m2 Broadleaf trees (e.g., birch, alder, and maple) CORINE land cover database
Mixed forest m2 Broadleaf trees and conifers (pine and spruce) CORINE land cover database
Urban land use m2 Urban land use classes (e.g., high density residential, 

commercial, industrial, and traffic areas)
SLICES land use classification

Abbreviations: TC, tasseled cap; TM5, Thematic Mapper 5. The Landsat data were from 2010 (http://earthexplorer.usgs.
gov/), SLICES data were from 2010 [National Land Survey of Finland (http://www.maanmittauslaitos.fi/en/kartat)], and 
CORINE from 2006 (Finnish Environmental Institute 2009).
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determinants (Table 1) were computed at 25-, 
50-, 100-, 300-, 500-, and 1,000-m buffer 
sizes (Lovasi et al. 2013). The range of buffer 
sizes was selected based on the knowledge of 
dispersal of grass pollens (e.g., Skjøth et al. 
2013) and the properties of geospatial data 
sets (e.g., accuracy and resolution). The 
applied determinants included two remote 
sensing–based indices [tasseled cap transfor-
mation (TC) brightness and TC greenness 
(Lillesand et al. 2004)], four land use deter-
minants (wasteland, park, field, and urban 
land use) compiled from the 2010 SLICES 
land use classification [National Land Survey 
of Finland (http://www.maanmittauslaitos.fi/
en/kartat)] and two land use/cover variables 
(deciduous forest and mixed forest) computed 
using the 2006 CORINE land cover database 
(Finnish Environmental Institute 2009). The 
values of the environmental determinants were 
computed using ArcGIS 10.2 (ESRI) with 
buffers at various sizes.

The source of the remote sensing data was 
selected based on the following criteria: The 
images should be freely available, they should 
have global coverage with high spatial resolu-
tion (10–50 m), and the data should be avail-
able for several decades (to facilitate linking 
this data to long-term epidemiologic cohort 
data; e.g., Lovasi et al. 2013) (Figure 2). 
Consequently, the remote sensing–based 
indices—TC brightness and TC greenness 
(Lillesand et al. 2004)—were computed 
from orthorectified Landsat TM5 satellite 
image (considering the acquisition day and 
cloud cover the most suitable image was from 
14 July 2010) using Erdas IMAGINE. We 
selected the TC greenness variable instead 
of the more commonly used Normalized 
Difference Vegetation Index (NDVI) (e.g., 
Skjøth et al. 2013) based on a preliminary 
analysis that indicated that the TC green-
ness variable was more highly correlated 
with grass pollen concentrations [the highest 
Spearman’s rank order correlation coefficients 
(rs) = 0.792, p < 0.001] than the NDVI (the 
highest rs = 0.788, p < 0.001).

Statistical Analysis
Before the multivariate statistical analyses, 
the distributions of the grass variables were 
normalized using logarithmic (log10) transfor-
mation (normality was statistically confirmed 
applying the Kolmogorov–Smirnov test) 
(Sokal and Rohlf 1995). The statistical 
analyses were conducted in three steps to 
explore the explanation and prediction ability 
of the selected environmental determinants at 
various scales. The main statistical methods 
applied were Spearman’s rank correlation 
analysis (Sokal and Rohlf 1995), hierarchical 
partitioning (HP; Chevan and Sutherland 
1991), and generalized linear modeling 
(GLM; McCullagh and Nelder 1989). First, 

rs between grass pollen concentrations and 
environmental determinants were calculated 
to select the optimal buffer sizes. The selection 
of the optimal buffer size was based on the 
highest correlation coefficients, also requiring 
an expected sign (e.g., a positive sign for 
variables describing potential environments 
for grasses). The correlations were calcu-
lated with IBM SPSS Statistics 19 software. 
Second, to explore the potential effects of 

multicollinearity in statistical analyses (i.e., 
intercorrelation among environmental 
determinants), we applied HP (Chevan and 
Sutherland 1991) as described in detail in 
Supplemental Material, “Hierarchical parti-
tioning.” Third, GLM was employed to 
model the observed grass pollen concentra-
tion differences in the study area. The calibra-
tion of the GLM was performed using the 
standard glm function in R (R Core Team 

