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Introduction
Norovirus is a highly infectious and costly 
pathogen (Atmar 2010; Wang and Deng 
2012). It is the leading cause of endemic diar-
rheal disease across all age groups, and the 
cause of half of all gastroenteritis outbreaks 
worldwide (Hall 2012). At this time, little 
can be done to prevent human health risks 
of norovirus because there is no vaccine to 
prevent infection, no drug to treat it, and 
no model to predict norovirus outbreaks. 
However, it might be possible to prevent or 
at least reduce norovirus infection and associ-
ated costs by monitoring norovirus indicators 
daily and predicting norovirus outbreaks in 
advance, if environmental factors that predict 
the outbreaks can be identified and modeled.

Norovirus is commonly found in oysters 
growing in contaminated waters. Oyster 
contamination with norovirus may occur 
after heavy rainfall, which often results in 
contaminated overland runoff, combined 
sewer overflow, or hydraulic overload in 
sewage treatment plants (Le Guyader et al. 
2006; Miossec et al. 2000; Yang et al. 2012; 
Ye et al. 2014). Oysters filter large volumes of 
water as part of their filter-feeding activities 
and are able to accumulate and concentrate 
norovirus (Le Guyader et al. 2010). Therefore, 
oyster contamination with norovirus may cause 
norovirus outbreaks. Although environmentally 
mediated norovirus outbreaks do not occur 
frequently, outbreaks may have substantial 

impacts on human health, with symptoms 
including diarrhea, nausea, vomiting, and 
abdominal cramps (Le Guyader et al. 2010). In 
addition, secondary transmission from person 
to person may occur, and outbreaks may result 
in school and workplace closures, as well as the 
closure of oyster harvesting waters and costly 
oyster recalls. Oyster norovirus outbreaks have 
been reported worldwide. Westrell et al. (2010) 
reported 334 cases in 65 clusters of oyster noro-
virus outbreaks from January through March 
2010 in five European countries, including the 
United Kingdom, Norway, France, Sweden, 
and Denmark. A total of 305 cases were 
attributed to oyster norovirus outbreaks that 
occurred from 16 December 2003 to 4 January 
2004 in Singapore (Ng et al. 2005). Multiple 
clusters of norovirus outbreaks were associ-
ated with raw oyster consumption affecting 
36 people in British Columbia, Canada, in 
2010 (McIntyre et al. 2012), and 525 cases 
were identified in March 2013 in Australia 
from consumption of norovirus-contaminated 
oysters (Lodo et al. 2014).

Oysters are filter feeders that pump a large 
amount (about 5 L/hr) of water (including 
norovirus in the water) through their gills 
and mantle (Wang and Deng 2012). Oyster 
norovirus outbreaks appear to be influenced by 
environmental factors, such as rainfall, temper-
ature, and salinity (Wang and Deng 2012). 
Norovirus outbreaks in oyster harvest waters 
often take place during cold weather (Maalouf 

et al. 2010). Wastewater effluent from failing 
wastewater treatment plants may be a common 
route of norovirus transmission after heavy 
rainfall (Flannery et al. 2012, 2013; Schijven 
et al. 2013). Maalouf et al. (2010) found that 
viruses tend to attach to fine sediment particles 
or silts, and that salinity may enhance the 
binding of viruses to fine sediment particles. 
As a result, viruses are protected by marine 
sediment and may persist in an infectious state 
for several months, especially when salinity 
is low. In oyster harvest waters, norovirus 
survival rates increase with reduced exposure 
to ultra violet light (Lee and Ko 2013). A 
1-month follow up study suggested that strong 
winds were associated with a rapid increase in 
norovirus prevalence in oyster harvest areas 
(Grodzki et al. 2012). However, despite recent 
progress in identifying individual environ-
mental risk factors for norovirus outbreaks, 
little is known about key environmental factors 
controlling the outbreaks.

