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Introduction
Air pollution concentrations have been 
reduced in the past decades in the United 
States. However, ambient air pollution 
still causes adverse health outcomes at low 
concentrations below standards (Amancio 
and Nascimento 2014). Previous studies have 
shown evidence of heterogeneity in air pollu-
tion effects among individuals with different 
characteristics. Common analytic approaches 
to examine effect modification include the 
use of interaction terms (Bateson and 
Schwartz 2004; Breton et al. 2011; Hicken 
et al. 2013; Shumake et al. 2013; Yang et al. 
2009) or the use of random slopes to examine 
between-subjects variability in air pollution 
estimates (Tager et al. 1998). However, these 
approaches have not provided sufficient 
understanding of how air pollution changes 
the shape of the distribution of risk factors or 
health outcomes. In particular, if larger effects 
were seen among people at the adverse end 
of such distributions, such findings would 

have important public health implications and 
would be quite important for health impact 
assessments. Investigating variations in air 
pollution effects based on the outcome of 
interest has received less attention but would 
address the issue of understanding changes in 
the distribution of risk.

Associations with air pollution can 
be estimated for individuals at different 
percentiles of the outcome distribution 
using quantile regression. The goal of this 
technique is to quantify the associations 
between exposure and specific quantiles 
of the outcome distribution, thereby 
allowing one to identify whether specific 
individuals with certain outcome levels are 
more affected by exposure. Hence, the use 
of quantile regression over the entire range 
of an outcome produces estimates that can 
be used to detect potential heterogeneity in 
exposure–outcome associations according to 
individual outcome levels. Another advan-
tage of quantile regression is that it does not 

require assumptions about the distribution 
of the outcome (or the model residuals) and 
can therefore be used to estimate associations 
between air pollution and biomarkers of 
disease that are not normally distributed. 
An alternative approach, which is only avail-
able with repeated measures, is to fit random 
slopes for each subject and to use those 
slopes to examine heterogeneity of responses 
within the study population. In addition 
to requiring repeated measures per subject, 
this approach also makes assumptions about 
the distributions of the random slopes, typi-
cally assumed to be normal random variables 
with mean zero.

Using these approaches, we first aimed 
to examine whether air pollution distorts 
the distribution of established cardiovascular 
risk factors. Secondly, this study investigated 
whether air pollution associations with these 
cardiovascular risk factors vary by baseline 
individual levels of the same cardiovascular 
outcome, and whether those differences vary 
by pollutant. We investigated air pollution 
association on quantiles of blood pressure, 
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Background: Previous studies have observed associations between air pollution and heart disease. 
Susceptibility to air pollution effects has been examined mostly with a test of effect modification, 
but little evidence is available whether air pollution distorts cardiovascular risk factor distribution.

oBjectives: This paper aims to examine distributional and heterogeneous effects of air pollution on 
known cardiovascular biomarkers.

Methods: A total of 1,112 men from the Normative Aging Study and residents of the greater 
Boston, Massachusetts, area with mean age of 69 years at baseline were included in this study 
during the period 1995–2013. We used quantile regression and random slope models to investigate 
distributional effects and heterogeneity in the traffic-related responses on blood pressure, heart rate 
variability, repolarization, lipids, and inflammation. We considered 28-day averaged exposure to 
particle number, PM2.5 black carbon, and PM2.5 mass concentrations (measured at a single monitor 
near the site of the study visits). 

results: We observed some evidence suggesting distributional effects of traffic-related pollutants 
on systolic blood pressure, heart rate variability, corrected QT interval, low density lipoprotein 
(LDL) cholesterol, triglyceride, and intercellular adhesion molecule-1 (ICAM-1). For example, 
among participants with LDL cholesterol below 80 mg/dL, an interquartile range increase in PM2.5 
black carbon exposure was associated with a 7-mg/dL (95% CI: 5, 10) increase in LDL cholesterol, 
while among subjects with LDL cholesterol levels close to 160 mg/dL, the same exposure was 
related to a 16-mg/dL (95% CI: 13, 20) increase in LDL cholesterol. We observed similar hetero-
geneous associations across low versus high percentiles of the LDL distribution for PM2.5 mass and 
particle number.

conclusions: These results suggest that air pollution distorts the distribution of cardiovascular risk 
factors, and that, for several outcomes, effects may be greatest among individuals who are already 
at high risk.
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heart rate variability, lipids, and inflamma-
tory markers. We focused our investigation 
on elderly participants, who might be more 
susceptible to traffic-related air pollutants. 
We compared results from the quantile 
regression and random slopes approaches to 
evaluate the sensitivity of our conclusions to 
modeling assumptions.

Methods

Study Population

Participants included in this analysis were part 
of the Normative Aging Study (NAS), a longi-
tudinal investigation established in Boston in 
1963 by the U.S. Veterans Administration 
and limited to men (Bell et al. 1966). At 
the time of initial enrollment, participants 
were free of heart disease, hypertension, 
diabetes, cancer, recurrent asthma, or bron-
chitis. We measured cardiovascular-related 
outcomes on a total of 1,112 individuals one 
to seven times with intervals of 3–5 years 
(nobservations = 3,615) during the 1995–2013 
period. The age range at baseline and over 
the entire study period was 49–97 years and 
49–100 years, respectively. Medical visits 
included on-site physical examinations and 
detailed questionnaires after smoking absti-
nence and an overnight fast. Details of the 
methods and surveys are described elsewhere 
(Hu et al. 1996).

