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Introduction
Efforts to model ambient air quality have 
progressed rapidly in recent years. One area 
that has been advanced is the estimation 
of particulate matter ≤ 2.5 μm in diameter 
(PM2.5) concentrations from satellite remote 
sensing and land use parameters. The MAIAC 
(Multi-Angle Implementation of Atmospheric 
Correction) data product derived from 
MODIS (Moderate Resolution Imaging 
Spectroradiometer) aerosol optical depth 
measurements allows for estimation of PM2.5 
at 1-km2 spatial resolution (Lyapustin et al. 
2011a, 2011b, 2012). This fine spatial scale 
enables identification of local pollution gradi-
ents that are poorly characterized at coarser 
resolutions, such as gradients near freeways.

Another advantage of air quality models 
that incorporate satellite data is the ability to 
estimate pollutant concentrations in locations 
where monitoring data are sparse or nonex-
istent. The composition of PM2.5 differs 
between urban and rural locations (U.S. EPA 
2009), and although some epidemiologic 
studies have been conducted in rural areas 
(Noonan et al. 2012; Rappold et al. 2011; 
Weir et al. 2013), overall there is a lack of 
information about rural PM2.5 health effects. 
Further research is needed to investigate the 

extent to which associations with rural PM2.5 
differ from urban PM2.5 associations.

Epidemiologic studies based on PM2.5 
estimates from satellite data appear in the 
literature, and associations have been reported 
with diverse outcomes such as mortality, 
cardiorespiratory hospitalizations, myocardial 
infarctions, and pregnancy outcomes (Kloog 
et al. 2012a, 2012b, 2013; Madrigano et al. 
2013). In our study we investigate associa-
tions between short-term changes in ambient 
PM2.5 concentrations estimated from MAIAC 
remote sensing and pediatric emergency 
department (ED) visits for asthma, bronchitis, 
chronic sinusitis, otitis media, pneumonia, 
and upper respiratory infections in the U.S. 
state of Georgia. To investigate whether 
PM2.5 health associations differ by urba-
nicity, we categorized ZIP codes according 
to county-level urbanicity, and estimated 
pollutant associations separately for three 
levels of urbanicity.

Material and Methods

Health Data

Individual-level data on pediatric ED visits 
in Georgia during 1 January 2002 through 
30 June 2010 were obtained from the Georgia 

Hospital Association (n = 8,252,559 ED visits 
from 150 hospitals). Outcomes were defined 
using International Classification of Diseases, 
9th Revision (ICD-9) codes. Case definitions 
were asthma or wheeze among children age 
2–18 years (ICD-9 code 493 or 786.07 in any 
diagnosis field), bronchitis (age 0–18 years) 
(primary ICD-9 code 466.0 or 490), chronic 
sinusitis (age 0–18 years) (primary ICD-9 
code 473), otitis media (age 0–18 years) 
(primary ICD-9 code 381 or 382), pneu-
monia (age 0–18 years) (primary ICD-9 
code 480–486), and upper respiratory tract 
infection (age 0–18 years) (primary ICD-9 
code 460–465 or 477) and absence of ICD-9 
codes for asthma or wheeze (ICD-9 code 493 
or 786.07) in the other diagnosis fields. Our 
a priori case definition for asthma or wheeze 
uses all ICD-9 diagnosis fields because there 
is between-hospital variability in primary 
diagnosis coding practices for children who 
present with both asthma and a respiratory 
infection, and we chose to classify these ED 
visits as asthma. These visits were excluded 
from the upper respiratory infection case defi-
nition. Records contained information on the 
date of the ED visit and the ZIP code of the 
patient’s home address. County-level urba-
nicity was assigned using the U.S. National 
Center for Health Statistics Classification 
Scheme (Ingram and Franco 2012). In this 
approach, each county is first classified as 
metropolitan or nonmetropolitan using the 
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Background: Associations between pediatric emergency department (ED) visits and ambient 
concentrations of particulate matter ≤ 2.5 μm in diameter (PM2.5) have been reported in previous 
studies, although few were performed in nonmetropolitan areas.

oBjective: We estimated associations between daily PM2.5 concentrations, using a two-stage 
model that included land use parameters and satellite aerosol optical depth measurements at 1-km 
resolution, and ED visits for six pediatric conditions in the U.S. state of Georgia by urbanicity 
classification.

