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Introduction
Dengue is an acute infectious disease common 
to tropical and subtropical regions. Dengue 
viruses are transmitted by Aedes mosquitoes, 
mainly Aedes aegypti and Aedes albopictus 
(Rosen et al. 1983). Globally, the World 
Health Organization has estimated that there 
are 50–100 million dengue infections per 
year (Rigau-Pérez et al. 1998), although more 
recent estimates have elevated this figure to 
390 million, of which ~96 million are symp-
tomatic (Bhatt et al. 2013). Dengue infection 
in humans is mostly self-limiting—although 
antiviral drugs are under development (Lim 
et al. 2013; Rathore et al. 2011)—but may 
require hospital admission, and the more 
severe manifestations of dengue may lead to 
death (Murphy and Whitehead 2011). Case 
fatality rates of dengue fever and severe dengue 
vary from 0–5% to 3–5% (Halstead 1999).

The city-state of Singapore, which lies 
approximately 130 km north of the equator, 
has a tropical rainforest climate in the 

Köppen–Geiger climate classification system 
(Peel et al. 2007) with no distinctive seasons. 
The climate, combined with Singapore’s highly 
urbanized environment, favors the presence 
of Aedes mosquitoes and the transmission of 
dengue virus (Thu et al. 1998), thus making 
Singapore highly vulnerable to dengue 
outbreaks. All four serotypes are endemic to 
Singapore, and there is frequent introduction 
and circulation of different genotypes of the 
virus (Lee et al. 2010, 2012). With an annual 
reported incidence in the range of 20–330 
per 100,000 people, the economic impact of 
dengue in Singapore from 2000 to 2010 was 
estimated to be 850 million USD–1.15 billion 
USD, or approximately 200 USD per capita 
per year (Carrasco et al. 2011). Since 2003, 
> 100 dengue-related deaths have been 
reported [Ministry of Health, Singapore 
(MOH) 2012].

Antiviral drugs and vaccines have yet to 
reach the market (Douglas et al. 2013), and 
initial results from trials have been discouraging 

(Halstead 2012; Mahalingam et al. 2013; 
Sabchareon et al. 2012). In the absence of an 
effective vaccine against dengue, suppressing 
the mosquito vector population remains the 
key thrust of Singapore’s dengue-control 
program (Lee et al. 2013). From 2000 to 2009, 
the country spent > US$85 million per annum 
(Carrasco et al. 2011) on this endeavor. Since 
2006, the National Environment Agency 
(NEA) has introduced virological surveillance 
for early warning of outbreaks (Lee et al. 2010) 
and a novel mosquito-breeding index that esti-
mates the spatial distribution of Ae. aegypti, 
the main dengue vector in Singapore. Previous 
predictive capability relied on a qualitative 
understanding based on temperature, circu-
lating serotype, vector data from the field, and 
estimated immunity level of the human popu-
lation. If automated, statistical models hold 
the promise of being able to provide real-time 
quantitative forecasts of the appearance and 
evolution of a dengue outbreak, which may 
be used to efficiently guide the deployment of 
vector-control operations.
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Background: With its tropical rainforest climate, rapid urbanization, and changing demography 
and ecology, Singapore experiences endemic dengue; the last large outbreak in 2013 culminated 
in 22,170 cases. In the absence of a vaccine on the market, vector control is the key approach 
for prevention.

oBjectives: We sought to forecast the evolution of dengue epidemics in Singapore to 
provide early warning of outbreaks and to facilitate the public health response to moderate an 
impending outbreak.