This study was approved by the Harvard 
School of Public Health and the Veteran 
Administration Institutional Review Boards 
(IRBs). Subjects provided written informed 
consent to participate in this study, which 
was approved by the Veteran Administration 
Central IRB.

Air Pollution
Previous studies have suggested that the 
relevant exposure window for the association 
between between air pollution exposure and 
cardiovascular-related outcome ranges from 
hours to years (Brook et al. 2010; Devlin 
et al. 2014; Foraster et al. 2014; Rückerl et al. 
2007). We chose to explore an intermediate-
term exposure window, since it can serve as a 
median choice between short- and long-term 
windows. We a priori focused on air pollu-
tion concentrations measured during the 
28-day period preceding each participant’s 
medical visit.

From 1995 onward, we measured ambient 
particle concentrations at the Harvard 
supersite located near downtown Boston 
and approximately 1 km from the medical 
center where the subjects were examined. We 
measured hourly particle number per cm3 
(which captures fine and ultrafine particles 
with a 0.007–3 μm range in diameter) with 
a Condensation Particle Counter (TSI Inc, 
Model 3022A, Shoreview, MN, USA), hourly 

PM2.5 mass concentrations (particles ≤ 2.5 μm 
in diameter) using a Tapered Element 
Oscillation Microbalance (Model 1400A, 
Rupprecht and Pastashnick, East Greenbush, 
NY), and hourly PM2.5 black carbon (black 
carbon particles ≤ 2.5 μm in diameter) with 
an Aethalometer (Magee Scientific Co., Model 
AE-16, Berkeley, CA). A detailed descrip-
tion of the supersite has been previously 
published (Kang et al. 2010). Particle number 
 measurements started in October 1999.

Cardiovascular Outcomes
At each medical visit, we measured systolic 
blood pressure (SBP) and diastolic blood 
pressure (DBP) once in each arm while the 
subject was seated, using a standard cuff. We 
calculated the mean of right and left arm 
values and used it in these analyses.

In plasma, we measured plasma fibrin-
ogen using a thrombin reagent called MDA 
Fibriquick, C-reactive protein concentrations 
using an immunoturbidimetric assay on the 
Hitachi 917 analyzer (Roche Diagnostics-
Indianapolis, IN), and concentrations of 
intercellular adhesion molecule-1 (ICAM-1) 
and vascular cell adhesion molecule-1 
(VCAM-1) using an enzyme-linked immuno-
absorbent assay method (R&D Systems, 
Minneapolis, MN).

After a 5-min rest, we measured cardiac 
rhythm for 5–10 min in a sitting position 
with a two-channel electrocardiogram 
monitor using a sampling rate of 256 Hz 
per channel (Trillium 3000 model, Forest 
Medical, East Syracuse, NY). We obtained 
the standard deviation of normal-to-normal 
intervals (SDNN), low frequency (LF; 0.04–
0.15 Hz), high frequency (HF; 0.15–0.4 Hz), 
and the logarithm of the LF:HF ratio with a 
fast Fourier transform using standard software 
(Trillium-3000, PC-Companion Software, 
Forest Medical). We measured QT interval 
from the QRS onset to the end of the T-wave 
only on normal or supraventricular beats. 
We calculated corrected QT values using the 
Bazett’s formula (Bednar et al. 2001), and the 
mean of corrected QT for the length of the 
recording as the outcome corresponding to 
each participant’s visit.

Before November 2000, we obtained 
serum concentrations of total cholesterol, high-
density lipoprotein (HDL), and triglyceride 
using the BM/Hitachi 747-100 Automatic 
Analyzer (Roche Diagnostics Corporation, 
formerly Boehringer Mannheim Corp., IN). 
From November 2000 to December 2006, we 
used the Olympus AU640/AU400 Chemistry 
Analyzer (Olympus America Inc., PA), and 
from January 2006 to 2013, we used Abbott 
Architect assays (Abbott Diagnostics, IL). 
We calculated low-density lipoprotein (LDL) 
cholesterol in mg/dL using Friedewald’s 
formula (Friedewald et al. 1972):

LDL cholesterol = Total cholesterol 
 – HDL cholesterol 
 – (Triglyceride/5). 

Statistical Methods

We examined whether 28-day moving 
average air pollutant levels were associated 
with percentiles of the outcome distribu-
tion in the 10% increments (10th to 90th 
deciles). Because we measured each outcome 
of interest repeatedly for 77% of the partici-
pants, we fit quantile regressions for longi-
tudinal data (Koenker 2004). Briefly, this 
method allows one to fit fixed-effects and 
correlated random-effects quantile regression 
models while relying on Bootstrap inference. 
We reported the quantile regression coeffi-
cients, scaled to correspond to differences in 
a given percentile of the outcome associated 
with an interquartile range (IQR) increase 
in the 28-day mean concentration of air 
pollution prior to the medical visit. We used 
the IQR because it reflects the spread of the 
distribution (i.e., 25th–75th percentiles) in 
the observed data.