Methods: We obtained pediatric ED visits geocoded to residential ZIP codes for visits with 
nonmissing PM2.5 estimates and admission dates during 1 January 2002–30 June 2010 for 
2- to 18-year-olds for asthma or wheeze (n = 189,816), and for 0- to 18-year-olds for bronchitis 
(n = 76,243), chronic sinusitis (n = 15,745), otitis media (n = 237,833), pneumonia (n = 52,946), 
and upper respiratory infections (n = 414,556). Daily ZIP code–level estimates of 24-hr average 
PM2.5 were calculated by averaging concentrations within ZIP code boundaries. We used time-
stratified case-crossover models stratified on ZIP code, year, and month to estimate odds ratios 
(ORs) between ED visits and same-day and previous-day PM2.5 concentrations at the ZIP code 
level, and we investigated effect modification by county-level urbanicity.

results: A 10-μg/m3 increase in same-day PM2.5 concentrations was associated with ED visits for 
asthma or wheeze (OR = 1.013; 95% CI: 1.003, 1.023) and upper respiratory infections (OR = 1.015; 
95% CI: 1.008, 1.022); associations with previous-day PM2.5 concentrations were lower. Differences 
in the association estimates across levels of urbanicity were not statistically significant.

conclusion: Pediatric ED visits for asthma or wheeze and for upper respiratory infections were 
associated with PM2.5 concentrations in Georgia.
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Office of Management and Budget’s 2005 
list of metropolitan statistical areas (Office 
of Management and Budget 2005). In our 
analysis, we examined three categories of urba-
nicity, according to the characteristics of the 
county into which each ZIP code falls: “large 
metropolitan” (metropolitan counties with 
> 1 million residents) (n = 207 ZIP codes), 
“medium or small metropolitan” (metro-
politan counties with 250,000–999,999 
residents or < 250,000 residents, respectively) 
(n = 175 ZIP codes), and “nonmetropolitan” 
(counties not in a metropolitan statistical area) 
(n = 309 ZIP codes).

Air Quality and Meteorological Data
MAIAC aerosol optical depth (AOD) 
values during the study period from the 
Aqua MODIS (overpasses at ~ 1330 hours 
local time) and Terra MODIS (overpasses 
at ~ 1030 hours local time) instruments 
were first combined daily to improve spatial 
coverage using a linear regression approach 
(Hu et al. 2014a; Puttaswamy et al. 2014). 
To predict daily PM2.5 concentrations, we 
developed a two-stage spatiotemporal model. 
The first stage is a linear mixed-effects model 
with day-specific random intercepts and 
slopes for AOD and meteorological fields to 
account for the temporally varying relation-
ship between observed PM2.5 and AOD. The 
second stage is a geographically weighted 
regression model fitted monthly that can 
generate a continuous surface of PM2.5 
estimates for all the grid cells with AOD 
retrievals. This model was fitted annually, 
and we obtained model-fitting R2 ranging 
from 0.71 to 0.85 and daily mean prediction 
error of 1.73 to 2.50 μg/m3. Details of model 
structure and performance evaluation are 
provided elsewhere (Hu et al. 2014b). Daily 
ZIP code–level PM2.5 concentrations were 
calculated by averaging PM2.5 concentrations 
from all 1-km grid cells that were completely 
contained within each ZIP code boundary. 
Estimates of mean daily near-surface air 
temperature and near-surface humidity 
at 1/8th-degree resolution (~ 13-km grids) 
were obtained from the National Land Data 
Assimilation System website (http://ldas.gsfc.
nasa.gov/nldas/) (Cosgrove et al. 2003). ZIP 
codes were linked to the meteorological fields 
based on ZIP code centroid.