The overall goal of the present study was 
to establish a quantitative model for predicting 
oyster norovirus outbreaks. Our specific 
objectives were a) to identify environmental 
predictors for oyster norovirus outbreaks, and 
b) to construct a model for estimating the 
 probability of an oyster norovirus outbreak.

Materials and Methods
Due to the lack of concentration data for 
norovirus in oyster-growing waters, we devel-
oped a probability-based Artificial Neural 
Network (ANN) model, using historical data 
on norovirus outbreaks in 30 oyster harvest 
areas from 1994 through 2007, for predicting 
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the risk of potential oyster norovirus 
outbreaks in a probabilistic fashion, similar to 
weather forecasts.

Study Area 
Louisiana is one of the primary oyster-
producing states in the United States. There 
are 30 oyster harvest areas along the Louisiana 
coast (Figure 1). Areas 1–7 are located to the 
south of Lake Pontchartrain and to the east 
of the Mississippi River, whereas Areas 8–30 
are located west of the river. Areas 29 and 30 
are actually in the Calcasieu River estuary. In 
addition to fresh water discharges from the 
rivers and lakes, the oyster-harvesting areas 
may also receive sewage from oyster-harvesting 
boats and failing septic systems along the 
shoreline and contaminated urban stormwater 
runoff and combined sewer overflows from 
nearby cities, constituting potential sources 
of oyster norovirus contamination (Schaeffer 
et al. 2013).

Outbreak Data Sets
Historical norovirus outbreaks in Louisiana 
oyster harvest areas were recorded in 
Louisiana morbidity reports released annually 
by Louisiana Department of Health and 
Hospitals (Table 1). Some additional data 
for individual outbreaks, such as the duration 
and the number of infected people, were 
provided by Ronald J. Dugas, at the Louisiana 
Department of Wildlife and Fisheries 
(personal communication). 

Data and sources for environmental 
variables. Environmental data for five 

environmental predictors were collected for 
the years 1994–2014. Because the number 
of norovirus outbreak events is limited, the 
21 years of data were split into two data 
periods based on time sequence of norovirus 
outbreaks: period 1 (1994–2007) used for 
model development, and period 2 (2008–
2014) for prediction (independent testing or 
cross-validation). Data for gage height, water 
temperature, and salinity were obtained from 
U.S. Geological Survey (USGS) stations 
(http://www.usgs.gov/) located in Louisiana 
oyster harvest areas, and data for rainfall and 
wind (including wind speed and direction) 
were obtained from Louisiana State University 
Agricultural Center (LSU AgCenter) stations 
(http://weather.lsuagcenter.com) (Figure 1).

Gage height is essentially the water depth 
in an oyster-growing area. We selected gage 
height as a potential predictor because low 
gage height (low water depth) may reduce 
dilution of sewage-contaminated runoff from 
antecedent rainfall, thus potentially increasing 
norovirus concentrations in oyster-growing 
waters (Wang and Deng 2012). We selected 
water temperature as an environmental 
predictor because cold weather or low temper-
ature favors norovirus survival (Westrell et al. 
2010). Salinity has also been reported to affect 
the persistence of norovirus in oyster harvest 
waters by enhancing virus binding to fine 
sediment particles (Maalouf et al. 2010). We 
also selected rainfall as a potential predictor 
because it facilitates the transmission of noro-
virus from inland sources to oyster-growing 
waters (Wang and Deng 2012). Finally, we 

included wind as an environmental predictor, 
defined as a function (product) of both wind 
speed and wind direction. Generally, an 
onshore wind causes water levels to rise at the 
coast (set-up), whereas an offshore wind causes 
water levels to fall (set-down). We hypothe-
sized that offshore winds would facilitate the 
transmission of norovirus from land to oyster 
harvest waters, in addition to causing water 
levels to fall, thus increasing the concentration 
of norovirus in oyster-growing waters. Because 
the wind direction that determines whether 
the wind is onshore or offshore varies among 
different locations, we defined a dichotomous 
indicator variable (1 if offshore, 0 if onshore) 
separately for each location. Specifically, winds 
blowing from 180 to 360 degrees were defined 
as offshore in oyster harvest Areas 1–7, winds 
from 90 to 270 were classified as offshore 
in Areas 8–17, and winds blowing from 0 
to 180 degrees were classified as offshore for 
Areas 18–30. It should be noted that wind, 
as the product of speed and direction, is not a 
dichotomous variable.