Note that these differences are directly 
expressed in the outcome unit. We adjusted 
for the following potential confounders: 
temperature (24-hr mean of the day of the 
study visit and modeled continuously), 
relative humidity (24-hr mean of the day of 
the study visit and modeled continuously), 
as well as sine and cosine terms as a function 
of day of the season. We also controlled 
for time-varying factors likely to influence 
the outcome but not exposure such as: age 
(continuously modeled), physician-diagnosed 
diabetes (yes vs. no), body mass index 
(continuously modeled), smoking status 
(never vs. former vs. current), cumulative 
cigarette pack-years calculated for current and 
former smokers (continuously modeled), and 
statin use (current use vs. not). For blood 
pressure and heart rate variability, we adjusted 
for current use of antihypertensive medica-
tions (angiotensin-converting enzyme inhibi-
tors, beta blockers, calcium channel blockers, 
angiotensin receptor blockers, and diuretics). 
For SDNN, we controlled for heart rate 
because standard deviation is likely to be 
larger as heart rate increases.

We assumed that the missing mecha-
nism of the exposures happened completely 
at random and conducted complete case 
analyses. For instance, for particle number, 
our analysis is restricted to the period between 
October 1999 and February 2013, for which 
particle number measurements were obtained.

We assessed heterogeneity in the 
exposure–outcome association across quan-
tiles of the outcome distribution using visual 
diagnostics of patterns of increasing or 
decreasing associations over the distribution. 
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Because there can always be some variation 
due to noise in estimates from one decile to 
another, we relied on monotonic trends to 
detect potential real patterns of heterogeneity.

Sensitivity Analyses
As secondary analyses, we fitted linear mixed-
effects models with random intercepts and 
slopes for individual air pollutant effects to 
check for heterogeneous associations with 
the same outcomes of interest. Conditional 
on algorithm convergence, we obtained the 
subject-specific random slopes and calculated 
the individual effects (by adding the fixed and 
random effects) for participants with more 
than one visit to the VA clinic. Subsequently, 
we plotted these individual effects versus the 
outcome of interest measured at baseline.

Results
Table 1 shows longitudinal characteristics of 
the population. Participants were all male, 
with a median age at baseline of 69 years old. 

At baseline, only 6% were current smokers, 
but a majority of the subjects were former 
smokers. Compared to subjects having a 
fewer number of medical visits, participants 
with more visits seemed healthier at the first 
medical visit (e.g., at the first medical visit, 
these participants were more likely to be 
never smokers, to not have diabetes, or to 
not take any medication). Characteristics of 
the outcomes at baseline and of the weather 
and air pollution during the study period 
are presented in Table 2 and Table 3, 
respectively. The estimates of IQR used as 
exposure increments in this analysis can be 
found in Table 3. While < 2% of observa-
tions were missing the concentrations of 
PM2.5 black carbon and PM2.5 mass, more 
than half of the observations were missing 
for particle number due to a delayed start 
of measurement.

Our results showed that the asso-
ciations between air pollution and blood 
pressure, heart rate variability, repolarization 

abnormality, lipids, and inflammation were 
generally not constant across quantiles. 
Figure 1 suggests increased blood pressure 
levels (fairly heterogeneous for SBP and fairly 
homogeneous for DBP) for all individuals 
in response to extended concentrations of 
particle number, black carbon, and PM2.5 
mass. For instance, among participants with 
SBP > 155 mmHg (i.e., 90th percentile), an 
IQR increase in PM2.5 black carbon exposure 
was significantly associated with an increase 
of 7.2 mmHg [95% confidence interval (CI): 
5.5, 8.8] in SBP, whereas among individuals 
with SBP around 110 mmHg (i.e., 10th 
percentile), an IQR increase in PM2.5 black 
carbon exposure was significantly associated 
with an increase of 3.5 mmHg (95% CI: 
2.2, 4.7) in SBP. While the positive asso-
ciation between particle number and SBP 
was stronger in the lower quantiles of that 
outcome’s distribution (e.g., 10th percen-
tile estimate = 4.9, 95% CI: 1.4, 8.6), the 
same association with PM2.5 black carbon 

Table 1. Demographic characteristics of the NAS participants by number of medical visits.

Visits

Age  
(in years) 
median

Cumulative smoking  
(pack-yearsa) 

median

Current 
statin user  

%
Obesityb 

%
Medicationc 

%
Diabeticd 

%

Smoking status

Never 
%

Former 
%

Current 
%

Baseline (n = 1,112) 69 14 18 25 47 10 28 66 6
Among participants having one visit (n = 259)

Visit 1 72 20 18 22 51 14 25 65 10
Among participants having two visit (n = 220)

Visit 1 72 13 22 25 53 10 28 66 6
Visit 2 76 13 37 29 64 15 28 67 5

Among participants having three visits (n = 147)
Visit 1 70 15 20 25 54 14 20 75 5
Visit 2 73 15 34 28 66 20 20 76 4
Visit 3 77 15 46 27 73 23 20 75 5

Among participants having four visits (n = 136)
Visit 1 70 11 17 28 46 10 32 60 8
Visit 2 73 11 32 29 60 13 32 62 6
Visit 3 77 11 47 29 68 16 31 65 4
Visit 4 80 11 57 24 80 20 30 68 2