Methods: We developed a set of statistical models using least absolute shrinkage and selection 
operator (LASSO) methods to forecast the weekly incidence of dengue notifications over a 3-month 
time horizon. This forecasting tool used a variety of data streams and was updated weekly, including 
recent case data, meteorological data, vector surveillance data, and population-based national 
statistics. The forecasting methodology was compared with alternative approaches that have been 
proposed to model dengue case data (seasonal autoregressive integrated moving average and 
step-down linear regression) by fielding them on the 2013 dengue epidemic, the largest on record 
in Singapore.
results: Operationally useful forecasts were obtained at a 3-month lag using the LASSO-derived 
models. Based on the mean average percentage error, the LASSO approach provided more 
accurate forecasts than the other methods we assessed. We demonstrate its utility in Singapore’s 
dengue control program by providing a forecast of the 2013 outbreak for advance preparation of 
outbreak response.

conclusions: Statistical models built using machine learning methods such as LASSO have the 
potential to markedly improve forecasting techniques for recurrent infectious disease outbreaks 
such as dengue.
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Any statistical approach to forecast 
dengue would need to meet certain criteria 
to be practical: a) use only data that are avail-
able at the time the forecast is made; b) be 
capable of forecasting weeks or months into 
the future to give lead time for preparing a 
public health response (for instance, hiring 
new control staff); c) possess validated and 
demonstrated predictive performance using 
data that were not used in its construction, 
to prevent over-fitting and to ascertain confi-
dence levels; and lastly, d) be able to process 
new data rapidly. Population dynamic 
modeling of dengue exploits epidemiological 
and entomological knowledge and is valuable 
for modeling what-if scenarios, such as the 
effect of introducing changes to the host or 
mosquito population [such as introducing 
vaccination into the pediatric vaccination 
schedule (Coudeville and Garnett 2012) or 
releasing genetically modified sterile mosqui-
toes or those infected by Wolbachia (Hughes 
and Britton 2013)], and may be useful for 
predicting long-term changes to epidemic 
dynamics caused by changing levels of herd 
immunity or by the age structure of a popu-
lation (Cummings et al. 2009; Egger et al. 
2008). A limitation of population dynamic 
models is that they are difficult to integrate 
with real-time data streams, such as meteoro-
logical or incidence data. Although success has 
been achieved for epidemiologically simpler 
diseases such as influenza (Baguelin et al. 
2010; Ong et al. 2010), the complexity caused 
by the possibility of having several serotypes 
circulating simultaneously and by the influ-
ence of the environment on the vector makes 
these models a relatively unattractive choice 
for short-term forecasts of dengue. In contrast, 
correlative statistical approaches—which 
describe the phenomenon but not the under-
lying process—are well suited to integration 
with multiple live data streams and may have 
good predictive accuracy if future conditions 
do not stray too far from the conditions used 
to parameterize them.

Other researchers have sought to develop 
statistical time series models to predict dengue 
in Singapore. Earnest et al. (2012) compared 
1-week-ahead dengue forecasts based on two 
popular modeling methods—the autoregres-
sive integrated moving average (ARIMA) 
and the Knorr-Held two-component (K-H) 
model—and showed that the K-H model 
was slightly more accurate. Hii et al. (2012a, 
2012b) developed a forecasting model using 
Poisson multivariate regression to predict 
the number of cases over a 4-month interval, 
demonstrating that past temperature and 
rainfall data are good predictors of future 
dengue incidence. Another study (Althouse 
et al. 2011) predicted 1-week and 1-month 
dengue incidence in Singapore and Bangkok, 
respectively, based on internet search engine 

queries that might signal the early stages of an 
outbreak. The authors compared three statis-
tical approaches based on these data—step-
down linear regression, generalized boosted 
regression, and negative binomial regres-
sion—and concluded that the step-down 
linear model was superior to the other two. 
Although the aforementioned models meet 
many of the criteria noted above, it is note-
worthy that none has been validated against 
data not used in its construction, and none 
was developed explicitly for operational use, 
suggesting that their predictive performance 
and usefulness to operations were not tested.