Due to the sparse distribution of LSU 
AgCenter weather stations, several oyster-
harvesting areas share the data from a 
common nearby weather station. Specifically, 
the rainfall and wind data from Hammond 
station are used for Areas 1–3, and data for 
Areas 4–7, 8–19, 20–26, and 27–30 are 
collected from the stations in the cities: Port 
Sulphur, Houma, Jeanerette and St. Gabriel, 
and Lake Charles, respectively.

Because a USGS station is located at the 
border between Areas 2 and 3, the two areas 
(2 and 3) share the same data from the USGS 
station. Due to missing data in some years 
for Area 24, the same data sets are used for 
Areas 24 and 26. Likewise, Areas 29 and 30 
are also treated as a single area in terms of 
data sharing. As a result, there are only 12 
oyster harvest areas where independent data 
are available, including Areas 1, 2 (including 
3), 6, 7, 12, 13, 14, 15, 17, 19, 24 (including 
26), and 30 (including 29). In areas 
containing two or more USGS stations, the 
station with the most complete data was used 

Table 1. Norovirus outbreaks during 1994–2013.

Norovirus outbreak period Areas
25 January 1996–16 February 1996 6, 7
8 February 1996–23 February 1996 6, 7
22 December 1996–3 January 1997 6, 7
1 March 2002–31 March 2002 1
12 March 2002–28 March 2002 6, 7
10 December 2007–21 December 2007 3
20 March 2010–25 March 2010 3
6 March 2010–24 March 2010 7
27 March 2010–30 March 2010 13
26 April 2012–8 May 2012 23
28 December 2012–4 January 2013 30

Norovirus outbreak data were collected from Louisiana 
Morbidity Reports (http://dhh.louisiana.gov/index.cfm/
newsroom/archives/126).

Figure 1. Oyster harvesting areas along Louisiana coast, USA. [MODIS Surface Reflectance image from 
2001 was retrieved from https://ladsweb.nascom.nasa.gov/ maintained by the NASA EOSDIS Level 1 and 
Atmosphere Archive and Distribution System Distributed Active Archive Center (LAADS DAAC), NASA’s 
Goddard Space Flight Center, Greenbelt, Maryland. The data product for the image was provided by NASA.] 
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as the primary station, and the other stations 
were used as a source of supplementary data. 
All data are available online at the hourly time 
scale, making it possible to obtain the daily 
maximum, daily minimum, daily change, 
and daily average of the variables, which are 
needed in the predictive model.

Selection of model input variables. 
Stepwise regression analysis has been widely 
used to select model input variables (predic-
tors) and reduce the number of potential 
model input variables for ANN analysis 
(Genell et al. 2010; Zhang et al. 2012, 2015). 
We used forward stepwise regression (PROC 
REG, SELECTION = STEPWISE; SAS 9.2) 
(SAS Institute Inc. 2008) to select a final set 
of model predictors of norovirus outbreaks 
based on both the partial R2 values for indi-
vidual variables, and the overall model R2 
values. We began with a large pool of potential 
environmental predictors that included several 
measures of gage height [daily maximum gage 
height (daily maximum gage height – daily 
minimum gage height), minimum gage height, 
average gage height, and daily change in gage 
height], water temperature (daily average 
temperature, minimum temperature, and 
maximum temperature), rainfall (rainfall on 
the same day, and rainfall on 1–15 previous 
days), salinity (daily average, maximum, and 
minimum), and wind (direction and speed). 
Environmental variables selected for the final 
model, ranked from the highest to lowest 
individual R2 values, were maximum gage 
height, minimum temperature, wind (offshore 
or onshore, as defined above), change in gage 
height, rainfall 9 days before, and minimum 
salinity, with all variables except rainfall 
defined by values on the current day. Variables 
were automatically selected in the stepwise 
regression analysis based on individual R2 

p-values < 0.05 except for salinity (p = 0.15), 
which was included because it improved the 
overall model R2 value by 9.84%.