Among participants having five visits (n = 178)
Visit 1 66 11 12 29 40 4 29 67 4
Visit 2 70 11 31 30 54 11 29 67 4
Visit 3 73 11 52 29 65 13 29 67 4
Visit 4 76 11 63 29 70 20 29 68 3
Visit 5 80 11 70 27 78 21 28 69 3

Among participants having six visits (n = 163)
Visit 1 64 10 16 23 37 3 32 64 4
Visit 2 67 10 31 29 42 6 32 65 3
Visit 3 70 10 42 23 53 8 32 66 2
Visit 4 73 10 55 24 62 12 32 66 2
Visit 5 76 10 63 23 69 15 32 66 2
Visit 6 80 10 62 21 75 18 32 67 1

Among participants having seven visits (n = 9)
Visit 1 65 0  0 22 33 0 56 44 0
Visit 2 68 0 11 33 44 0 56 44 0
Visit 3 70 0 22 22 56 0 56 44 0
Visit 4 74 0 22 22 56 0 56 44 0
Visit 5 76 0 44 22 56 11 56 44 0
Visit 6 78 0 56 22 56 11 56 44 0
Visit 7 81 0 67 22 56 11 56 44 0

aPack-year is defined as the number of packs of cigarettes smoked per day times the number of years the person has smoked. 
bObesity status was defined as body mass index > 30 kg/m2. 
cCurrent use of antihypertensive medications (angiotensin-converting enzyme inhibitors, beta blockers, calcium channel blockers, angiotensin receptor blockers, and diuretics).
dDiabetic status was diagnosed by a physician.
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and PM2.5 mass was stronger in the upper 
quantiles (e.g., 90th percentile estimate = 3.6, 
95% CI: 1.6, 5.7).

Figure 2 indicates that among individuals 
with SDNN > 0.08 sec (i.e., 80th percen-
tile), an IQR increase in PM2.5 mass exposure 
was significantly related to a decrease of 
0.016 sec (95% CI: –0.030, –0.001) or 
more in SDNN, and that among particpants 
with SDNN around 0.02 sec (i.e., 20th 
percentile), PM2.5 mass exposure was not 
significantly associated with SDNN (20th 
percentile estimate = –0.0002, 95% CI: 
–0.003, 0.003). We observed significant 
positive associations of PM2.5 black carbon 
and PM2.5 mass with corrected QT interval 
mostly in individuals with corrected QT 
interval < 380 msec (i.e., between the 30th 
and 40th percentiles). Among individuals 
with corrected QT lower than 360 msec (i.e., 
10th percentile), an IQR increase in PM2.5 
black carbon exposure was significantly 
related to an increase of 48 msec (95% CI: 
21, 75) in corrected QT, but PM2.5 black 
carbon exposure was not significantly associ-
ated with corrected QT among participants 
with corrected QT exceeding 420 msec (90th 
percentile estimate = –3, 95% CI: –15, 9). 
We did not observe any obvious heteroge-
neity in the exposure–outcome association 
across the distributions of heart rate and the 
LH:HF ratio, except for the positive associa-
tion between PM2.5 black carbon and LF:HF 
ratio (that was observed among individuals 
above the median (median ≈ –0.1) of the 
LF:HF ratio distribution).

Figure 3 also suggests some heterogeneity 
in the air pollution–lipid association across 
deciles of the lipid distributions. For example, 
among participants with LDL cholesterol 
< 80 mg/dL (i.e., 10th percentile), an IQR 
increase in PM2.5 black carbon exposure 
was associated with a 7 mg/dL (95% CI: 
5, 10) increase in LDL cholesterol, whereas 
among subjects with LDL cholesterol levels 
close to 160 mg/dL (i.e., 90th percentile), 
the same exposure was related to a 16 mg/dL 
(95% CI: 13, 20) increase in LDL choles-
terol. Moreover, while the negative PM2.5 
black carbon–HDL cholesterol association 
was stronger for individuals with HDL levels 
> 50 mg/dL (i.e., between the 60th and 70th 
percentiles), the associations between all 
air pollutants of interest in this study were 
stronger at the highest percentiles of the 
triglycerides distribution.

Figure 4 exhibits fairly homogenous air 
pollution–inflammation associations (i.e., 
no meaningful monotone patterns across 
quantiles of fibrinogen and VCAM-1). 
However, for participants with C-reactive 
levels > 2 mg/L (i.e., 60th percentile), an 
IQR increase in particle number was asso-
ciated with a 0.4 mg/L (95% CI: 0.1, 0.7) 

increase or more in C-reactive protein, while 
we observed null associations for the 10th to 
60th quantiles. In addition, while an IQR 
increase in PM2.5 mass was associated with 
a 12-ng/mL (95% CI: 6, 18) increase in the 
10th percentile of the ICAM-1 distribution 
(corresponding to 200 ng/mL), it was asso-
ciated with a 23-ng/mL (95% CI: 11, 34) 
increase in the 90th percentile (corresponding 
to 375 ng/mL).

We noted that the quantile regression 
coefficients tend to have greater estimated 
variance when estimated at the tails of the 
distributions, which may be due to a fewer 
number of observations at the tails (compared 
to the center) used in the quantile regression.

