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Introduction
Evidence of the association between long-term 
exposure to ambient PM2.5 (particulate matter 
with diameter ≤ 2.5 μm) and human health 
continues to accumulate (Laden et al. 2006; 
Miller et al. 2007; Pope et al. 2002, 2004; 
Puett et al. 2009) and has spurred research 
into understanding the role of specific PM2.5 
chemical components (Mauderly and Chow 
2008; Ostro et al. 2010; Schlesinger 2007; 
Vedal et al. 2013). Recent cohort studies have 
relied on predictions of long-term average 
PM2.5 concentrations at participant homes 
based on models developed from monitoring 
data (Eeftens et al. 2012; Paciorek et al. 2009; 
Sampson et al. 2011, 2013; Szpiro et al. 2010; 
Yanosky et al. 2009). A few additional studies 
have used this approach to estimate the health 
effects of PM2.5 components (Bergen et al. 
2013; de Hoogh et al. 2013).

Parallel research in the statistics literature 
suggests that features of the monitoring data 
can affect the quality of the prediction models 
(Diggle et al. 2010; Gelfand et al. 2012) and 
the resulting health effect estimates (Szpiro and 
Paciorek 2013; Szpiro et al. 2011). Regulatory 

monitoring data collected and managed 
by government agencies are a common and 
useful resource for epidemiological appli-
cations. For the study of health effects of 
PM2.5 chemical components in the United 
States, most studies have used data from two 
networks: the U.S. Environmental Protection 
Agency (EPA) Chemical Speciation Network 
(CSN) and the Interagency Monitoring of 
Protected Visual Environment (IMPROVE) 
sponsored by the U.S. EPA and other agencies 
(Bergen et al. 2013; Ostro et al. 2010; Pope 
et al. 2002). However, because these moni-
toring networks were designed for regulatory 
purposes, they may not be suited to some 
epidemiological applications.

The University of Washington National 
Particle Component and Toxicity (NPACT) 
study was designed to investigate the asso-
ciations between long-term exposure to PM2.5 
chemical components and cardiovascular 
health partly based on the Multi-Ethnic Study 
of Atherosclerosis (MESA) cohort. NPACT 
collected PM2.5 component concentrations in 
the framework of an extensive cohort-focused 
monitoring campaign of the MESA and Air 

Pollution (MESA Air) study to capture fine-
scale spatial variability at the residences of the 
MESA/MESA Air study cohort. This spatially 
resolved monitoring may be particularly 
meaningful for understanding PM2.5 compo-
nents because many are largely affected by 
local sources. It will also enhance our ability 
to characterize within-community spatial vari-
ability in our exposure prediction models. In 
the original plan, the NPACT monitoring 
data were intended to be combined with regu-
latory monitoring data in exposure prediction 
models, similar to the approach used previ-
ously for predicting PM2.5 (Keller et al. 2015; 
Paciorek et al. 2009; Sampson et al. 2011; 
Yanosky et al. 2009). To meet this objective, 
we first needed to assess various features of the 
PM2.5 component data in order to ensure they 
could be combined in prediction modeling.

In this paper we compare and contrast the 
compatibility of the CSN and IMPROVE 
regulatory monitoring network data with the 
NPACT monitoring data within the context 
of the NPACT study goals. In particular, we 
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Background: Regulatory monitoring data have been the exposure data resource most commonly 
applied to studies of the association between long-term PM2.5 components and health. However, 
data collected for regulatory purposes may not be compatible with epidemiological studies.

oBjectives: We studied three important features of the PM2.5 component monitoring data to 
determine whether it would be appropriate to combine all available data from multiple sources for 
developing spatiotemporal prediction models in the National Particle Component and Toxicity 
(NPACT) study.