Statistical Analyses
Time-stratified case-crossover models (Janes 
et al. 2005), with stratification by ZIP code, 
year, and month, were used to estimate 
odds ratios (OR) between ZIP code–level 
daily counts of ED visits and daily ZIP 
code level estimates of PM2.5 concentra-
tions. Models included cubic polynomials 
for same day (lag 0) mean temperature, lag 0 
mean humidity, and day of year (1,…,366); 

indicators for day of week, warm season 
(May–October vs. November–April), holiday, 
and lag holiday (indicating whether 1 of the 
previous 2 days was a holiday); and product 
terms between the warm season indicator and 
the temperature cubic polynomial, humidity 
cubic polynomial, day of week indicators, 
holiday indicators, and lag holiday indicators 
to allow for seasonal interactions in the effects 
of these confounders. Although the motiva-
tion for stratification in case-crossover models 
is to control for confounding by season and 
trend, some outcomes (e.g., asthma) have 
marked within-month trends in incidence 
(Johnston et al. 2006); residual confounding 
could occur if these months also exhibit trends 
in PM2.5 concentrations. The smooth day-of-
year function is included to control for this 
potential confounding. ORs corresponding to 
a 10-μg/m3 increase in lag 0 PM2.5 concentra-
tions were assumed to be linear on the logit 
scale. In separate models we also estimated 
ORs for a 10-μg/m3 increase in lag 1 PM2.5 
concentrations. Associations with lag 0 PM2.5 
were estimated for Georgia overall and for 
each of the three levels of urbanicity.

AOD-based estimation of PM2.5 offers 
high spatial granularity; however, missing data 
are frequent due to cloud cover and errors in 
AOD retrieval. Therefore, we began by evalu-
ating the influence of the extent of missing 
PM2.5 data on our exposure estimates and on 
our estimates of association. To evaluate the 
influence of missing data on exposure esti-
mates, we limited our data set to ZIP codes 
that contained a PM2.5 monitoring station. 
For each ZIP code we compared the measured 
24-hr average PM2.5 concentration at the 
monitor with the average of all nonmissing 
1-km AOD-based PM2.5 estimates for that 
ZIP code. We also compared the monitor 
measurement with the single AOD-based 
PM2.5 estimate for the single grid that coin-
cided with the location of the monitor. To 
display these results, each within–ZIP code 
daily comparison was binned according 
to the proportion of nonmissing 1-km 
AOD-based PM2.5 estimates for that ZIP 
code. To evaluate the influence of missing 
data on associations between PM2.5 and 
the outcomes, we used the data set of all 
ZIP codes. We compared associations esti-
mated using only data from ZIP codes with 
complete 1-km grid PM2.5 estimates for 
each ED visit and corresponding reference 
days (i.e., 0% missing); using data from 
ZIP codes with < 10%, < 20%,…,< 90% of 
grid estimates with missing data; and using 
data from any ZIP code with at least one 
1-km grid PM2.5 estimate on each ED visit 
day and corresponding reference days (i.e., 
< 100% missing).

We also conducted sensitivity analyses 
to examine the impact of missing data on 

OR estimates. In the two most extreme cases, 
we either a) only analyzed ZIP codes that 
had complete 1-km grid PM2.5 estimates or 
b) analyzed as many data as possible (i.e., 
so long as a ZIP code had at least one 1-km 
grid PM2.5 estimate it was included in the 
analysis). We also examined results for a range 
of missing data scenarios between these two 
extremes. These sensitivity analyses informed 
our decision to exclude a ZIP code when 
> 70% of the grid estimates were missing on 
a given day.