In this paper, we describe a new approach 
to forecasting dengue that is used by 
Singapore’s NEA in planning vector control 
and in public communication. The model 
specifically optimizes predictive accuracy 
over a 3-month time horizon with model 
complexity selected, and predictive perfor-
mance evaluated, using out-of-sample fore-
casting. We show that this approach, which 
uses the least absolute shrinkage and selection 
operator (LASSO) method to fit large regres-
sion models, has better predictive performance 
than other modeling approaches.

Materials and Methods

Statistical Analyses

LASSO. The Least Absolute Shrinkage and 
Selection Operator (LASSO) is a technique 
that was proposed in the 1990s (Tibshirani 
1996) and has inspired much interest in the 
statistical methodology community on “small 
n large p” problems (Tibshirani 1996). This 
framework extends standard regression and 
related models such as logistic regression by 
simultaneously selecting which parameters to 
include in the model and what their values 
should be. Rather than optimizing the (log) 
likelihood L(y |β, x) for dependent variable 
y, independent variables x and coefficients β, 
as in standard regression, LASSO optimizes 
the sum of the log-likelihood and a penalty 
term controlled by an additional parameter 
λ, which controls model complexity. In 
particular, the optimal coefficients are the βs 
that maximize

 | | | .L y ,x k
k

b m b-^ h |  [1]

The penalty term λ controls model 
complexity: for a specific value of the 
penalty parameter, the optimal fit will 
have some (or many) coefficients set to 0, 
that is, some covariates are not used in the 
model. The penalty term is usually selected 
by  cross- validation, in which a) the data are 
partitioned into several training and test sets; 
b) for each training set, a series of values of 
λ are considered; and c) for each λ, the best 
values of β are found and then used to predict 

the test data so that the out-of-sample perfor-
mance can be measured. The value of λ that 
maximizes the average out-of-sample perfor-
mance is then used to select the final model, 
implicitly meaning that the model complexity 
is selected to optimize predictive accuracy for 
a given set of independent variables. We used 
the glmnet algorithm (Friedman et al. 2010) 
implemented in the R statistical language (R 
Core Team 2014) to fit the models.

Our approach was to develop a tailored 
submodel unique to each forecast window 
from 1 week to 12 weeks in the future. For 
each submodel, the outcome variable was 
the weekly number of cases (natural log– 
transformed, with 1 added to avoid logging 0), 
and a large set of potential input variables were 
considered (details may be found in the data 
section). The formulation for each submodel 
was a multivariable linear regression. LASSO 
was used to select a (potentially different) set 
of predictors for each forecast window along 
with the values of their coefficients, with 
10-fold cross-validation used to determine 
optimal model complexity, before the forecasts 
were “stitched together” graphically to create 
the impression of a single predictive routine.

Covariates were considered at lags of up to 
20 weeks based on the findings of a previous 
study by Hii et al. (2012a, 2012b), but in 
contrast to their approach, we allowed the 
effect of a single factor (such as temperature) to 
have multiple lags in influencing future dengue 
cases. The framework used in developing the 
models is presented in Figure 1.

Other Approaches
We applied statistical methods used by 
Earnest et al. (2012) and Althouse et al. 
(2011) to compare with the LASSO approach 
described above.

In the Seasonal ARIMA (SARIMA) algo-
rithm, models are composed of nonseasonal 
factors (p, d, q) and seasonal factors (P, D, 
Q), where d and D define the order (i.e., the 
number of weeks in the past) of nonseasonal 
and seasonal differencing in the time series 
(between successive values, used to reduce 
the effects of nonstationarity of the time 
series), p and P are the autoregressive (AR) 
terms, and q and Q are the moving average 
terms. SARIMA models can vary from very 
simple—for instance, a nonseasonal AR1 
model in which the dependent variable is 
regressed upon itself (yt = β0 + β1yt – 1 + εt)—
to very complex, where the dependent variable 
depends on several past weeks, on moving 
averages of past weeks’ data, and on recurrent 
seasonal factors, in the present case, 52 weeks 
ago. The values of (p, d, q, P, D, and Q) with 
the lowest Akaike information criterion (AIC) 
during model training are selected for the 
optimal model. [A definitive introduction is 
provided by Chatfield (2013).]
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In the step-down linear regression (LR) 
model, we developed a submodel for each 
forecast window as in the LASSO approach, 
starting with a model containing all predic-
tors (at multiple lags) and progressively 
eliminating variables one at a time according 
to AIC score, until no further improvement 
was possible without removing two or more 
terms simultaneously.