Methods: The NPACT monitoring data were collected in an extensive monitoring campaign 
targeting cohort participant residences. The regulatory monitoring data were obtained from 
the Chemical Speciation Network (CSN) and the Interagency Monitoring of Protected Visual 
Environments (IMPROVE). We performed exploratory analyses to examine features that could 
affect our approach to combining data: comprehensiveness of spatial coverage, comparability of 
analysis methods, and consistency in sampling protocols. In addition, we considered the viability of 
developing spatiotemporal prediction models given a) all available data, b) NPACT data only, and 
c) NPACT data with temporal trends estimated from other pollutants.
results: The number of CSN/IMPROVE monitors was limited in all study areas. The different 
laboratory analysis methods and sampling protocols resulted in incompatible measurements 
between networks. Given these features we determined that it was preferable to develop our 
spatiotemporal models using only the NPACT data and under simplifying assumptions.

conclusions: Investigators conducting epidemiological studies of long-term PM2.5 components 
need to be mindful of the features of the monitoring data and incorporate this understanding into 
the design of their monitoring campaigns and the development of their exposure prediction models.
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component data from multiple sources: data consistency and characteristics relevant to epidemio-
logical analyses of predicted long-term exposures. Environ Health Perspect 123:651–658; 
http://dx.doi.org/10.1289/ehp.1307744



Kim et al.

652 volume 123 | number 7 | July 2015 • Environmental Health Perspectives

discuss the spatial coverage of exposure moni-
toring, the filter analysis methods, and the 
sampling protocols. NPACT analyses focused 
on four primary pollutants: elemental and 
organic carbon (EC and OC), silicon, and 
sulfur as markers for combustion sources, 
crustal dust, and inorganic aerosol, respec-
tively. Here we restrict our attention to EC 
and silicon, because these pollutants have 
been associated with adverse health outcomes 
(Ostro et al. 2010; Vedal et al. 2013) and 
they allow us to highlight similarities and 
differences in the features we compare.

Methods
Population. The NPACT study was based 
on the subjects who were originally recruited 
in MESA and consented to MESA Air or 
who were directly enrolled in MESA Air. The 
cohort includes approximately 7,000 partici-
pants residing in six U.S. metropolitan areas: 
Baltimore, Maryland; Chicago, Illinois; Los 
Angeles, California; Minneapolis–St. Paul, 
Minnesota; New York City, New York; and 
Winston-Salem, North Carolina (Bild et al. 
2002; Kaufman et al. 2012).

Data. NPACT monitoring data. To 
characterize spatial variability of exposures 
across participant residences, the NPACT 
study expanded the MESA Air exposure 
monitoring campaign to also measure PM2.5 
components (Vedal et al. 2013). The MESA 
Air campaign focused on measuring PM2.5 
mass and gaseous pollutant concentrations. 
In each city the campaign included three 
to seven fixed NPACT sites measuring 
pollutants in 2-week samples over multiple 
years, and approximately 50 rotating home-
outdoor sites that each provided one to three 
2-week samples (average of 1.8 samples) 
(Cohen et al. 2009). One fixed NPACT site 
was co-located with one CSN site in each 
city. Whereas the NPACT sampling for 
trace elements was carried out over 4 years 
(August 2005 through August 2009), carbon 
data were collected over 18 months (March 
2007 through August 2008). Two-week 
samples for trace elements and carbon were 
collected on Teflon and quartz filters, respec-
tively, in Harvard Personal Environmental 
Monitors (HPEMs) with a 2.5-μm cut size 
and pump flow rate of 1.8 L/min. PM2.5 
components were quantified in U.S. EPA–
certified labs using analysis methods consis-
tent with those currently employed in the 
CSN and IMPROVE networks as described 
in detail by Vedal et al. (2013). In brief, 
trace elements were quantified using X-ray 
Fluorescence (XRF) (Cooper Environmental 
Services, Portland, OR). EC and OC were 
blank-corrected and quantified using the 
IMPROVE_A Total Optical Reflectance 
(TOR) method (Sunset Laboratory Inc., 
Tigard, OR). In addition, the NPACT study 

carried out comprehensive quality assurance 
and control procedures to minimize errors 
from field activities and lab analyses.

Regulatory monitoring data. The CSN 
and IMPROVE networks have collected 
24-hr average samples of PM2.5 compo-
nents across the United States every third or 
sixth day since 2000 and 1988, respectively 
(Hand et al. 2011; Rao et al. 2003; U.S. EPA 
2004, 2005a). Monitoring sites in CSN are 
mostly located in urban areas to identify and 
control potential sources of PM2.5, whereas 
IMPROVE sites are largely deployed in rural 
areas to assess and regulate visibility (Hand 
et al. 2011; U.S. EPA 2004). From the > 300 
monitoring sites in both networks combined, 
we selected the 99 monitoring sites within 
200 km of the centers of the six MESA city 
regions, and downloaded from the U.S. 
EPA Air Quality System (AQS) database all 
measurements collected between 1999 and 
2009. We began with 1999 because it is 
1 year before the baseline screening of MESA 
participants. In CSN and IMPROVE, PM2.5 
components were sampled by compliance 
samplers (U.S. EPA 1998). The two networks 
measured trace elements by XRF, including 
silicon and sulfur. In the CSN network, EC 
and OC were measured by the National 
Institute for Occupational Safety and Health 
(NIOSH) Total Optical Transmittance 
(TOT) or IMPROVE_A TOR method 
(without blank correction for both methods). 
In contrast, IMPROVE has only used 
IMPROVE_A TOR with blank correction.