Results
Mean PM2.5 concentrations by season, 
averaged across the study period, for the 691 
Georgia ZIP codes included in analyses are 
shown in Figure 1. Concentrations tended to 
be highest in urban Atlanta ZIP codes (in the 
north-central part of the state) and in southern 
Georgia, where prescribed fires as well as 
agricultural emissions, such as ammonium 
from fertilizer use, are more common. 
Also conveyed in Figure 1 is the heteroge-
neity in ZIP code sizes throughout Georgia. 
Approximately 34% of ZIP codes contain 
between 1 and 49 1-km grid cells, 32% 
contain 50–149 cells, 20% contain 150–299 
cells, and 14% contain 300–1,224 cells. 
Distributions of daily ZIP code–level PM2.5 
concentrations are shown in Table 1. The 
median concentration for ZIP codes in large 
metropolitan counties was 13.02 μg/m3 [inter-
quartile range (IQR), 9.24–17.72 μg/m3]. 
Median concentrations were 12.94 μg/m3 
(IQR, 9.37–17.37 μg/m3) for ZIP codes in 
medium or small metropolitan counties and 
12.89 μg/m3 (IQR, 9.31–17.29 μg/m3) for 
ZIP codes in nonmetropolitan counties.

Cloud cover  and errors  in AOD 
retrieval caused grid cells to be missing data 
frequently. During the study period there 
were 177,731,759 missing out of 332,831,759 
possible 1-km grid estimates (53.4% missing). 
Figure 2 shows a comparison of PM2.5 
measurements from monitoring stations, the 
average concentrations estimated in ZIP codes 
where there are monitors, and the estimates 
from the single 1-km grid cells that overlap 
the monitor locations. When AOD measure-
ments were available for most of the 1-km 
grid cells within a ZIP code boundary, then 
the measurements from the monitoring 
station, the average ZIP code concentration, 
and the concentration estimated at the grid 
cell that contained the monitor were similar 
(Figure 2). However, when a large propor-
tion of the 1-km grid cells were missing (e.g., 
> 90% were missing), then the agreement 
between the measurements at the monitor 
and the AOD-based estimates differed more 
substantially, and the model overestimated 
PM2.5 concentrations by 4.3 μg/m3 on average 
(Figure 2).
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The sensitivity of the epidemiologic asso-
ciations to different criteria about the propor-
tion of missing 1-km PM2.5 estimates within 
a ZIP code is shown in Figure 3. Although 
the pattern between the magnitude of the OR 
and the proportion of missing AOD-based 
PM2.5 estimates varied by health end point, 
OR estimates (per 10 μg/m3) obtained using 
the least stringent missing data criterion (i.e., 
analyzing all ZIP codes that had at least one 
1-km grid PM2.5 estimate) tended to be less 
than or equal to the OR estimates obtained 
using the most stringent missing data crite-
rion (i.e., analyzing only those ZIP codes that 
had no missing 1-km grid PM2.5 estimates). 
These differences in the estimated associa-
tions, combined with the evidence that PM2.5 
concentrations were overestimated when a 
large proportion of the grid cells were missing 
(Figure 2), led to the decision to only use ZIP 
codes when at least 30% of the 1-km PM2.5 
estimates were available. Although a different 
cutoff could have been selected, we felt the 
30% criterion balanced the tradeoff between 
sample size (i.e., wanting to use as much 
data as possible) and validity (i.e., avoiding 
the use of biased PM2.5 estimates). Based on 
this criterion, there were 1,110,827 daily ZIP 
code PM2.5 estimates included in the statistical 
analysis, of 2,271,317 possible (48.9%).

The number of pediatric ED visits for 
ZIP codes where at least 30% of the 1-km 
estimates were available is shown in Table 2. 
ED visits for asthma or wheeze were the 
most concentrated in the large metropolitan 
counties (60% in urban counties vs. 17% in 
nonmetropolitan counties), whereas bron-
chitis ED visits were proportionally more 
frequent in nonmetropolitan counties (30% 
in large metropolitan counties vs. 39% in 
nonmetropolitan counties).