Figure 2. Application of the land use regression (LUR) outcomes (e.g., average seasonal concentration 
of pollen) in long-term and lifetime exposure assessments. First, the LUR approach is used to produce 
a raster model of pollen concentrations in the current environmental conditions (tcurrent). Second, the 
retrospective pollen concentrations (t1…tn) are predicted using data describing the past environmental 
conditions (e.g., historical land use and remote sensing data) (Gulliver et al. 2013). In the estimation 
of retrospective concentrations, long-term (permanent) pollen collectors are used. Third, geographic 
information system (GIS) tools are used to compute individual (e.g., cohort members) exposure based on 
residential history data at applicable spatial resolution (Richardson et al. 2013). Fourth, the results of the 
previous step are used in allergy and asthma explorations.
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2015). The GLM optimization was based on 
the forward-selection approach and Akaike’s 
Information Criterion (AIC) (Burnham and 
Anderson 2004). We evaluated the calibrated 
model on the basis of the model fit to the 
data, normality of the residuals (applying 
the Kolmogorov–Smirnov test), homosce-
dasticity, spatial independency (applying the 
Moran’s I), and leverage (Beelen et al. 2013; 
Sokal and Rohlf 1995).

The predictive ability of the final 
GLMs was assessed using leave-one-out 
 cross- validation (CV) of models based on the 
calibration data set. In addition, we performed 
an external validation by comparing calibration 
model predictions with the two evaluation data 
sets based on samples collected 27 June–9 July 
during the morning, and samples collected 
10–21 July during the morning and afternoon, 
respectively. In addition, we visually compared 
spatial variation in the predicted concentrations 
with land use and land cover characteristics 
across the Helsinki metropolitan area.

Results

Optimization of the Buffer Sizes

Environmental variables with the highest 
Spearman’s rank order correlations with 
grass pollen concentrations based on the full 
(n = 16) data set were TC greenness (optimum 
buffer size = 50 m, rs = 0.79, p < 0.001), 
wasteland (300 m, rs = 0.73, p < 0.001), urban 
land use (300 m, rs = –0.72, p < 0.01), field 
(1,000 m, rs = 0.67, p < 0.01), and decid-
uous forest (300 m, rs = 0.63, p < 0.01) (see 
Supplemental Material, Table S2). For the 
reduced (n = 14) data set, grass pollen concen-
trations correlated highest with TC greenness 
(50 m, rs = 0.69, p < 0.01), urban land use 
(1,000 m, rs = –0.62, p < 0.05), wasteland 
(500, rs = 0.62, p < 0.05), and mixed forest 
(50 m, rs = 0.62, p < 0.05) (see Supplemental 
Material, Table S3). Thus, the correlation 
patterns were rather similar for the two data 
sets, although correlations were weaker for the 
n = 14 data set than for the full data set.

Hierarchical Partitioning
The results of the HP analysis—the inde-
pendent contribution of the environmental 
determinants at the optimum buffer size—
are presented in Supplemental Material, 
Figure S1. The contributions of the TC 
greenness and urban land use variables were 
> 15% in both data sets (range, 17–30%). 
Moreover, the wasteland variable contributed 
22% in the n = 16 data set and the mixed 
forest variable 21% in the n = 14 data set. 
Because the sample sizes were small, only 
the TC greenness variable was statistically 
significant (p < 0.001) in the larger data set, 
and none of the determinants were significant 
(p > 0.05) in the smaller data set.

Calibration and Evaluation of 
Generalized Linear Models
The final GLMs for the n = 16 and n = 14 
data sets both included the TC greenness 
variable, and the n = 16 model also included 
the wasteland variable. The two GLMs 
explained 79% and 47% of the variation in 
the grass pollen data, respectively (D2 values, 
Table 2). Based on the exploration of resid-
uals, the assumptions of normal errors and 
independency were not statistically violated. 
The larger data set included one potential 
outlier (Cook’s distance > 1), but when an 
alternative GLM was calibrated without 
the outlier observation, the normality and 
homoscedasticity of the residuals was reduced, 
and a new potential outlier was identified 
(data not shown).

Based on the CV results, the prediction 
errors were 412.9 grains/m3 and 5.9 grains/m3 
for the n = 16 and n = 14 data sets, respec-
tively. However, the mean prediction errors 
were 6.4% (n = 16) and 19.5% (n = 14) and 
root-mean-square errors were 23.5% (n = 16) 
and 26.4% (n = 14) of the observed range of 
grass pollen concentrations. The calibrated 
model for the full data set predicted the 
measured concentrations of samples collected 
during the morning (instead of the afternoon) 
on the same days better than it predicted 
measured concentrations during the second 
observation period (10–21 July) (Pearson’s 
r = 0.84, p < 0.001 and 0.55, p < 0.05, respec-
tively) (Figure 3A,B). In contrast, predictions 
based on the n = 14 data set were slightly 
better for the second observation period 
than for the morning samples (r = 0.58, 
p < 0.05 and 0.38, p > 0.05, respectively) 
(Figure 3C,D).