Sensitivity Analyses
As secondary analyses, we assessed the asso-
ciations between baseline level of risk factors 
and individual effects estimates (obtained by 
mixed-effects models). These analyses included 
the subset of men with more than one medical 
visit (i.e., 77% of the study population).

Similarly as our results in Figure 1 (i.e., 
increasing black carbon–SBP associations 
and decreasing particle number–SBP asso-
ciations), the positive effects of PM2.5 black 

carbon (and PM2.5 mass) on SBP appeared to 
be stronger among participants with higher 
SBP measured at baseline, while the particle 
number–SBP association appeared to be 
stronger for participants with lower SBP at 
baseline (see Figure S1).

The mixed-effects  model did not 
converge when estimating the association 
between heart rate and particle number (due 
to missing data for particle number), but 
results suggest stronger negative effects of 
PM2.5 black carbon and PM2.5 mass among 
participants with lower baseline heart rates 
(see Figure S2), in contrast with quantile 
regression estimates that were relatively flat 
over the heart rate distribution (Figure 2). 
Consistent with the quantile regression 
results, stronger negative associations were 
estimated for all of the air pollutants among 
participants with higher baseline SDNN. 
Both analyses also suggested stronger positive 
associations of PM2.5 black carbon and PM2.5 
mass with corrected QT intervals among 
those with lower baseline corrected QT 
interval. However, while the quantile regres-
sion suggested no association with particle 
number other than a negative association 
among those with the lowest corrected QT 

Table 2. Baseline statistics of the cardiovascular-related outcomes of the 1,112 NAS participants.

Outcomes Mean 5th Percentile Median 95th Percentile
Blood pressure

Systolic (mmHg) 137 111 135 170
Diastolic (mmHg) 82 68 82 98

Heart rate variability and repolarization abnormality
Heart rate (beat/min) 65 47 65 85
SDNN (sec) 0.05 0.01 0.03 0.20
log10 (LF/HF) –0.09 –1.06 –0.03 0.56
Corrected QT interval (msec) 386 313 384 459

Lipids (measured in serum)
HDL (mg/dL) 43.6 28 42 65
LDL (mg/dL) 145 86 144 205
Triglycerides (mg/dL) 152 61 129 308

Inflammation (measured in plasma)
Fibrinogen (mg/dL) 369 249 357 554
CRP (mg/L) 3.8 0.4 2.3 24.5
ICAM-1 (ng/mL) 291 156 270 533
VCAM-1 (ng/mL) 1,015 606 979 1,821

CRP, C-reactive protein.

Table 3. Distributions of the weather and air pollution variables (1995–2013).

Variable nobservations
a nmissing

b IQR

Percentiles

5th 50th 95th
Temperature (°C) 

24-hr mean (day of the study visit) 3,606 9 14ºC –3°C 13°C 25°C
Relative humidity (%) 

24-hr mean (day of the study visit) 3,604 11 25% 41% 68% 92%
Particle number (number per cm3) 

28-day mean (prior visit) 1,770 1,845c 13,845 8,651 17,874 41,629
Black carbon (μg/m3) 

28-day mean (prior visit) 3,563 52 0.43 0.48 0.84 1.69
PM2.5 (μg/m3) 

28-day mean (prior visit) 3,606 9 4.0 6.2 10.3 16.4
aNumber of men = 1,112 and number of observations (study visits) = 3,615. 
bNumber of study visits with missing information.
cMeasurements of particle number concentrations started in October 1999.
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interval (Figure 2), the estimates from the 
mixed-effects model approach suggested 
stronger positive associations as baseline QT 
interval increased (see Figure S2). While the 
air pollution–LH:HF ratio association was 
fairly homogenous across quantiles (Figure 2), 
the mixed-effects model suggested stronger 
positive associations between all pollutants 
and the log LH:HF ratio among those with 
higher baseline log LH:HF ratio.

Stronger positive associations with LDL 
cholesterol and triglycerides were estimated 
for all examined air pollutants among 
individuals with higher baseline levels (see 
Figure S3), consistent with the quantile 
regression results (Figure 3). However, the 
mixed-effects models suggested positive asso-
ciations of particle number with HDL that 
were stronger as baseline HDL increased, 
whereas quantile regression did not suggest 
a consistent pattern of associations between 
particle number and HDL over the HDL 
distribution. In addition, while quantile 
regression suggested that the negative asso-
ciation between PM2.5 black carbon and 
HDL was stronger among those with higher 
HDL levels (Figure 3), estimates from the 
mixed-effects model did not suggest a consis-
tent pattern of associations according to 
baseline HDL.