Data processing. We focused on silicon 
and EC in this paper. We selected EC over 
OC because most previous epidemiological or 
toxicological studies that considered carbon 
measurements focused on EC. We selected 
silicon over sulfur so we could highlight inter-
esting features of the silicon data found in our 
exploratory analyses. [See Vedal et al. (2013) 
for the full data description and exploratory 
analyses.] To align with NPACT’s 2-week 
average integrated samples, we computed 
averages of daily CSN/IMPROVE data for 
the corresponding 2-week periods centered on 
every other Wednesday. We log-transformed 
(natural log) the 2-week averages after adding 
1 to approximate a normal distribution. In 
sensitivity analyses we found our results 
were insensitive to the addition of a different 
constant, namely 0.1 times the average of each 
component (data not shown).

Features affecting between-network 
comparability. We focused on spatial 
coverage, filter analysis protocol, and sampling 
protocol as factors that may influence data 
comparability among the CSN, IMPROVE, 
and NPACT networks.

Spatial coverage. Monitoring sites in the 
CSN and IMPROVE networks are located 
far from each other and typically comprise 

only one or a few sites in a city, whereas 
the NPACT monitoring sites were densely 
located within each MESA city region. The 
sparse spatial coverage of the regulatory 
monitoring data limits our ability to model 
PM2.5 component concentrations over space 
(Lippmann 2009).

Filter analysis protocol. Analytical 
methods for EC and OC differed within and 
between networks. In particular, CSN has 
historically used the NIOSH TOT method, 
whereas IMPROVE uses the IMPROVE_A 
TOR method. The two methods use different 
time/temperature analytical protocols to 
measure fractions of EC and OC on quartz 
filters. Data discrepancies resulting from these 
method differences have been documented 
(Chow et al. 2001; Malm et al. 2011). 
Consequently, the U.S. EPA decided to 
change the laboratory method for CSN sites 
to the IMPROVE_A TOR method beginning 
in May 2007 (U.S. EPA 2005b, 2006). All 
core CSN sites simultaneously changed in May 
2007, while the method change was phased in 
over time after that date at supplemental CSN 
sites. NPACT used the IMPROVE_A TOR 
method exclusively.

Sampling protocol.  The NPACT, 
CSN, and IMPROVE networks operated 
on different sampling schedules and used 
different sampling hardware. Whereas 
NPACT collected 2-week average samples, 
CSN/IMPROVE sites collected 24-hr average 
samples that were obtained every third day 
at all IMPROVE sites and at most core CSN 
sites, and every sixth day at supplemental CSN 
sites. The use of different sampling devices 
with different pump flow rates and blank 
correction methods may also contribute to data 
inconsistencies among monitoring networks.

Exploratory data analysis for data 
comparability. To assess data comparability 
between networks, we performed exploratory 
analyses by generating graphical displays 
(maps, scatter plots, and time-series plots) and 
summary statistics.

Sparse coverage in urban space. We 
investigated the potential impact of the 
number, density, and locations of monitors 
within each area on spatiotemporal predic-
tion model estimates by assessing city-
specific spatial distributions of monitors 
and comparing estimated temporal patterns 
between networks. The temporal patterns 
were estimated by smoothing time-series data 
across monitoring sites.

Different filter analysis protocols. We 
compared the two filter analysis methods 
for EC between the CSN and IMPROVE 
networks as well as within the CSN network. 
We compared pairs of daily average EC 
measurements collected from January 2000 
through July 2007 at four co-located CSN and 
IMPROVE sites using the NIOSH TOT and 
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IMPROVE_A TOR filter analysis methods, 
respectively. In addition, there were 2 months 
of overlap from early May to early July in 2007 
when both NIOSH TOT and IMPROVE_A 
TOR methods were used at the same core 
CSN sites. We compared pairs of daily average 
EC measurements during the overlapping time 
period using two methods at the six core CSN 
sites co-located with NPACT fixed sites.