The overall view of the predicted concen-
trations of grass pollen follows well the land 
use patterns in the Helsinki metropolitan area 
(Figure 4). For example, the major source 
areas of pollens (e.g., grasslands and open 
semi-natural land use types; Figure 4A,D) 
and areas of intensive land use (e.g., built-up 
and traffic areas; Figure 4B–D) can be identi-
fied. Moreover, that the most densely vege-
tated environments (i.e., forest; Figure 4A) 

are not the areas with the highest concen-
trations of grass pollens. This result is to be 
expected, because grasses do not flourish in 
forests with closed canopy. On the contrary, 
the models appear to predict too high grass 
pollen concentrations for some of the culti-
vated fields (Figure 4A,B) and managed grass 
areas (e.g., golf courses). However, the models 
predict realistically rather low concentrations 
for extensively managed grass areas—for 
example, around the airport runways in the 
middle part of the city of Vantaa (Figure 4).

Discussion
Atmospheric concentration of allergenic pollen 
is an important public health indicator, the 
potential of which has not been fully utilized 
(Ring et al. 2014; WHO 2013). Although the 
role of pollen in the onset of allergic disease is 
not well established, exposure to pollen gener-
ates symptoms among asthmatics and allergic 
individuals (Gilmour et al. 2006; Zeldin 
et al. 2006). Thus, improved prediction of 
the variability of allergenic pollen concentra-
tions at local scales would be valuable when 
studying the role of pollen exposure in the 
development of allergic diseases and sensiti-
zation, as well as exacerbations of symptoms 
among subjects with asthma and allergies. This 
would also pave the way for improved predic-
tions of the future health impact of climate 
change through changes in the generation and 
 distribution of pollen.

The LUR models developed in this study 
are designed for predicting the variability of 
the breathing-zone level concentrations of 
allergenic grass pollens in urban environment 
with very high resolution using multi-source 
geospatial data. First, this is of importance 
because physically based dispersion models 
are not, at least yet, applicable in the explora-
tion of fine-scale spatial variation of pollen 
concentrations (Sofiev and Bergmann 2012; 
Sofiev et al. 2013). The main application of 
the suggested methodology is to assess longer-
term (from weekly to seasonal) exposures to 
pollens and not short-term, high-dose expo-
sures (Figure 2). Second, the measured grass 
pollen concentrations presented significant 

Table 2. Results of the final generalized linear models (GLMs).

Model calibration All samples (n = 16) Extreme values off (n = 14)
Final GLM (α + βxi) 1.287 + 0.032 (greenness) + 7.8–6 (wasteland) 1.179 + 0.024 (greenness)
AIC 18.2 8.0
D2 0.785 0.466
Correlation (fitted – obs) r = 0.89 (p < 0.001); rs = 0.79 (p < 0.001) r = 0.68 (p = 0.007); rs = 0.69 (p = 0.006)
Residuals

Normality (K-S test) Normally distributed (p = 0.829) Normally distributed (p = 0.826)
Homoscedasticity Acceptable Acceptable
Spatial autocorrelation No autocorrelation (Moran’s I p > 0.05) No autocorrelation (Moran’s I p > 0.05)
Cook’s distance One observation > 1 All observations < 0.5

Abbreviations: α, intercept; β, regression coefficient; xi, environmental variable; AIC, Akaike’s Information Criterion; 
D2, explained deviance (comparable to explained variance in least-square regression); fitted, fitted values; greenness, 
greenness of tasseled cap transformation; K-S test, Kolmogorov–Smirnov test; obs, observed values; r, Pearson’s corre-
lation coefficient; rs, Spearman’s rank order correlation coefficient; wasteland, unmanaged grassland land use classes.
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intra-urban variation. Consequently, it is 
necessary to consider also local-scale sources 
in addition to regional-scale sources or long-
distance atmospheric transport when assessing 
population exposure to grass pollens in 
urban environments.

Implications for the Assessment 
of Exposure and Health Effects
Associations between pollen concentra-
tions measured by regional pollen moni-
toring stations and allergic and asthmatic 
symptoms and lung function variation have 
been reported (Caillaud et al. 2014; Delfino 
et al. 2002). However, the role of long-term 
exposure to allergenic pollen in the develop-
ment of asthma and other allergic diseases has 
not been studied, partly because of the lack of 
appropriate methods for exposure assessment.