Although air pollution–fibrinogen asso-
ciations from quantile regressions did not show 
consistent increases or decreases along the 
fibrinogen distribution (Figure 4), the mixed-
effects model estimates suggested stronger asso-
ciations with particle number and PM2.5 black 
carbon among participants with higher baseline 
fibrinogen (see Figure S4). In contrast, mixed-
effects model estimates suggested that asso-
ciations between fibrinogen and PM2.5 mass 
were strongest among those with the lowest 
baseline fibrinogen levels. The mixed-effects 
model did not suggest variation in associa-
tions between particle number and C-reactive 
protein (see Figure S4), in contrast with a 
pattern of stronger associations among those 
with higher C-reactive protein concentrations 
based on quantile regression (Figure 4). The 
mixed-effects models also suggested stronger 
associations between VCAM-1 and all three air 
pollutants (especially PM2.5 black carbon and 
PM2.5 mass) in contrast with relatively consis-
tent associations across the distribution based 
on quantile regression (though PM2.5 black 
carbon did show positive associations at the 
low end of the distribution only). Associations 
with ICAM-1 were stronger for higher baseline 
exposures based on both approaches, though 
the patterns appear much more pronounced for 
mixed-effects estimates.

Discussion
Our findings add further support for effects 
of ambient particulate air pollution on known 
cardiovascular risk factors (i.e., SBP, heart rate 
variability, repolarization abnormality, lipids, 
and inflammation). For those outcomes, we 
found evidence that the air pollution associa-
tion is not merely a shift in the distribution of 
the biomarkers in an adverse direction, but a 
change in the distribution across the popu-
lation. These associations are missed when 
standard regression techniques are applied. 
In particular, associations were often stronger 
among individuals whose biomarker levels 
already suggested higher risks. For example, 
the association between PM2.5 black carbon 
and LDL cholesterol was strongest in men 
with LDL concentrations > 140 mg/dL, and 
the association between PM2.5 black carbon 
and SBP was strongest in men with SBP 
> 140 mmHg.

Findings were not always consistent 
between the two approaches (i.e., differen-
tial quantile regression coefficients along 
the outcome distribution and differential 
individual associations by baseline outcome 
level using mixed-effects models with subject-
specific random intercepts and slopes). For 
example, the subject-specific associations for 
PM2.5 black carbon and PM2.5 mass were 

Figure 1. Associations between traffic-related air pollutants and quantiles of the distributions of SBP and DBP (adjusted for temperature, relative humidity, sine 
and cosine terms of the days of the season, age, physician-diagnosed diabetes, body mass index, smoking status, cumulative cigarette pack-years, current use 
of statin, and current use of antihypertensive medications). The y-axes represent the outcome difference (in the outcome unit) for an IQR increase in exposure. 
IQR for particle number = 13,845 number per cm3, IQR for PM2.5 black carbon = 0.43 μg/m3, and IQR for PM2.5 mass = 4.0 μg/m3. The numbers next to each point 
estimate indicate the deciles. Error bars represent 95% bootstrap CIs.
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higher in participants with higher SBP 
measured at baseline. However, this approach 
cannot be used when there are no repeated 
measures, whereas quantile regression can. 
That is, because random slope models 
assume a normal distribution of the subject-
specific slopes about the population mean. 

In contrast, some of the findings from the 
quantile models suggest that the distribu-
tion is quite skewed and thus the normality 
assumption does not hold (e.g., the associa-
tion between particle number and C-reactive 
protein does not appear to be centered 
around the population mean, but the 

association has a long upper tail, Figure 4). 
This is because the response is null except 
for participants at one extreme of the distri-
bution of baseline outcomes. The violation 
of the normality assumption could explain 
some of the inconsistencies between the 
two approaches.

Figure 2. Associations between traffic-related air pollutants and quantiles of the distributions of heart rate, SDNN, log(LF:HF ratio), and corrected QT interval 
(adjusted for temperature, relative humidity, sine and cosine terms of the days of the season, age, physician-diagnosed diabetes, body mass index, smoking 
status, cumulative cigarette pack-years, current use of statin, and current use of antihypertensive medications). For SDNN, we also controlled for heart rate 
because standard deviation is likely to be larger as heart rate increases. The y-axes represent the outcome difference (in the outcome unit) for an IQR increase 
in exposure. IQR for particle number = 13,845 number per cm3, IQR for PM2.5 black carbon = 0.43 μg/m3, and IQR for PM2.5 mass = 4.0 μg/m3. The numbers next to 
each point estimate indicate the deciles. Error bars represent 95% bootstrap CIs. Note: ms, millisecond; s, second.
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Previous Evidence on Shifts 
in Changes of Risk Factor 
Distributions
A previous study has reported a shift in the 
heart rate distribution due to an air pollu-
tion episode in 1985 in Central Europe 
(Peters et al. 2000). The authors found no 
obvious distributional distortions on heart 
rate when comparing air pollution episode 
to non-episode, which is consistent with 
our analysis that found no evidence against 
homogeneous associations along the heart rate 
distribution. Our quantile regression results 
are also directionally fairly consistent with 

mean regression analyses investigating the 
same cardiovascular outcomes either in the 
same cohort (Mordukhovich et al. 2009; Ren 
et al. 2010; Zeka et al. 2006), or in previous 
studies (Hampel et al. 2010; Hoffmann et al. 
2012; Peters et al. 1999; Rückerl et al. 2007), 
but capture additional shifts in the distribu-
tion. For instance, in the same NAS cohort, 
exposure to PM2.5 black carbon (7-day moving 
average exposure to PM2.5 black carbon) 
was associated with increased SBP and DBP 
(Mordukhovich et al. 2009). While this 
previous study did not find any association 
between PM2.5 mass and mean blood pressure, 