Associations between lag 0 and lag 1 
PM2.5 concentrations and six outcome groups 

of pediatric ED visits are shown in Table 3. 
For a 10-μg/m3 increase in lag 0 PM2.5 
concentrations we observed positive asso-
ciations with asthma or wheeze [OR = 1.013; 

95% confidence interval (CI): 1.003, 1.023] 
and with upper respiratory tract infections 
(OR = 1.015; 95% CI: 1.008, 1.022). 
Associations for 10-μg/m3 increases in 

Figure 1. ZIP code–level mean PM2.5 concentrations during 1 January 2002 through 30 June 2010 during May–October (left panel) and November–April (right panel).
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Table 1. Distribution (percentiles) of estimated 24-hr average ZIP code–level PM2.5 concentrations 
(μg/m3) in Georgia, 1 January 2002–30 June 2010, overall and for three categories of county-level 
urbanicity.a

Location 1% 25% Median 75% 99%
State of Georgia 3.45 9.31 12.94 17.43 37.35

Large metropolitan counties 3.70 9.24 13.02 17.72 36.45
Medium or small metropolitan counties 3.60 9.37 12.94 17.37 37.03
Nonmetropolitan counties 3.22 9.31 12.89 17.29 38.06

aZIP code urbanicity classifications based on Ingram and Franco (2012) county-level population designations: “large 
metropolitan” (metropolitan counties with > 1 million residents) (n = 207 ZIP codes), “medium or small metropolitan” 
(metropolitan counties with 250,000–999,999 residents or < 250,000 residents, respectively) (n = 175 ZIP codes), and 
“nonmetropolitan” (counties not in a metropolitan statistical area) (n = 309 ZIP codes). 

Figure  2. Box plots displaying daily PM2.5 measurements from monitoring stations (dark blue), 
 model- estimated daily mean concentrations in ZIP codes that contain a monitor (medium blue), and 
model-estimated daily concentrations in the 1-km grid cells that contain a monitor (light blue). Box plots 
are grouped along the x-axis according to the proportion of model-estimated grid-level PM2.5 concentra-
tions that are missing within a ZIP code on a given day. Boxes display the interquartile range of the data, 
with the median indicated by the dark line within each box. The whiskers extend to the most extreme point 
that is within 1.5 times the interquartile range of the box.

30

20

10

0

Less than 15% 15%–45% 45%–75% 75%–90% More than 90%

Percent missing

24
-h

ou
r a

ve
ra

ge
 P

M
2.

5 c
on

ce
nt

ra
tio

n



PM2.5 and pediatric ED visits in Georgia

Environmental Health Perspectives • volume 124 | number 5 | May 2016 693

lag 1 PM2.5 concentrations with asthma or 
wheeze (OR = 1.010; 95% CI: 1.000, 1.021) 
and upper respiratory tract infections 
(OR = 1.011; 95% CI: 1.004, 1.018) were 
slightly lower. The association between 
PM2.5 concentrations and bronchitis (lag 0 
OR = 1.010; 95% CI: 0.994, 1.027) was 
similar in magnitude to the ORs for asthma 
or wheeze and upper  respiratory tract 
 infections (Table 3).

Lag 0 associations stratified by level of 
urbanicity are presented in Figure 4 (for 
numerical results, see Table S1). These 
analyses did not suggest large differences in 
the associations of outdoor PM2.5 concentra-
tions with ED visits by level of urbanicity. 
For the three most common outcomes 
(asthma/wheeze, otitis media, and upper 
respiratory infections) the association esti-
mates were similar across urbanicity levels 
(p-values from the generalized Wald test 
for “H0: the three stratum-specific ORs are 
equal,” the null hypothesis we were testing, 
were 0.85, 0.99, and 0.69, respectively). 
In contrast, the ORs for the less common 
outcomes tended to be negative in urban 

areas and positive in less urban areas (p-value 
for differences across strata of 0.12–0.15), 
although estimates were imprecise. The lag 1 
results similarly did not suggest large differ-
ences in associations by level of urbanicity 
(results not shown).