Our findings suggest that allergenic grass 
pollen concentrations can be estimated with 
reasonable accuracy using geospatial data 
variables. Because similar data have been 
collected for several decades, it may be possible 
to adapt our method to perform retrospec-
tive lifetime exposure assessment (Gulliver 
et al. 2013) for cohort members based on 
historical land use data, pollen data, and indi-
vidual residential history data (Richardson 
et al. 2013) (Figure 2). In this example, the 
local variations in pollen concentration are 
predicted using past environmental condi-
tions (e.g., Landsat satellite images that are 
available for more than 3 decades), and the 
regional level of concentration is determined 
by a permanent, long-term pollen collector 
located in the study area (e.g., daily pollen 
observations from the Helsinki metropolitan 
area have been available since the mid-1970). 
The presented modeling approach could also 
be applied in cross-sectional studies comparing 
the prevalence of asthma-related and allergic 
symptoms according to residential area or 
time-activity pattern.

One notable issue was the moderate 
prediction bias when the models were extrapo-
lated to other periods (i.e., under-prediction 
of grass pollen concentrations when pollen 
production of the extrapolation period was 
lower than in the calibration period). However, 
this potential bias can be taken into account in 
retrospective predictions, if the overall concen-
tration differences between different periods 
are known. The long-term pollen concentra-
tion measurements from regional monitoring 
stations can be used for this purpose.

Data and Methodological Issues
Our findings reinforce the need to identify 
optimal buffer sizes for each environmental 
determinant, because appropriate buffers 
may vary substantially. In addition, our 
results support the hypotheses that there are 
large intra-urban variations in grass pollen 

concentrations, and these heterogeneities are 
associated with local-scale variations in land 
use (Skjøth et al. 2013). The remote sensing–
based TC greenness variable outperformed 
land use and land cover variables in this study. 
In general, remote sensing–based indices have 
several advantages over the traditional land use 
variables. Remote sensing data can be acquired 
over extensive areas and from numerous 
sources at various spatial, temporal, spectral 
and radiometric resolutions (Lillesand et al. 
2004). More important, remote sensing–based 
variables can be computed to describe the 
environmental conditions continuously (i.e., 
each pixel has a continuous numerical value).

In contrast, the land use variables are 
dichotomized (i.e., the class is present or 
not) (Katz and Carey 2014). This property 
impedes the use of distinct land use/cover 
classes in predictive modeling settings, because 
the model will predict equal concentrations 
in areas without variation in the explana-
tory variable(s). For example, the wasteland 
variable describing unmanaged grasslands 
was, in theory, an ideal variable reflecting the 
sources of grass pollens. However, the amount 
of this land use type was low in the study area 
(Figure 1).

Some data-related and statistical issues 
should be considered. First, the number of 
observation sites (n = 16) was limited, which 
caused challenges in model calibration and 
evaluation. Robust statistical models usually 
require dozens of observations (e.g., Hjort 
et al. 2011; Beelen et al. 2013), and hundreds 
of sample sites may be optimal in analyzing 
ecological response variables (Stockwell and 
Peterson 2002). The use of passive aerosol 
samplers would make it feasible to acquire 
data from more sites and thus improve the 
assessment and prediction of spatial variation 
in pollen concentrations in intra-urban areas 
(e.g., Hofmann et al. 2014).

Second, variables describing meteorolog-
ical conditions were not included into the set 
of environmental determinants. The primary 
goal of our model was to predict the spatial 
variability of pollen concentrations within 
an urban area: Additional data and a longer 
sampling period would be required to accu-
rately predict the absolute values of the pollen 
concentrations. The weather conditions were 
partially taken into account in the sampling of 
pollen data (no sampling during rainfall, only 
daytime sampling) and during the prepara-
tion of calibration and evaluation data sets (see 

Figure 3. Scatter plots of the observed (i.e., measured) and predicted grass pollen concentrations 
(grains/m3) for the larger (n = 16) (A,B) and smaller (n = 14) (C,D) data sets. In the evaluation setting, the 
observed concentrations were measured during morning (0800–1130 hours, 27 June–9 July 2013) (A,C ) and 
another period (0800–1130 and 1300–1630 hours, 10–21 July 2013) (B,D). The solid line shows the optimum 
fit (intercept = 0, slope = 1) and the dashed line the fit to the data. Pearson’s correlation coefficients (r ) are 
also shown.
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Supplemental Material, Table S1). Implicitly, 
the regular effects of meteorological factors 
in different land use classes are accounted 
for during the calibration step. We assumed 
that all other effects of meteorology would be 
consistent across the study area, which would 
make them irrelevant for predicting spatial 
variation. Moreover, we used data averaged 
over 2-week periods (27 June–9 July and 
10–21 July, respectively) to reduce the impact 
of short-term temporal variability.