Normalization of ANN model input 
variables (environmental predictors). 
After selection, all model input variables 
were normalized to a range of 0–1 using 
Equation 1, where a represents a model input 
variable, max(a) and min(a), which refer to 
observed historical maximum and minimum 
values of a, respectively. The parameter, N(a), 
stands for the normalized variable of a.

 max min
min

N a a a
a a

=
-

-^ ^ ^
^h h h
h

. [1]

After normalization, we graphically 
examined the relation between each environ-
mental predictor (except rainfall, which had 
a limited distribution) and the frequency of 
norovirus outbreaks (Figure 2). Figure 2A 
shows that the frequency of norovirus 
outbreaks has a highly nonlinear relationship 

with the normalized gage height (GH) 
and daily change in gage height (DCGH). 
Basically, about 70% of historical norovirus 
outbreaks occurred when GH was lower than 
0.2. For this reason, the variable (0.5GH)
DCGH (selected through a trial-and-error 
procedure to produce the best fit curve in 
Figure 2A) was actually used as a model input 
variable in lieu of the daily change in gage 
height while GH was also included as another 
model input variable. The nonlinear rela-
tionship was derived by using the Microsoft 
Excel LINEST function for multivariate 
regression with the frequency of norovirus 
outbreaks as the dependent variable and 
the predictors (0.5GH)DCGH and GH as 
independent variables. Temperature, salinity, 
and wind had approximately linear relations 
with the frequency of norovirus outbreaks 
(Figure 2B–D) and were therefore modeled 
as normalized continuous variables. The linear 
relationships were also derived using the Excel 
LINEST function. However, the values of 
variables that were negatively associated with 
outbreaks were subtracted from 1 so that 
all predictors would be positively associated 
with the probability of an outbreak, such that 
the final set of normalized predictors used 
as input for the ANN model were 1 – gage 
height, (0.5gage height) × daily change in gage 
height, 1 – temperature, 1 – salinity, wind, 
and rainfall 9 days prior.

The ANN was previously found to 
be a simple yet effective tool for describing 
nonlinear relationships between the concen-
tration of fecal indicator bacteria in coastal 
recreational waters and environmental variables 
(Zhang et al. 2012, 2015). A significant advan-
tage of an ANN model over numerical models 
is its flexibility in dealing with a large number 
of model input variables when the specific 
functional relationship between a dependent 

variable and independent model input vari-
ables is unknown (Hamilton et al. 1997), as 
is the case for norovirus outbreaks. We used 
the ANN Toolbox in the MATLAB Program 
(version 2010a) to train a feed-forward ANN 
model using the error back-propagation algo-
rithm to integrate the environmental predic-
tors for the prediction of oyster norovirus 
outbreaks. The ANN model architecture 
consists of an input layer with the six predictor 
variables, a hidden layer with 20 neurons, and 
an output layer that displays the estimated 
probability of oyster norovirus outbreaks 
based on the model. In the model develop-
ment phase, the normalized data sets for the six 
input variables, collected from 1994 through 
2007, were employed in the input layer. The 
14 years of data from the 12 oyster-harvesting 
areas with complete and independent data sets 
(Areas 1, 3, 6, 7, 12, 13, 14, 15, 17, 19, 24, 
and 30) were first combined without distin-
guishing one area from another, and were then 
randomly split into three groups for training 
(60% of data), validation (20% of data), 
and testing (20% of data). The data values 
in output layer were either 1 (if there was an 
oyster norovirus outbreak) or 0 (if there was no 
outbreak). We identified the best-trained ANN 
model based on the performance of top-ranked 
models in reproducing confirmed oyster noro-
virus outbreaks. Predictions based on the ANN 
model were compared with historical data 
for norovirus outbreaks to identify threshold 
values for model-predicted probabilities that 
were consistently associated with outbreaks. 
We subsequently refer to the best-trained 
ANN model as the Norovirus Outbreak Risk 
Forecasting model, or NORF model.