Discussion
We observed that short-term changes in lag 0 
and lag 1 PM2.5 concentrations were associ-
ated with ED visits for asthma or wheeze and 

with ED visits for upper respiratory infec-
tions. Broadly, these findings are consistent 
with previous literature that also shows asso-
ciations between PM2.5 and pediatric respira-
tory disease (U.S. EPA 2009). We found little 
evidence of effect modification by level of 
urbanicity, even though the composition of 
PM2.5 differs in urban and rural areas (U.S. 
EPA 2009). For example, motor vehicle 
engine combustion particles comprise a 
larger proportion of PM2.5 in urban areas, 

Table 2. Number of pediatric emergency department visits in Georgia, 1 January 2002–30 June 2010,a 
stratified by county-level urbanicity.b

Outcome
Large metropolitan 

[n (%)]
Medium/small metropolitan 

[n (%)]
Nonmetropolitan 

[n (%)] Total (n)
Asthma or wheeze 114,739 (60) 43,065 (23) 32,012 (17) 189,816
Bronchitis 22,535 (30) 23,419 (31) 30,289 (39) 76,243
Chronic sinusitis 6,523 (41) 3,687 (23) 5,535 (36) 15,745
Otitis media 125,474 (53) 54,095 (23) 58,264 (24) 237,833
Pneumonia 28,373 (54) 13,806 (26) 10,767 (20) 52,946
Upper respiratory infection 198,391 (48) 97,795 (24) 118,370 (28) 414,556
aED visit counts for ZIP codes on days that have ≥ 30% nonmissing 1-km PM2.5 estimates. bZIP code urbanicity clas-
sifications based on Ingram and Franco (2012) county-level population designations: “large metropolitan” (metropolitan 
counties with > 1 million residents) (n = 207 ZIP codes), “medium or small metropolitan” (metropolitan counties with 
250,000–999,999 residents or < 250,000 residents, respectively) (n = 175 ZIP codes), and “nonmetropolitan” (counties not 
in a metropolitan statistical area) (n = 309 ZIP codes).

Figure 3. Sensitivity of odds ratios per 10-μg/m3 increase in same-day PM2.5 concentrations and ED visits for six pediatric health outcomes in Georgia, 1 January 
2002–30 June 2010, according to the proportion of model-estimated grid-level PM2.5 concentrations that are missing within a ZIP code on each day. A percent 
missing (x-axis) of 0% means the analysis was restricted to ZIP codes that had zero missing 1-km PM2.5 estimates on a given day. A percent missing of < 50% 
means the analysis included ZIP codes that had between 0% and 50% missing 1-km PM2.5 estimates on a given day. A percent missing of < 100% means the 
analysis included all ZIP codes that had at least one non-missing 1-km PM2.5 estimate on a given day.
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whereas nonmetropolitan areas tend to have 
proportionately greater contributions from 
biogenic, forest fire, and ammonia emissions 
(U.S. EPA 2009). A limitation of our study is 
that particle composition was not character-
ized. Furthermore, although sample size for 
these two outcomes was large, we might not 
have detected effect modification if it was of 
small magnitude.

We did not observe statistically signifi-
cant associations between short-term PM2.5 
exposure and the other outcomes examined. 
Otitis media is a common pediatric disease 
that has been associated with environmental 
tobacco smoke and indoor wood burning 
(da Costa et al. 2004; DiFranza et al. 
2004). A small number of studies have been 
conducted to investigate associations between 
outdoor air pollutants and otitis media; the 
study most similar to ours—a case-crossover 
analysis of 14,527 ED visits for otitis media in 
Edmonton, Canada—found associations for 
carbon monoxide and nitrogen dioxide but 
not for PM2.5 (Zemek et al. 2010). Our study, 
which had the advantage of having many 
more ED visits for otitis media (n = 237,833 
visits) but which was exclusively focused 
on PM2.5, similarly found little evidence of 
this association. Results of studies on the 
association between chronic PM2.5 exposure 
during early life and otitis media have been 
inconsistent (MacIntyre et al. 2011, 2014). 
Associations of short-term changes in PM2.5 
concentration with pediatric pneumonia 
and bronchitis, two other outcomes that we 
investigated in our study, have been previously 
reported (Barnett et al. 2005; Ostro et al. 
2009), although the associations in our study 
were not statistically significant.