our quantile regression analysis (including 
more recent data) revealed associations 
between PM2.5 mass and increased SBP and 
DBP along the entire distributions. An impor-
tant feature of quantile regression is that the 
effect estimate is expressed in mmHg and thus 
can be directly clinically interpretable unlike 
studies analyzing log-transformed outcome 
data. Moreover, in an experimental study that 
examined healthy and asthmatic volunteers, 
Gong et al. (2004) also reported a decrease in 
SDNN associated with controlled exposures 
to ambient coarse particles. Previous studies 
have identified heterogeneity in the association 
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Figure 3. Associations between traffic-related air pollutants and quantiles of the distributions of HDL cholesterol, LDL cholesterol, and triglycerides (adjusted for 
temperature, relative humidity, sine and cosine terms of the days of the season, age, physician-diagnosed diabetes, body mass index, smoking status, cumula-
tive cigarette pack-years, and current use of statin). The y-axes represent the outcome difference (in the outcome unit) for an IQR increase in exposure. IQR for 
particle number = 13,845 number per cm3, IQR for PM2.5 black carbon = 0.43 μg/m3, and IQR for PM2.5 mass = 4.0 μg/m3. The numbers next to each point estimate 
indicate the deciles. Error bars represent 95% bootstrap CIs.
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between air pollution and cardiovascular 
outcomes based on risk factors such obesity 
and diabetic status (Baja et al. 2010), high 
viscosity (Peters et al. 2000), psychological 
factors (Madrigano et al. 2012), temperature 
(Ren et al. 2011), genetic variants (Ljungman 
et al. 2009; Park et al. 2006; Ren et al. 2010; 
Wilker et al. 2010), and epigenetic changes 
(Bind et al. 2012). In this study, we observed 

disparities based on outcome levels, which is 
a useful summary of multiple vulnerability 
cardiovascular risk factors (for this population 
of elderly white men).

Variation among Air Pollution 
Exposures
While PM2.5 black carbon was positively 
correlated with PM2.5 mass (Spearman 

correlation = 0.77), particle number was not 
correlated with PM2.5 black carbon or PM2.5 
mass (Spearman correlation = –0.07 and 
Spearman correlation = 0.07, respectively).

Quantile regression allowed us to identify 
evidence of effects on the overall shape of 
the outcome distribution, rather than shifts 
in the population mean only. For example, 
particle number concentration was positively 

Figure 4. Associations between traffic-related air pollutants and quantiles of the distributions of fibrinogen, C-reactive protein, ICAM-1, and VCAM-1 (adjusted for 
temperature, relative humidity, sine and cosine terms of the days of the season, age, physician-diagnosed diabetes, body mass index, smoking status, cumula-
tive cigarette pack-years, and current use of statin). The y-axes represent the outcome difference (in the outcome unit) for an IQR increase in exposure. IQR for 
particle number = 13,845 number per cm3, IQR for PM2.5 black carbon = 0.43 μg/m3, and IQR for PM2.5 mass = 4.0 μg/m3. The numbers next to each point estimate 
indicate the deciles. Error bars represent 95% bootstrap CIs.
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associated with SBP among men with SBP 
in the lower percentiles of the distribution, 
but not among men with higher SBP. This 
suggests that exposure to higher particle 
number concentrations will shift the left tail 
of the distribution of SBP toward the mean, 
without altering SBP of participants in the 
upper tail of the distribution. In contrast, the 
association between PM2.5 black carbon and 
SBP was positive for all men, but strongest 
among men with higher SBP, suggesting a 
larger shift in the upper tail than the lower 
tail of the SBP distribution. While both 
are particles from traffic, particle number 
concentration represents the concentration 
of ultrafine and fine particles between 0.007 
and 0.300 μm, including ultrafine particles 
that are freshly generated, whereas PM2.5 
black carbon particles are a mix of freshly 
generated ultrafine particles (aerodynamic 
particle diameter size da < 0.1 μm) and aged 
traffic particles (mostly in the accumulation 
mode, 0.1 < da < 1.0 μm) (Kang et al. 2010). 
Different types of particles may therefore 
affect certain parts of the SBP distribution 
differently. This finding provides evidence 
that different biological mechanisms may be 
involved in the adverse responses induced by 
fine and ultrafine particles. Finally, we did 
not observe any monotonically increasing or 
decreasing pattern in the associations between 
traffic-related particles and DBP across the 
distribution of this outcome. Generally, asso-
ciations between the three particle metrics 
investigated in this study and DBP were fairly 
homogenous across the DBP distribution.

This quantile analysis reveals some asso-
ciation between PM2.5 mass and the upper 
tail of the SDNN distribution but no associa-
tion between PM2.5 mass and the lower tail of 
the distribution. In addition, we observed 
positive associations between PM2.5 mass 
and the higher percentiles of the log(LF:HF) 
ratio distribution, indicating that the mean 
effect was driven by the highest percentiles 
of the distribution. For PM2.5 mass, SDNN 
was reduced and the log(LF:HF) ratio was 
increased at the higher end of their distri-
bution. This result suggests a health effect 
of PM2.5 mass involving a decrease in high 
frequencies, and thus points toward a poten-
tial impact on the parasympathetic pathway. 
For corrected QT interval, our results suggest 
that participants with low corrected QT 
interval were susceptible to increases in this 
outcome due to exposure of PM2.5 black 
carbon and PM2.5 mass. We also observed 
negative associations between particle number 
and the lowest quantiles of the corrected QT 
interval, which was opposite to that found for 
PM2.5 mass.