Sensitivity analysis. To evaluate the 
sensitivity of the NORF model to individual 
model parameters, we changed the mean 
value of each input variable (gage height, 

Figure 2. Relationships between the frequency distribution of norovirus outbreaks (y-axis) and  normalized 
environmental predictors (x-axis): (A) gage height (GH) and daily change in gage height (DCGH), 
(B) temperature (T), (C) salinity (S), and (D) wind (W).
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temperature, salinity, wind, and rainfall), 
one at a time, by ±5%, ±10%, ±20%, ±30%, 
and ±40%, respectively, and calculated the 
percent change in the model output (i.e., the 
predicted probability of an outbreak) with 
each incremental change in the individual 
predictor variables.

Independent  c ro s s -va l ida t ion .  A 
 cross- validation was performed to measure 
the predictive ability of the model using data 
collected from 2008 to 2014 that were not 
used in the model development phase. The 
primary criterion for assessing model perfor-
mance during the cross-validation phase was 
to accurately predict all past oyster noro-
virus outbreaks from 2008 to 2014 without 
producing false outbreaks.

Predictions for another location. In 
addition to Louisiana, the NORF model 
was also tested as part of the cross-validation 
using the data collected from the Copano 
Bay, Texas, oyster-harvesting area for 
1 January–31 December 2013. The data for 
gage height, temperature, and salinity were 
collected from USGS station 8211503, and 
rainfall data were collected from USGS station 
8288570. Wind speed and direction data 
were collected from NOAA station 8774513. 
Winds blowing from 67.5 to 247.5 degrees 
were defined as offshore winds. The data 
were processed using the same methods as 
those for processing Louisiana data. NORF 
model predictions of potential oyster noro-
virus outbreaks in this area were made for 
365 days in 2013.

Results
We compared predicted probabilities of noro-
virus outbreaks based on the NORF model 
with the occurrence of reported outbreaks 
in 1996, 2002, and 2007 and identified a 
threshold model–based probability of 0.6 that 
consistently predicted the observed outbreaks 
(Figure 3).

Two oyster-harvest areas (6 and 7) were 
shut down on 16 and 23 February 1996, 
respectively, and oysters harvested in Area 6 
from 25 January and Area 7 from 8 February 
were recalled. The NORF model predicted 
high norovirus outbreak probabilities of 0.733 
for 4 February and 0.833 for 5 February, 
respectively (Figure 3A). There was another 
reported norovirus outbreak in Areas 6 and 7 
in December 1996 that caused multiple clusters 
of illnesses (total n = 493) associated with the 
consumption of norovirus-contaminated raw 
oysters on 25 December (http://www.outbreak-
database.com/details/louisiana-oysters-1996/). 
The two areas were closed on 3 January 1997, 
and oysters harvested between 22 December 
1996 and 3 January 1997 were recalled. The 
NORF model predicted an outbreak prob-
ability of 0.820 for 18 December 1996. The 
model prediction suggests that oysters should 

have been recalled on 18 December instead 
of 22 December 1996 to 3 January 1997. 
The NORF model also predicted noro-
virus outbreaks that occurred in Areas 1, 6, 
and 7 in March 2002 (Figure 3B). In 2007, 
oysters harvested in Area 3 between 10 and 
21 December were recalled due to a norovirus 
outbreak, while the NORF model predicted a 
norovirus outbreak with a probability of 0.604 
for 16 December 2007 (Figure 3C).