The model we used to estimate PM2.5 
concentrations offers several advantages for 
epidemiologic studies of the health effects of 
short-term PM2.5 exposures. Satellite AOD 
measurements enable estimation of PM2.5 
concentrations in areas where monitors 
are sparse or nonexistent, and using these 
measurements can improve estimation of day-
to-day changes in PM2.5. Whereas other air 
quality models that span large spatial domains, 
such as CMAQ (Community Multiscale 
Air Quality Modeling System; https://www.
epa.gov/air-research/community-multi-
scale-air-quality-cmaq-modeling-system-air-
quality-management) or land use regression, 
provide accurate characterizations of average 
concentrations over longer time spans, these 
models are less well suited for capturing the 
day-to-day variability that drives studies of 
short-term PM2.5 health effects (Bravo et al. 
2012), although innovative methods for 
fusing CMAQ estimates with measurements 
from stationary monitors have recently been 
developed to help address this issue (Berrocal 
et al. 2012). The fine spatial scale of the 

MAIAC satellite data enables estimation of 
PM2.5 at 1-km grids, which enables iden-
tification of local pollution gradients, such 
as freeways, that are poorly characterized at 
coarser resolutions.

A major limitation of air quality models 
that incorporate satellite data, however, is the 
large number of missing data. In our study, 
51% of daily ZIP code–level health data were 
not analyzed due to missing PM2.5 concen-
trations. The large number of missing data 
made investigation of a moving average of 
PM2.5 concentrations difficult, and as such we 
only examined single-day lags in our analysis. 
This reduction in sample size results in larger 
confidence intervals, although whether these 
missing data might also cause systematic error 

is presently unknown. Given that the predom-
inant cause for missing satellite aerosol optical 
depth measurements in Georgia is cloud cover 
(Yu et al. 2015), the associations we report in 
this study are therefore based mostly on data 
from clear days. If the association between 
PM2.5 and asthma ED visits on cloudy days 
differs from that on clear days (i.e., effect 
modification by cloudiness), then the asso-
ciations we report in our study should more 
closely approximate the clear day associations. 
Methods have been developed to estimate 
grid-level concentrations when AOD data are 
missing (Kloog et al. 2012c; Lee et al. 2012), 
although these approaches may be better 
suited for the investigation of health effects 
over longer averaging periods, as they rely 

Table 3. Odds ratios per 10-μg/m3 increase in same-day PM2.5 concentrations and ED visits for six pedi-
atric health outcomes in Georgia, 1 January 2002–30 June 2010 [OR (95% CI)].

Outcome group Lag 0 Lag 1 
Asthma or wheeze 1.013 (1.003, 1.023) 1.010 (1.000, 1.021)
Bronchitis 1.010 (0.994, 1.027) 1.007 (0.990, 1.024)
Chronic sinusitis 1.010 (0.975, 1.045) 0.998 (0.963, 1.034)
Otitis media 1.005 (0.996, 1.014) 0.995 (0.985, 1.004)
Pneumonia 0.999 (0.979, 1.019) 1.001 (0.981, 1.022)
Upper respiratory infection 1.015 (1.008, 1.022) 1.011 (1.004, 1.018)

Odds ratios estimated from a conditional logistic regression model with stratification by ZIP code, year, and month and 
with parametric control for lag 0 mean temperature, lag 0 mean humidity, and day of year using cubic polynomials; indi-
cators for day of week, warm season, holiday, and lag holiday; and product terms between the warm season indicator 
and the temperature cubic polynomial, humidity cubic polynomial, day of week indicators, holiday indicators, and lag 
holiday indicators. Analyses are restricted to days when a ZIP code had ≥ 30% nonmissing 1-km PM2.5 estimates.