Our findings for lipids suggest that for 
high traffic-related exposures the right-tail 
of the LDL cholesterol and triglycerides 

distributions became longer with increases in 
exposure, again indicating that participants 
already at higher risk were impacted more. 
For HDL cholesterol, results from both 
statistical approaches (i.e., quantile regression 
and mixed-effects model) were not consis-
tent. The main inconsistency was found with 
particle number and HDL cholesterol. While 
the quantile regression approach suggested 
homogenous particle number–HDL choles-
terol associations along the HDL choles-
terol distribution, the mixed-effects model 
approach indicated heterogeneity in the indi-
vidual responses according to baseline HDL 
cholesterol level.

Particle number was associated with 
C-reactive protein only at the highest percen-
tiles of the distribution; suggesting an effect 
in participants who already had elevated 
C-reactive protein levels. That is, results suggest 
that the right tail of the C-reactive protein 
distribution is extended by exposure to particle 
number concentration, similarly as what was 
observed for IFN-γ DNA methylation in the 
same cohort (Bind et al. 2015). High levels of 
C-reactive protein have been related to cardio-
vascular disease (Ridker et al. 2010). Hence, 
this may suggest that individuals with higher 
risk of inflammation and cardiovascular disease 
may be the ones primarily being affected by 
exposure to particle number concentration. 
However, this result was not confirmed by 
the secondary analysis, which highlighted 
few participants at the extreme tail of the 
C-reactive protein distribution. For partici-
pants who already had high levels of ICAM-1, 
the effect of PM2.5 mass exposures on ICAM-1 
was almost doubled (compared to individuals 
with lower ICAM-1 levels). This result demon-
strates that in the presence of effect heteroge-
neity across the distribution of an outcome it 
is not adequate to report the mean estimate 
because it summarizes these effect estimate 
that differ across the range of the distribution, 
including those with opposing signs.

Strengths and Limitations
Unlike mean regression analysis, the statistical 
approach using quantile regression is distri-
bution free; thus, no transformation of the 
outcome is necessary. Estimates from quantile 
regression can therefore be directly expressed 
in the unit of the outcome of interest and 
provide clinically interpretable health impact. 
This method may capture associations that 
occur only at the tails of the distribution 
and might be otherwise missed. Another 
advantage of the quantile regression is that 
it captures distributional distortion. Finally, 
using both methods (quantile regression 
and mixed-effects model), we could some-
times demonstrate fairly similar heteroge-
neous effects of traffic-related air pollutants, 
but sometimes obtain inconsistent results 

(possibly due to the difference in methods 
and their associated assumptions).

One limitation of our study is the use of 
a single air pollution monitoring site. Since 
the study participants lived in the greater 
Boston, Massachusetts, area with a median 
distance of about 20 km, we assumed that the 
ambient air pollutant concentrations measured 
at the central monitoring site could serve as 
surrogates of their exposures. We also assumed 
the measurement error of the air pollutants 
concentrations to be primarily a Berkson 
measurement error. A previous study supports 
the assumption of this measurement error for 
air pollution exposures assessed at a central site 
(Zeger et al. 2000). Two studies support the 
use of exposure measured at a central moni-
toring site (e.g., for PM2.5 and PM10) in epide-
miological studies (Alexeeff et al. 2015; Janssen 
et al. 1998). Whether these findings are 
generalizable to the present study would partly 
depend on where the studies were conducted. 
However, correction for measurement error 
may yield less biased estimates for spatially 
heterogeneous air pollutants, such as black 
carbon and particle number. The proportion 
of missing measurements for particle number is 
also relatively high, mostly due to the fact that 
measurement started later than for the other air 
pollutants. The results for this exposure, there-
fore, relates to a different study period. This 
study period likely had lower levels over the 
full study period, as pollution levels have been 
declining steadily in the New England region. 
Therefore, ultimately this loss of data could be 
expected to reduce our power to detect asso-
ciations with this exposure, but note we still 
detect associations with particle number.

We focused on intermediate-term asso-
ciations with traffic-related air pollution (i.e., 
using 28-day moving average), and it could be 
the case that other exposure time windows are 
more relevant to these outcomes. In addition, 
this longitudinal design following an elderly 
cohort is subject to loss of follow-up. Therefore, 
the studied population constitutes a healthier 
subset of the population for later visits.

Conclusions
Our results suggest that air pollution distorts 
the distribution of established cardiovascular 
risk factors, and provides evidence that, in 
many cases, effects may be more pronounced 
in men who are already at increased risk of 
cardiovascular disease. More thorough preven-
tive measures are required for individuals 
who are chronically exposed to high levels of 
particulate matter air pollution. Future studies 
could investigate whether these findings gener-
alize to younger or female populations and 
to different ethnicities. Moreover, quantile 
regression may be used to obtain more accurate 
risk assessments and should be considered in 
 environmental epidemiology investigations.
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