Model Comparison
Models were compared using the mean 
absolute percentage error (MAPE), as proposed 
by Armstrong (1985) and modified and 
reproposed by Flores (1986), for each forecast 
window. If equation Dt + w is the actual number 
of dengue cases w weeks after time t when the 
prediction is made, and Dm

t + w is the number 
of cases forecasted by model m, the MAPE for 
that model and forecast window is

| |
100% | |
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where V is the validation set. We used data 
from 2001 to 2010 as training data to param-
eterize the models and from 2011 to 2012 to 
validate the models, and the validated models 
were applied to 2013 data to evaluate their 
performance. The same training and validation 
data sets were used for all three models.

Predictions were accompanied by 95% 
intervals using point estimates from the 
models with overlaid error using the estimated 
standard deviation of residuals from the fitted 
model, and we calculated the coverage of these 

intervals, that is, the proportion of time points 
in which the eventual data point fell within 
the prediction interval, to compare whether 
the actual coverage of the three approaches 
was at or above the nominal coverage.

Data
Weekly covariates were used to match the 
frequency of reported dengue data made avail-
able by Singapore’s Ministry of Health, with 
finer resolution data coarsened to this level, 
and coarser data assumed to be homogeneous 
over each reporting interval. The time horizon 
used for all variables was January 2001 to 
December 2012 unless otherwise indicated. 
The variables used and their sources are 
described below:

Case data. The weekly number of cases 
(natural log–transformed, +1) was provided 
by the Ministry of Health, Singapore, 
and can be obtained from their Weekly 
Infectious Diseases Bulletin (https://www.
moh.gov.sg/content/moh_web/home/
statistics/infectiousDiseasesStatistics/weekly_
infectiousdiseasesbulletin.html).

Population data.  Midyear popula-
tion sizes for residents and foreign non-
residents were obtained for each year from 
the Singapore Department of Statistics 
(Department of Statistics, Singapore 2015), 
natural log–transformed, and applied to all 
weeks within the corresponding calendar year. 
These data were applied to all weeks within 
that calendar year.

Meteorological data. Weekly mean 
temperature (T) in degrees Celsius, maximum 
hourly temperature, number of hours of 
high temperature (> 27.8°C) each week, and 

weekly relative humidity (RH) were obtained 
from Meteorological Services Singapore. 
Absolute humidity for any week (HA) was 
calculated from the weekly mean tempera-
ture (T) and the relative humidity (HR) using 
standard formulae (Xu et al. 2014).