In general, NORF model predictions 
were consistent with the reported oyster 
norovirus outbreaks, though there were some 
differences in the timing of the predicted 
versus reported outbreak dates. However, 

the reported onset dates for norovirus 
outbreaks were usually estimated based on 
post-outbreak epidemiologic investigations, 
and it is possible that the reported norovirus 
outbreak onset dates or oyster recall dates 
may not be accurate. The NORF model was 
also run for other years during 1994–2007 
that did not have any reported norovirus 
outbreaks. The model predicted low outbreak 
probabilities (< 0.5) during all of these years 
(results not shown).

Sensitivity Analysis
Decreases in gage height, temperature, and 
salinity, and increases in rainfall and wind, 

Figure 3. Comparison between the NORF model–predicted probabilities of norovirus outbreak and the 
observed norovirus outbreak probabilities (0 or 1) in oyster-harvesting areas along Louisiana Gulf Coast: 
(A) Areas 6 and 7 with outbreaks in February and December 1996, (B) Areas 1, 6, and 7 with outbreaks 
in March 2002, and (C) Area 3 with an outbreak in December 2007 The red horizontal line denotes the 
threshold probability of 0.6 for norovirus outbreaks, implying that a norovirus outbreak would occur if 
the model-predicted probability is > 0.6. Likewise, the yellow horizontal line indicates the threshold prob-
ability of 0.5 for non-outbreak, meaning that there would be no norovirus outbreaks if the model predicted 
 probability is < 0.5.
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were associated with increases in model-
predicted probabilities of oyster norovirus 
outbreaks (Figure 4). Likewise, increases in 
gage height, temperature, and salinity, along 
with decreases in rainfall and wind, were 
associated with lower estimated probabili-
ties. Changes in gage height and temperature 
had the greatest influence on model predic-
tions, whereas salinity, rainfall, and wind also 
affected model predictions. Specifically, the 
NORF model predicted norovirus outbreak 
probability increases of 20%, 45%, 103%, 
167%, and 243% when the gage height was 
reduced by 5%, 10%, 20%, 30%, and 40%, 
respectively. Likewise, the model predicted 
norovirus outbreak probability increases of 
51%, 95%, 155%, 180%, and 221% for 
corresponding decreases in temperature.

Independent Cross-Validation
There were five reported norovirus outbreaks 
in the independent testing period from 
January 2008 through December 2014 
(Table 1). Three of the five outbreaks took 
place in March 2010. Area 3 was closed on 
25 March after 14 people became ill due to 
the consumption of norovirus-contaminated 
raw oysters harvested between the suspected 
(unconfirmed) period of 20 March and 
25 March (Figure 5A). Nine additional cases 
were reported after the closure of Area 3. The 
NORF model predicted at least two norovirus 
outbreaks on 2 March (probability = 0.82) 
and 13 March (probability = 0.85) to 
14 March (probability = 0.60), respectively. 
The predicted outbreak on 2 March coin-
cided with an extremely strong offshore wind 
(normalized value = 0.52, or 16.1 m/sec), 
low gage height (normalized = 0.09, 0.68 
feet) and low temperature (normalized 
= 0.22, 11.2°C).

The model-predicted and reported 
outbreak dates (2 March vs. 20 March) 
differed for Area 3, but the model-predicted 
outbreak on 2 March for Area 3 was close 
to the date of a reported norovirus outbreak 
on 6 March in Area 7 (Figure 5B). This area 
was closed on 24 March after 14 people 
were infected by norovirus after eating raw 
oysters harvested between 6 March (date 
inferred from post-outbreak investigation) 
and 24 March. The NORF model predicted 
a norovirus outbreak on 13 March in Area 7 
with a probability of 0.85. Environmental 
conditions that favored an outbreak in Area 7 
on this date included an extremely low gage 
height (normalized value = 0.08, –0.23 feet), 
low salinity (0.12, 3.2 parts per thousand), 
and strong offshore wind (0.52, 16.1 m/sec). 
Area 13 was also closed on 30 March after 19 
people became ill after consuming norovirus-
contaminated raw oysters harvested between 
27 March and 30 March 2010 (Figure 5C). 
The NORF model predicted two norovirus 

outbreaks in Area 13 on 22 and 29 March, 
respectively, both with a probability of 0.68.