Third, in addition to the sample size–
related problems, regression-based statistical 
methods include several data-based assump-
tions (Sokal and Rohlf 1995). For example, 
assumptions of normality, homoscedasticity, 
and independence of errors are often violated 
in analyzing complex responses. In this study, 
we aimed to minimize problems related to 
regression analysis in compilation and 
computation of study material [e.g., compre-
hensive explorative data analysis (Tukey 
1977) before multivariate analyses; data not 
shown] and by using generalization of the 
least-square linear regression method (i.e., 
GLM). Moreover, we used widely accepted 
model calibration and evaluation procedures 
(e.g., Beelen et al. 2013) and the HP method 
for considering potential multicollinearity 
problems in multivariate analysis (Chevan 
and Sutherland 1991).

For future studies focusing on spatial 
prediction of pollen concentrations for 
exposure assessments, we recommend the 
following steps (Elith and Leathwick 2009; 
Beelen et al. 2013): a) establishment of a 
conceptual model that is based on literature 
and empirical findings, b) compilation of envi-
ronmental data from different sources and at 
various scales (remote sensing–based at finer 
and land use at coarser scales), c) comprehen-
sive statistical and graphical exploration of 
both response and environmental variable 
data, and d) substantial evaluation of the 
generated model. The evaluation should 
include the assessment of the realism of fitted 
explanatory variables (e.g., expected signs for 
regression coefficients), the model’s fit to data, 
characteristics of residuals, predictive perfor-
mance on independent test data, and visual/
graphical exploration of the predictions.

Conclusions
In this study, we have elaborated the rela-
tionship between environmental deter-
minants and atmospheric allergenic pollen 
concentrations in an urban area. Previous 
studies have not explored the possibility of 
predicting the intra-urban variation of grass 
pollen concentrations, using geospatial data 
and statistical methods. A novelty of the 
present work is a comprehensive set of pollen 
measurements in urban environments, which 
enables the spatial modeling of urban pollen 

concentrations. Moreover, we developed the 
LUR approach by exploring the contributions 
of different data sources (remote sensing and 
land use) and scales of explanatory variables.

Based on the results, we draw three main 
conclusions. First, it is possible to spatially 
predict the fine-scale variation of grass pollen 
concentrations across an urban area using 
the LUR approach. An extensive evaluation 

of the modeling results is highly important. 
Moreover, based on the visual exploration 
of pollen predictions (Figure 4), models 
should be extrapolated beyond the calibra-
tion environment with care. Second, a remote 
sensing vegetation variable (TC greenness) 
outperformed land use variables in our study 
setting. Remote sensing–based indices have 
several strengths, which highlight their use in 

Figure 4. A smoothed prediction map of the grass pollen concentration (grains/m3; afternoon situation 
during 27 June–9 July 2013) at a 100-m resolution and aerial photographs (A–D) (resolution = 50 cm) 
representing different environmental conditions within the Helsinki metropolitan area, Finland. The 
predictions were computed using the final generalized linear model and n = 14 data set. To consider the 
potential statistical problems related to outlier observations in the n = 16 data set (see the “Methods” and 
“Results” sections) the smaller data set was used in the prediction (i.e., in the extrapolation of the model 
beyond the environmental conditions of the calibration area) [National Land Survey of Finland (http://www.
maanmittauslaitos.fi/en/kartat)]. 
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modeling and predicting pollen concentra-
tions in human-modified environments. 
Third, statistically based predictive pollen 
models could probably be used in retrospective 
exposure assessment, if residential histories are 
available and pollen concentrations have been 
monitored or modeled for the corresponding 
period. The developed LUR approach demon-
strated the possibility of predicting the spatial 
variability of mean pollen concentrations at 
breathing-zone level, contrary to urban back-
ground or regional scale usually pursued by the 
existing monitoring and modeling tools.

In the future, exposure assessment studies 
should not be based solely on (few) roof-level 
pollen monitoring sites due to the signifi-
cant intra-urban variation of allergenic pollen 
concentrations. Instead, it would be highly 
valuable to combine both local- and regional-
scale observations in studying spatially and 
temporally the relations between environ-
mental determinants and concentrations of 
allergenic pollen. Moreover, hybrid modeling 
should be examined that combines physically 
(i.e., deterministic dispersion modeling) and 
statistically based models.
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