Vector surveillance data. The weekly 
breeding percentage (BP) is an in-house index 
developed by NEA that provides an estimate 
of the proportion of Ae. aegypti, the primary 
vector of dengue in Singapore, compared 
with all Aedes spp. As part of vector control 
operations, potential breeding sites are sought, 
samples are taken when breeding is found, and 
the species is determined in our laboratory. 
Because this is part of routine vector control 
and not solely for surveillance, efforts are 
not temporally or spatially regular, and they 
tend to favor outbreak periods and areas with 
transmission, thus biasing estimates upwards 
for both total incidence of breeding sites and 
Ae. aegypti breeding. To overcome the biases 
in data collection, we used the proportion of 
identified Ae. aegypti breeding out of all identi-
fied breeding sites to quantify the amount of 
“relevant” breeding. There are two justifica-
tions for this assumption: a) another Aedes 
species, Ae. albopictus, is so widespread that 
the amount of Ae. albopictus breeding found 
is a good proxy for total effort in identifying 
breeding sites, and b) Ae. aegypti is the primary 
vector for dengue in Singapore; this species 
is more efficient at transmission and more 
often found to be infected than Ae. albopictus, 
and the presence of Ae. aegypti is necessary for 
sustained transmission in any neighborhood. 
The breeding percentage for week t, BPt, was 
calculated from the weekly number of Aedes 
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Figure 1. Model framework. Raw data from 2001 to 2010 including dengue cases, breeding percentage, temperature, humidity and population statistics are 
collated from the Minsitry of Health (MOH) (Weekly Infectious Diseases Bulletin; https://www.moh.gov.sg/content/moh_web/home/statistics/infectiousDisea-
sesStatistics/weekly_infectiousdiseasesbulletin.html), National Environment Agency (http://www.dengue.gov.sg/), and Department of Statistics, Singapore (2015) 
before being transformed and divided into sets that each contain predictors and a single output (dengue incidence at a future time point). In the third step, the 
LASSO method is employed to train and select the optimal models for future dengue forecast. In total, 12 models are generated, one per forecast week. In the 
final step, the 12 models are aggregated to make predictions over a 12-week window.
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mosquito breeding sites recorded during 
ground inspections carried out by NEA using 
the following formula:

 BP N t
N t

t
total

aegypti
= ^

^
h
h

, [3]

where Naegypti( t) and Ntotal( t) are the 
number of breeding sites containing only 
Ae. aegypti or containing either Ae. aegypti or 
Ae.  albopictus, respectively, in week t. This 
index has been found to have a high correla-
tion with dengue cases (unpublished data) 
and to be negatively correlated in space with 
chikungunya cases, for which Ae. albopictus is 
the more competent vector (Ng et al. 2009).

Trend and seasonality data. In addition 
to climatic factors, dengue is affected by other 
factors such as changes to vector control and 
circulating serotypes. To address the impact of 
such nonclimatic factors on disease dynamics, 
we decomposed dengue incidence into terms 
for trend and for annual seasonality.

To account for changes, both gradual 
and abrupt, we extracted trends and season-
ality from the weekly time series by using 
the Breaks For Additive Seasonal and Trend 
(BFAST) algorithm (Verbesselt et al. 2010). 
Specifically, BFAST decomposes time series 
into seasonality and trend components 
through iterative estimation of time series 
parameters and detection of break points, 
delimiting time windows in which different 
seasonal and trend patterns apply. Within 
each time window, the effect of seasonality is 
assumed to be sinusoidal, but the character-
istics of the sinusoidal functions vary across 
time windows. Similarly, trend is defined 
to be piecewise linear between break points. 
The inferred seasonal and trend terms were 
extracted from BFAST and were allowed to 
be used as covariates in the LASSO model.

Results
Data are presented in Figure 2. There was 
little overall variation in weather seasonality 
in Singapore over the time period investigated 
(2001 to 2010), with slightly hotter tempera-
tures (around 1–2°C higher) and slightly 
higher absolute humidity registered in the 
middle of the year. Relative humidity did not 
display any notable patterns, and the breeding 
percentage (i.e., the relative amount of 
Ae. aegypti) varied without any clear pattern. 
In contrast, dengue fluctuated between 
low-level endemic and larger epidemic states.

In cross-validation, 12 sets of optimal 
model complexity parameters were selected 
for the 12 forecast windows. These included 
covariates whose effect was lagged from 1 to 
20 weeks, and counting each lag separately in a 
total of 226 data streams, including seasonality 
and trend. We present the 12-week forecasts, 
including 95% prediction intervals, for various 

time points over the period 2001–2012 in 
Figure 3 for the LASSO method and the two 
other methods (step-down linear regression 
and SARIMA) (Dynamic 12-week forecasts 
for each model are presented in Video Files 
S1, S2, and S3). The LASSO and step-down 
approaches yielded forecasts that more accu-
rately presaged short-term incidence than did 
the SARIMA model. The start and end of 
several epidemics were accurately forecasted by 
both the LASSO and step-down approaches, 
although the peak of the large 2005 outbreak 
was not well described by the LASSO model.