Figure 4. Odds ratios per 10-μg/m3 increase in same-day PM2.5 concentrations and ED visits for six 
pediatric health outcomes in Georgia, 1 January 2002–30 June 2010, stratified by county-level urbanicity. 
Odds ratios were estimated from a conditional logistic regression model with stratification by ZIP code, 
year, and month and with parametric control for lag 0 mean temperature, lag 0 mean humidity, and day 
of year using cubic polynomials; indicators for day of week, warm season, holiday, and lag holiday; and 
product terms between the warm season indicator and the temperature cubic polynomial, humidity 
cubic polynomial, day of week indicators, holiday indicators, and lag holiday indicators. Analyses were 
restricted to days when a ZIP code had ≥ 30% nonmissing 1-km PM2.5 estimates. ZIP code urbanicity clas-
sifications based on Ingram and Franco (2012) county-level population designations: “large metropolitan” 
(metropolitan counties with > 1 million residents), “medium or small metropolitan” (metropolitan counties 
with 250,000–999,999 residents or < 250,000 residents, respectively), and “nonmetropolitan” (counties not 
in a metropolitan statistical area).
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heavily on land use and other parameters that 
do not have the same short-term variability as 
daily PM2.5 concentrations.

Some limitations of our study, which are 
also shared with other studies of this type, are 
misclassification of outcomes and error in the 
assignment of ambient air pollutant concen-
trations. We examined six different pediatric 
conditions, and there is likely misclassifica-
tion of certain outcomes because the divi-
sions between conditions are not always clear. 
For example, upper respiratory infections 
are a common trigger of asthma symptoms 
in asthmatic children, and coding prac-
tices regarding which disease is the primary 
cause can vary across doctors and hospitals 
(Strickland et al. 2010). Further, ED visits 
capture only a portion of the morbidity due 
to these conditions, and ED utilization can 
vary across population subgroups (Riera 
and Walker 2010). Although we did not 
observe statistically significant differences in 
associations with PM2.5 by level of urban-
icity, differential ED utilization is one reason 
why differences by urbanicity might have 
been present.

There was also misclassification in the 
assignment of ambient air pollutant concen-
trations, which were linked to individual 
ED records based on residential ZIP code. 
Children may spend significant time at 
schools and child care facilities, which are 
often (but not always) located in nearby 
neighborhoods. This daytime mobility might 
result in large measurement errors for PM2.5 
from primary sources (e.g., motor vehicle 
emissions), but likely has a smaller effect 
for secondary PM2.5 (e.g., sulfate particles), 
which are more homogenous in space 
(Goldman et al. 2010). Because total PM2.5 is 
a mix of primary and secondary particles, the 
impact of intra-day mobility in our study may 
be less than it would be for a study focused on 
traffic pollution. Furthermore, because our 
study is a case-crossover study with control 
for day-of-week, it is likely that the extent of 
the measurement error is similar on both case 
days and referent days, which would result 
in nondifferential error with respect to the 
outcome, and which would be expected to 
bias results toward the null.

We did not investigate confounding by 
other pollutants, which is a limitation of our 
study. Because associations between pediatric 
ED visits and several other pollutants have 
been reported in the literature, associations 
with PM2.5 might reflect an effect of another 
pollutant that is correlated with PM2.5. 
Adjustment for confounding by co-pollutants, 
as well as investigation of multipollutant 
joint effects, will pose challenges in settings 
where different air quality models are used 
to estimate different pollutant species, and 
further work in this area is needed.

Conclusions
We observed associations between daily PM2.5 
concentrations and pediatric ED visits for 
asthma or wheeze and for upper respiratory 
infections. The OR estimate for bronchitis was 
similar in magnitude to the ORs for asthma or 
wheeze and upper respiratory tract infections, 
although the confidence interval included 
the null. We saw little evidence for the other 
outcomes examined. Differences in the asso-
ciation estimates across levels of urbanicity 
were not statistically significant.
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