Different sampling protocols. Given that 
NPACT collected 2-week average measure-
ments and CSN and IMPROVE collected 
24-hr samples every third or sixth day, it was 
not clear whether CSN and IMPROVE data 
could reliably estimate 2-week averages and 
temporal trends. The majority of CSN and 
IMPROVE data available for NPACT were 
measurements taken every sixth day at supple-
mental CSN sites. There were relatively few 
network sites with data collected every third 
day within 200 km of a MESA city center, 
because there were only 54 core CSN sites in 
the United States, and IMPROVE sites are 
mostly distant from cities. Thus we investi-
gated the importance of sampling frequency 
by making within-site comparisons at four 
of the six CSN sites co-located with NPACT 
fixed sites that collected data every third day. 
Specifically, we compared the smoothed 
temporal patterns of 2-week average silicon 
estimates using data obtained from every 
third-day samples versus a reduced subset 
of every sixth-day samples. In addition to 
different sampling frequencies, the impact of 
differences in sampling hardware systems was 
compared at all six co-located sites using pairs 
of 2-week averages for EC and silicon from 
CSN and NPACT. The comparison for EC 
was restricted to the period during and after 
May 2007 when the IMPROVE_A TOR 
filter analysis method was adopted at core 
CSN sites. All six CSN sites co-located with 
NPACT fixed sites were core sites.

Exposure prediction model. The NPACT 
exposure prediction model aimed to predict 
2-week average concentrations of PM2.5 
components at participant addresses by 
adopting the spatiotemporal modeling frame-
work developed for the MESA Air study. 
Overall, NPACT monitoring sites provided 
reasonable spatial coverage of MESA cities 
(average of 3–10 sites/km for fixed and 
home-outdoor sites combined in each city). 
However, there were only three to seven 
fixed NPACT sites providing continuously 
collected data for each city (over 4 years for 
silicon or 18 months for EC), in contrast 
with the larger numbers of home-outdoor 
sites (87–116 per city) operating for only one 
to three 2-week periods. See Supplemental 
Material, Figure S1, for an illustration of the 
spatial and temporal resolution of the NPACT 
monitoring design in the Los Angeles area as 
an example. The spatiotemporal model was 

designed to effectively utilize such highly 
imbalanced monitoring data. Applications of 
the city-specific spatio-temporal models for 
PM2.5, nitrogen dioxide (NO2), nitrogen 
oxides (NOx), and black carbon in MESA Air 
have been described previously (Keller et al. 
2015; Lindström et al. 2013b; Sampson et al. 
2011; Szpiro et al. 2011) in situations where 
regulatory monitoring data were used to 
supplement the MESA Air campaign. The long 
time series of the regulatory monitoring data 
contributed to characterization of temporal 
features, whereas the MESA Air monitoring 
data enhanced the model at a relatively fine 
spatial scale. The model is available for imple-
mentation in the R package “SpatioTemporal” 
(Lindström et al. 2013a, 2013b). In brief, this 
model assumes that 2-week average space-time 
concentrations consist of site-specific long-
term means, site-specific temporal trends, 
and spatiotemporal residuals. Long-term 
means and temporal trends vary over space 
as characterized by geographical predictors 
and spatial correlation structures. Temporal 
trends include spatially homogenous temporal 
trend functions scaled by spatially varying 
trend coefficients. Temporal trend functions 
are derived from a singular value decomposi-
tion of the data at sites with long time series 
before model fitting. Spatiotemporal residuals 
are assumed to be temporally independent but 
spatially dependent.

Exploration of possible spatiotemporal 
modeling approaches. We explored the possi-
bility of fitting three approaches to develop 
city-specific spatiotemporal prediction models 
for silicon and EC based on our experience 
developing the MESA Air spatiotemporal 
model for PM2.5 (Keller et al. 2015). For 
this exploration, we used results of descrip-
tive analyses described in the previous 
section (“Exploratory data analysis for data 
comparability”) and performed additional 
data analyses. First, we considered the full 
spatiotemporal model directly using all avail-
able PM2.5 component data from the regu-
latory and NPACT monitoring networks as 
in Keller et al. (2015) (Approach 1). In the 
PM2.5 spatiotemporal modeling work, the 
regulatory and MESA Air data were highly 
correlated and thus combined, allowing this 
rich data set to be used for the full model. The 
spatial density of PM2.5 component regulatory 
monitoring sites and the data comparability 
between networks are the criteria we consid-
ered to indicate the feasibility of Approach 1. 
In the event that the multiple sources of PM2.5 
component data were insufficiently compat-
ible to combine, NPACT data alone were 
too limited to support the full spatiotemporal 
model. To deal with such a case, we consid-
ered Approach 2 as a simplified version of the 
spatiotemporal model based only on NPACT 
data that assumed one temporal trend and 