The relative forecast accuracy was formally 
assessed by dividing the dataset into training 
(2001–2010) and validation sets (2011–2012) 
and comparing the MAPE of the best guess of 
the forecast and the coverage of the forecast 

interval. The results (Figure 4) support the 
use of LASSO to construct the forecasts: 
the LASSO approach yielded more accurate 
forecast time periods for all except the first 
2-week window, in which the performance of 
the LASSO and step-down approaches were 
approximately equal. Notably, the MAPE 
degrades slowly over time under the LASSO 
approach, with a rise from 17% error [95% 
confidence interval (CI): 16, 19%] forecasting 
1 week to 24% error (95% CI: 22, 26%) 
forecasting 3 months into the future. In 
contrast, both the step-down and SARIMA 
approaches had a MAPE of 29% at 3 months 
ahead (95% CI: 26, 32% [SARIMA], 
27, 32% [step-down]). In addition, although 
the LASSO and SARIMA predictions were 
conservative in the sense that the actual 
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Figure 2. Model input from 2001 to 2012. (A) dengue incidence, (B) breeding percentage (BP), defined as 
the proportion of Ae. aegypti, the primary vector of dengue in Singapore, compared with all Aedes spp., 
(C)  temperature, (D) relative humidity, and (E) absolute humidity from 2001 to 2012. Data sources are 
described in the text.
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coverage of prediction intervals exceeded the 
target of 95%, the step-down approach led 
to forecasts that understated the uncertainty, 
with a coverage that sometimes fell below the 
nominal level of 95% (Figure 4).

Interpretation of climatic and other factors 
was difficult because the strength of their 
association varied between forecast windows 
and because they operated over different time 
lags. However, recent dengue incidence (the 
autoregressive component) over a lag window 
of 1–5 weeks generally increased the forecast 
number of dengue cases; higher average 
weekly temperatures had a mostly dampening 
influence on forecast dengue cases, consistent 
with some findings in the literature (Morin 
et al. 2013); and the breeding percentage, 
reflecting the preponderance of Ae. aegypti, 
was mostly positively correlated with forecast 
dengue incidence. Dengue incidence over the 
next 4–5 weeks was positively associated with 
high levels of absolute humidity over the last 
month and negatively associated with high 
humidity 15–20 weeks previously.

The forecasts at various time points in 
Singapore’s record-breaking 2013 epidemic, 
in which 22,170 cases were reported, are 
presented in Figure 5. Early in the epidemic 
(Figure 5A), the model forecast was of a 
mild rise, which was exceeded by the actual 
epidemic. By February (Figure 5B), the 
forecast was an almost perfect match to the 
data. At the end of April (Figure 5C), the 
forecast was of a decline, but the range of 
possible scenarios (the 95% interval for the 
forecast) included the subsequently observed 
peak at ~800 cases/week. The end of the 
epidemic, starting in July, was also success-
fully forecasted. Overall, the model predicted 
a slightly more rapid end to, and smaller size 
of, the epidemic than that which occurred.

Discussion
Penalized regression, of which LASSO is the 
most prominent methodology, is an idea that 
dates back to the 1990s (Tibshirani 2011) 
and over the last decade has led to substan-
tial theoretical and methodological advances 
in “small n large p” problems in which the 
number of observations is smaller than the 
number of potential predictors. By optimizing 
a combination of model goodness of fit (via 
the likelihood) and model complexity (via a 
penalty that grows with the size of the param-
eters in the model), and using cross-validation 
to identify the optimal penalty term, penalized 
regression can simultaneously handle both 
model building and parameter estimation, 
avoid over-fitting, and improve out-of-sample 
predictive accuracy (Hoerl and Kennard 1970; 
Zhao and Yu 2006). By shrinking regression 
coefficients of less importance to or towards 
zero and thereby retaining only the most 
important predictors, LASSO is able to obtain 

good interpretability and stability (Zhao 
and Yu 2006).