Environmental conditions in Areas 12 
and 13 are very similar, and the monitoring 
stations in the two areas are also very close 
to each other. Although there were no 
reported norovirus outbreaks in Area 12, 
the NORF model predicted outbreaks on 
13 March (probability = 0.74), 22 March 
(probabil i ty = 0.64),  and 29 March 
(probability = 0.71).

There were two reported norovirus 
outbreaks in April–May and December 
2012 in Areas 23 and 30, respectively 
(Figure 5D). Area 23 was closed on 8 May 
2012 after 14 people became ill with noro-
virus after eating oysters at a restaurant on 
28 or 29 April. The Louisiana Department 
of Health and Hospitals ordered a recall of 
all oysters harvested from that area since 
26 April 2012. Because there is no moni-
toring station in Area 23, the NORF model 
cannot be used to predict outbreaks in this 
area. The NORF model did predict a noro-
virus outbreak in Area 24/26 on 29 April 
2012, (probability = 0.67). However, 
Areas 22, 24, and 26 were not open for oyster 
harvesting (Louisiana DHH Office of Public 
Health 2012) during this time period, so 
it was not possible for norovirus outbreaks 
to spread in these areas. Another reported 
norovirus outbreak occurred in Area 30 at 
the end of 2012 (Louisiana DHH Office of 
Public Health 2013). Area 30 was closed on 
4 January 2013 after 12 people became ill 
with norovirus after eating oysters harvested 
from this area between 28 December 2012 
and 4 January 2013. The NORF model 

predicted a norovirus outbreak in Area 30 
on 29 December 2012 (probability = 0.72) 
(Figure 5D), consistent with the observed 
norovirus outbreak.

Predictions for Another Location
The U.S. Food and Drug Administration 
(FDA) warned consumers not to eat oysters 
harvested between 26 December 2013 and 
9 January 2014 from Copano Bay, Texas, 
after they were linked to a norovirus outbreak 
(FDA 2014) that caused six norovirus 
illnesses in Louisiana residents. The NORF 
model was employed to predict the prob-
ability of norovirus outbreak in Copano Bay 
from 1 January to 31 December 2013. The 
model predicted the highest probability of a 
norovirus outbreak on 29 December 2013 
with a probability of 0.53, below the 0.6 
threshold probability defined for Louisiana, 
but above the lower threshold of 0.50. This 
suggests that the NORF model may be appli-
cable to oyster-growing areas beyond the 
Louisiana coast. However, new or site-specific 
definitions for wind direction (specifically 
offshore or onshore wind for each individual 
area) must be derived.

Discussion
Although a norovirus outbreak may theoreti-
cally occur at any probability, our findings, 
which are based on a comparison of model 
predictions with a limited number of 
observed outbreaks, suggest that there is little 
risk of an outbreak when the NORF model 
predicted probability is < 0.5, and a high like-
lihood of an outbreak when the predicted 
probability is > 0.6.

Figure 4. Sensitivity of the NORF model output to environmental predictors. Solid bars indicate percent 
changes in the probability (model output) predicted by the NORF model due to positive changes to model 
input variables; the hollow bars indicate percent changes in the model output due to negative changes to 
model input variables.
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Although it has been widely reported that 
norovirus outbreaks exhibit strong season-
ality, with the outbreak peak occurring 
commonly in winter (Wang and Deng 2012; 
Westrell et al. 2010), to our knowledge, this 
is the first time that gage height has been 
identified as an environmental factor asso-
ciated with oyster norovirus outbreaks. The 
practical significance of this finding is that 
extremely low tide (or gage height) in winter 
(during low temperature) could be used as an 
indicator of norovirus outbreaks.