without any spatial dependence structure. One 
homogeneous temporal trend in each city is a 
strong assumption. We investigated whether 
this assumption was appropriate by comparing 
a single temporal pattern estimated using 
fixed-site data for 4 years or 18 months with 
time-series data across about 50 home-outdoor 
sites in each city. Finally, we considered using 
the temporal trend functions estimated from 
other pollutant time series, such as PM2.5 and 
NOx, instead of those from PM2.5 components 
in the full spatiotemporal model framework 
(Approach 3). These pollutants have longer 
time series of data at many more regulatory 
monitoring sites than those of PM2.5 compo-
nents in NPACT. Fitting the full spatiotem-
poral models using substituted trend functions 
in Approach 3 would be justified when there 
is good agreement between the two trend 
functions (i.e., the PM2.5/NOx and the PM2.5 
component trend functions). We compared 
the two temporal patterns between EC/silicon 
in NPACT and PM2.5/NOx in the U.S. EPA 
AQS to assess the feasibility of Approach 3. 
Daily PM2.5 and NOx data measured at the 
U.S. EPA monitoring sites located within 
200 km of the six MESA cities were obtained 
from the AQS database and converted to 
2-week averages.

Results
Table 1 summarizes important characteristics 
of the PM2.5 component monitoring data 
across the NPACT, CSN, and IMPROVE 
networks. The table highlights three aspects 
of the regulatory and NPACT monitoring 
data that may make it difficult to combine 
the multiple sources in one unified spatio-
temporal model: sparse spatial coverage, 
analysis method differences for carbon data, 
and different sampling protocols.

Data compatibility between CSN, 
IMPROVE, and NPACT networks. Sparse 
coverage in urban space. There were 6–27 
CSN and 1–8 IMPROVE monitoring sites 
within 200 km of each city center (Figure 1 
and Table 2). However, MESA participant 
homes were clustered near the center of each 
area, whereas only a few CSN sites were close 
to the city center and most IMPROVE sites 
were located in rural areas away from partici-
pants. See Supplemental Material, Figure S2, 
for estimated smoothed temporal patterns 
for the CSN and IMPROVE sites in six city 
areas. The temporal patterns for EC at eight 
IMPROVE sites were different from those 
observed at six CSN sites in Los Angeles. 
There were also differences between the 
temporal patterns for silicon across networks, 
but these were less striking. In the other five 
city regions, the temporal patterns for EC 
were more or less heterogeneous depending on 
city, whereas those for silicon were relatively 
consistent in all cities.
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Different filter analysis protocols. 
Although Figure 2 shows that at four 
co-located sites there was moderate to high 
agreement between protocols ( correlation 
coefficients = 0.79–0.91), these are not 
consistently and sufficiently high to conclude 
that the data are exchangeable in some city 
areas for daily average measurements of EC 
collected from the CSN versus IMPROVE 
networks before the method change in May 
2007. See Supplemental Material, Figure S3, 
for a comparison of 24-hr average measure-
ments of EC between the NIOSH TOT and 
IMPROVE_A TOR filter analysis methods 
for the 2-month period of overlap at one CSN 
site in each MESA city region. In Chicago 
and New York, the two methods had obvious 
systematic differences indicated by best-fit 
lines with negative intercepts, even though 
they were highly correlated; correlation coef-
ficients were 0.94 and 0.97, attributable partly 
to the large variability between measurements 
in these cities. In contrast, the other cities 
displayed weaker systematic differences and 
had moderate correlations (0.71–0.84).