Although LASSO is a well-established 
methodology that is frequently used in bioin-
formatics and other big-data applications 
(González-Recio et al. 2009; Shi et al. 2007; 
Wu et al. 2009), there are few applications 
of this method in epidemiology (for instance, 
Walter and Tiemeier 2009) or in neglected 
tropical diseases. In this paper, we report the 
use of LASSO in forecasting an endemic and 
high-burden disease—dengue—in Singapore, 
which, by virtue of its location near the 
equator and concomitant lack of season-
ality, experiences unpredictable outbreaks 
above the usual endemic level. The LASSO 
methodology has several advantages over 
traditional approaches: a) Model selection is 
rapid (approximately 2 min), automatic and 
objective, in contrast to more laborious and 
sometimes subjective approaches such as the 
Hosmer and Lemeshow (2000) purposeful 
approach to model building, or common 

approaches such as forward selection using 
p-values (Grechanovsky and Pinsker 1995). 
b) Tautologically, by selecting the model 
complexity using cross-validation to optimize 
predictive performance, predictive perfor-
mance of the routine is optimized; thus, the 
task of making better and more accurate fore-
casts is reduced to that of finding potentially 
informative covariates. c) LASSO allows large 
numbers of possible predictors to be consid-
ered without prejudicing the accuracy of the 
routine because nonpredictive variables obtain 
zero coefficients for optimal values of the 
penalty term and thereby drop out of the final 
model. d) By using distinct models for 1-week 
forecasts, 2-week forecasts, and so on, the 
variables used and the values of their associ-
ated coefficients can be tailored to the specific 
requirements of forecasting different lengths 
of time into the future. Recent dengue cases 
(over the last 4 weeks) are important in fore-
casting for 1–12 weeks, and average tempera-
ture is not useful in short-term forecasts 

Figure 3. Comparison of dengue forecast from 2001 to 2012. Dengue forecast using (A) LASSO, (B) 
step-down linear regression and (C) SARIMA. For the LASSO, step-down linear regression and SARIMA 
methods, we selected all of the data (2001 to 2012) except the year being forecast to develop the model 
(to approximate the out-of-sample predictive performance in the other results). In each plot, the red lines 
represent model-based point estimates, and the pink contours represent the corresponding 95% predic-
tion intervals. Each segment of predicted data (i.e., each pink and red region) represents the estimates 
from one 12-week forecast made at a previous point in time. Forecasts at other times are suppressed to 
simplify the figure but are presented in Video Files S1, S2, and S3.
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(1–3 weeks), although it is for longer fore-
casts (4–12 weeks); these examples highlight 
the need for separate submodels for different 
forecast windows. Having distinct submodels 
also obviates the need to forecast future values 
of the predictors, which would be the case if 
a single model for 1 week ahead were used 
and then iterated to obtain longer-term fore-
casts. This approach led to high accuracy for 
both immediate (next week, MAPE 17%) 
and long-term (3 months, MAPE 24%) 
predictions. Although the forecast accuracy 
degraded as the forecast window was extended 
(see Figure 4), this degradation was surpris-
ingly slight, and we were able to predict the 
large outbreaks of both 2013 and 2014 over 
10 weeks in advance, giving advance warning 
to allow operations to be rolled out. We 
restricted the forecast window to 12 weeks 
to avoid the increased level of inaccuracy 
that accompanies long-term projection and 
because short- (several weeks) and medium-
term (several months) projections are the most 
useful for local planning purposes.