Our findings also suggest that norovirus 
outbreaks generally occur when extremely low 
gage height occurs in combination with low 
water temperature, low salinity, strong offshore 
wind, and heavy antecedent rainfall. Daily 
change in gage height was also a predictor, 
which may reflect an effect of the minimum 
daily gage height. The daily minimum water 
temperature was the second most influential 
predictor. Low temperature may cause the 
pore size of oyster gills to contract, thereby 
increasing the concentration of norovirus parti-
cles that are larger than the contracted pore size 
(Hopkins 1935). Because wind (the third envi-
ronmental predictor) is defined as the product 
of wind speed and wind direction, both 
the speed and the direction affect norovirus 
outbreaks. As previously noted, low salinity 
may enhance the binding of viruses to fine 
sediment particles (Maalouf et al. 2010), which 
may help virus particles persist in an infectious 
state for several months. The fifth predictor 
included in the NORF model was rainfall on 
the ninth day before a norovirus outbreak. 
This suggests the possibility of a 9-day time 
lag between the release of virus from norovirus 
sources, such as inadequately treated/untreated 
sewage from failing wastewater treatment 
plants and faulty septic systems (Burkhardt 
and Calci 2000; Flannery et al. 2012; Goblick 
et al. 2011; Rajko-Nenow et al. 2013; Wang 
and Deng 2012), and the contact with an 
oyster-growing area. The specific time lag for a 
given location is likely to depend on the size of 
drainage basin and the locations of the stations 
used to measure rainfall for a given oyster 
growing area.

The potential significance of the NORF 
model is that it may allow oyster norovirus 
outbreaks to be predicted in advance (if fore-
casting data are available), or at the onset of 
outbreak, making it possible to prevent or at 
least reduce the risk of norovirus to human 
health, and costly oyster recalls. Potential 
users of the NORF model include, but are 
not limited to, state public health agencies 
and federal public health and food safety 
agencies. If the NORF model produces an 
alert, a responsible agency would need to take 
water and oyster samples from the high-risk 
area to confirm the alert, in which case the 
infected oyster-growing area could be closed.

Conclusions
We developed a probability-based model for 
predicting oyster norovirus outbreaks. The 
NORF model is based on five independent 
predictors, including gage height, temperature, 

salinity, rainfall, and wind. The model was 
developed using the Artificial Neural Network 
(ANN) Toolbox in the MATLAB program 
and 14 years of historical data collected 
from Louisiana oyster-harvesting areas along 

Figure 5. Comparison between the NORF model–predicted probabilities and the observed probabilities (0 
or 1) of the norovirus outbreaks in oyster-harvesting areas along the Louisiana Gulf Coast: (A) Areas 2 and 
3 with outbreaks in March 2010, (B) Area 7 with an outbreak in March 2010, (C) Area 13 with outbreaks in 
March 2010, and (D) Area 26 with an outbreak in April 2012 and Area 30 with an outbreak in December 2012.
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the Gulf of Mexico. The NORF model was 
validated with 7 additional years of data that 
were not used in the model development. 
Our findings suggest that oyster norovirus 
outbreaks are predictable; in our study area, the 
NORF model predicted historical outbreaks 
when the estimated probability was > 0.6, 
whereas no outbreak occurred when the prob-
ability was < 0.5. However, more outbreak 
data are needed to confirm the threshold prob-
ability for norovirus outbreaks. Gage height 
and temperature were the most important 
environmental predictors of oyster norovirus 
outbreaks, whereas wind, rainfall, and salinity 
also predicted norovirus outbreaks. Although 
the NORF model was specifically developed 
for oyster-harvesting areas along the Louisiana 
Gulf coast, the methods and particularly the 
environmental variables presented in this 
paper may be generally applicable to oyster-
harvesting waters in other regions. If the 
model is confirmed for Louisiana and other 
areas, it may provide an effective means to 
predict potential oyster norovirus outbreaks in 
advance or at the onset of outbreaks, making 
it possible to prevent or at least reduce the 
risk of  norovirus to human health and costly 
oyster recalls.
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