Different sampling protocols. Table 2 
indicates numbers of CSN and IMPROVE 

Figure 1. Locations of CSN, IMPROVE, and NPACT monitoring sites for PM2.5 components within 200 km from city centers in six MESA city areas. Each map is 
restricted to a smaller area including all monitoring sites than the 200-km buffer area from the city center; one to three IMPROVE sites in four cities are not shown 
because they are hidden behind many other sites in the city center areas or with co-located CSN sites. 
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Table 1. Major contrasting characteristics among NPACT, CSN, and IMPROVE networks.

Characteristic NPACT CSN IMPROVE

Sampling design
Location of sites Urban Urban Rural
Spatial density in MESA city areas Dense (92–112 sites 

in each city)
Sparse (8–27) Sparse (1–8)

Monitoring period 2005–2009 Since 1999 Since 1987
Sampling schedule 2-week average 24-hr average: 1 in 3 

or 6 day
24-hr average: 

1 in 3 day
Filter analysis method

Analysis method for elements XRFa XRF XRF
Analysis method for carbon IMPROVE_A TORa NIOSH TOT 

IMPROVE_A TORb
IMPROVE_A TOR

Blank correction using backup quartz filter Yes No Yes
Sampling protocol

Sampler type for elements HPEM Met One SASS,c 
Andersen RAAS, URG 

MASS, and R&P

IMPROVE

Sampler type for carbon HPEM Met One SASS,c Andersen 
RAAS, URG MASS, R&P, 

and URG 3000Nb

IMPROVE

Pump flow rate 1.8 L/min 6.7 ~ 16.7 L/min 
22.8 L/minb

22.7 L/min

Abbreviations: Andersen RAAS, Andersen Reference Ambient Air Sampler; HPEM, Harvard Personal Environmental 
Monitor; Met One SASS, Met One Speciation Air Sampler System; R&P, Rupprecht and Patahnick; URG, University 
Research Glassworks. 
aXRF analysis was performed at Cooper Environmental Services of Portland, Oregon, and IMPROVE_A TOR analysis 
was performed at Sunset Laboratory Inc. of Tigard, Oregon. bNew carbon sampling and analysis protocols have been 
implemented at core CSN sites since May 2007. cUsed in about 75% of CSN sites in 2006. 
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sites by sampling schedule. Fewer than half 
of the CSN sites (the core CSN sites) and all 
the IMPROVE sites sampled PM2.5 compo-
nents every third day, whereas more than 
half of the CSN sites (the supplemental sites) 
sampled every sixth day. Smoothed temporal 
patterns for 2-week averages of silicon based 
on CSN data collected at four sites co-located 
with NPACT fixed sites generally did not vary 
greatly when based on data collected every 
sixth day versus every third day at the same 
site, although a few local differences were 
evident (Figure 3). Correlations between 
2-week average EC concentrations measured 
during May 2007–August 2008 at co-located 
NPACT fixed sites and CSN sites (using the 
IMPROVE_A TOR filter analysis method) 
in each city were relatively low (0.27–0.62) 
(Figure 4). In addition to NPACT measure-
ments being generally higher than CSN 
measurements in all cities, there were 
nonsystematic differences indicated by some 
measurements being far from best-fit lines 
between the two networks. Time-series plots 
with smoothed temporal patterns of the same 
data used in Figure 4 show local differences 
over time (see also Supplemental Material, 
Figure S4). Supplemental Material, Figures 
S5 and S6, show that silicon measurements 
are more comparable than EC with higher 
correlation coefficients of 0.56–0.78.

Possible exposure modeling approaches. 
Approach 1: Full spatiotemporal models 
combining the CSN/IMPROVE and NPACT 
data. The regulatory monitoring data for 
PM2.5 components in each city region within 
a 200-km boundary (7–32 sites) were more 
limited than those for other pollutants such as 
PM2.5 in the much smaller area within 75 km 
of the city center (16–45 sites) (Table 2; see also 
Supplemental Material, Table S1). The descrip-
tive analyses in the previous section (“Data 
compatibility between CSN, IMPROVE, 
and NPACT networks”) showed evidence of 
differences related to filter analysis methods and 
sampling protocols (Figures 2 and 4; see also 
Supplemental Material, Figures S4–S6). Thus, 
we concluded that NPACT data should not be 
combined with CSN and IMPROVE data to 
generate full spatiotemporal models for PM2.5 
components for each city.