There are, however, some limitations to 
this approach. The largest of these limitations 
is that although very good predictive accuracy 
can be achieved, the 12 models built using the 
LASSO method are not amenable to inter-
pretation because they were constructed for 
their predictive accuracy, not to explain the 
etiology of outbreaks. In particular, attempts to 
explain to stakeholders why the model forecast 
a large epidemic in 2013 were hindered by the 
numerous covariates acting at different lags. 
Interpretation is increasingly difficult at longer 
forecast windows. For example, ~60 predictors 
out of the complete set of > 200 were selected 
for the 12-week-ahead submodel. Among 
these 60 variables, the same covariate was 
often selected at different lags and frequently 
was selected with differently signed coeffi-
cients at those different lags. The complexity 
needed for good forecasts reflects the multi-
tude of factors operating on the vector and 
virus–vector interactions. One plausible way 
to reduce the apparent complexity would be 
to combine our approach with a mechanistic 
model of drivers of the mosquito life cycle, 
for instance, via the Focks model (Focks et al. 
1995), with output from the mechanistic 
model replacing some or all of the environ-
mental drivers in the statistical model. The 
variables we used include meteorological data, 
case data, vector surveillance data, and human 
population data. Other relevant indicators 
of risk, particularly on circulating serotypes, 
genotypes, and evidence on herd immunity 
via occasional sero-epidemiological surveys, 
may subsequently be incorporated. However, 
because comprehensive analysis of genotype 
and serotype of dengue cases in Singapore 
began in approximately 2006, and because 
testing protocols have evolved since that time, 

we need to explore the best way to incorporate 
these sources of information.

The forecasting tool described in this paper 
has become an integral part of Singapore’s 
dengue control program. The final model is 
embedded in a “real-time” schedule, with data 
(at present) being updated weekly and predic-
tions sent out to our operational partners 
(examples of the forecasts used in the 2013 
outbreak are shown in Figure 5), including 
the Ministry of Health and the Environmental 
Public Health Operations Department of the 
NEA. During the 2013 epidemic, our fore-
casts helped guide hospital bed management 
and public health interventions, including 

pre emptive source reduction measures, recruit-
ment of ground staff, and education campaigns. 
In late March 2013, our models forecasted 
an earlier-than-usual increase in dengue cases 
in June 2013, which could potentially peak 
at 800 cases/week. Specifically, the forecast 
predicted a peak in case count of 863 during 
the 26th week of 2013, which is very close to 
the observed number of cases, which peaked 
at 842 cases/week during the 25th week. In 
addition to aiding with resource planning, this 
forecast also facilitated early risk communica-
tion to the public and the advanced launch of 
Dengue Campaign in April, 2 months ahead of 
its traditional June launch.

Figure 4. Comparison of model performance among SARIMA, step-down linear regression (LR) and LASSO 
using mean absolute percentage error (MAPE) and coverage of nominal 95% intervals. (A) MAPE compar-
ison among LASSO, step-down linear regression and SARIMA over 1- to 12-week forecast windows. 
MAPE with 95% confidence intervals for LASSO, step-down linear regression and SARIMA are repre-
sented by vertical bars, filled orange polygons, and filled blue polygons, respectively. The MAPE degraded 
more slowly over time under the LASSO approach, with an increase from 17% error forecasting at 1 week 
to 24% error forecasting at 3 months, although the LASSO approach yielded comparable accuracy to 
those of step-down linear regression and SARIMA for the first 2 weeks. (B) Coverage of LASSO, step-
down LR and SARIMA. For each forecast window period, the percentage coverage was calculated using 
the number of observations that fell within the 95% interval derived by overlaying the estimated error 
distribution on top of the forecast. The dashed line represents the nominal coverage of 95%.
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Conclusion
Future work will automate the data-handling 
process so that predictions can be generated 
and posted online without the routine being 
rerun manually; such automation will also 
allow the forecast to be made daily and hence 
to be genuinely in “real time.” Extending the 
forecasts beyond 12 weeks may be challenging 
because some of the key drivers, such as local 
weather conditions, may have a short-term 
but strong effect on dengue that requires inte-
grating the predictive model with weather fore-
casting models, where long-term forecasts may 
not be readily available.
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