Approach 2: Simplified spatiotemporal 
models based on the NPACT data only. 
Based on a graphical analysis comparing the 
single temporal pattern from NPACT fixed 
site data with measurements from the home-
outdoor sites in each city (as illustrated for 
Los Angeles and Chicago in Supplemental 
Material, Figure S7), we concluded that the 
single smoothed temporal patterns generally 
represented the temporal variability across 
home sites.

Approach 3:  Full  spatiotemporal 
models using another pollutant. From the 
comparison of estimated temporal patterns 
for PM2.5 and NOx based on U.S. EPA site 

data with those for EC and silicon based on 
fixed site NPACT data, we concluded that 
the patterns did not tend to be consistent 
enough to support using other pollutant data 
to generate full spatiotemporal models for 
PM2.5 components (i.e., Approach 3). For 
example, temporal patterns for EC and silicon 
differed from those for PM2.5 and NOx 
particularly in the Minneapolis and St. Paul 
area (see Supplemental Material, Figure S8).

Discussion
We explored the features of regulatory 
and NPACT monitoring data for EC and 
silicon relevant to our goal of combining all 

Table 2. Number of sites with long-term monitoring data available within 200 km of six MESA city areas between 1999 and 2009.

Area Totala
Regulatory CSN 

total
Regulatory CSN 

3-day
Regulatory CSN 

6-day
Regulatory IMPROVEb 

total (3-day)
NPACT fixed  

total (14-day avg)
NPACT home-outdoor 

total (14-day avg)
Los Angeles 21 (137)c 6 3 3 8 7 116
Chicago 23 (122) 15 4 11 1 7 99
Minneapolis–St. Paul 10 (114) 6 2 4 1 3 104
Baltimored 37 (124) 27 8 19 5 5 87
New Yorkd 31 (138) 25 14 11 3 3 107
Winston-Salem 19 (111) 12 2 10 3 4 92
aCo-located sites are counted as multiple sites (two for CSN and NPACT or CSN and IMPROVE, and three for CSN, IMPROVE, and NPACT). bThe numbers of IMPROVE sites shown in 
Figure 1 are 7, 0, 1, 2, 2, and 3. One to three IMPROVE sites in four cities are not shown in Figure 2 because they are hidden behind many other sites in the city center areas or at sites 
co-located with CSN sites. cNumber of sites excluding NPACT–MESA Air home sites (number of sites including home sites). dThirteen sites appear in both Baltimore and New York due 
to overlap of regions: 12 CSN (3 for every-3rd-day and 9 for every-6th-day sampling sites, respectively) and 1 IMPROVE.

Figure 2. Scatter plots of log-transformed every-3rd-day measurements of EC (μg/m3) between CSN and 
IMPROVE at four co-located sites in Los Angeles, Chicago, Baltimore, and New York from January 2000 
through July 2007. 
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Figure 3. Time-series plots of log-transformed (Ln) 2-week averages of silicon between every-3rd-day and every-6th-day measurements at the same four CSN 
sites co-located with four NPACT fixed sites in Chicago, Minneapolis–St. Paul, Baltimore, and New York from 1999 to 2009.
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Figure 4. Scatter plots of log-transformed 2-week averages of EC (μg/m3) for the overlapping period from May 2007 through August 2008 between co-located CSN 
and NPACT fixed sites in each of six MESA city areas. 
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available exposure data in spatiotemporal 
prediction models to investigate health effects 
of long-term exposures to PM2.5 chemical 
components in the NPACT study. The small 
number of CSN and IMPROVE regula-
tory monitoring sites deployed in NPACT 
study areas limited the amount of additional 
data available for modeling. In addition, we 
found insufficient between-network consis-
tency to combine CSN, IMPROVE, and 
NPACT data in one spatiotemporal model. 
These findings led us to conclude that we 
should develop spatiotemporal models using 
NPACT monitoring data only. Given the 
limited space–time data in NPACT, the 
resulting spatiotemporal models needed to be 
simplified by assuming only a single temporal 
time trend in each study area.

We found inconsistencies between 
measurements from the NPACT and regula-
tory monitoring networks for both EC and 
silicon, even when both networks used the 
same filter analysis methods. Exploration of 
possible factors resulting in the inconsistency 
will help future studies that perform study-
specific monitoring campaigns for PM2.5 
components to supplement regulatory data 
for exposure prediction and subsequent health 
analysis. For EC, we believe that the inconsis-
tency is attributable primarily to differences 
in sampling periods of 2-week versus daily 
samples in NPACT and CSN/IMPROVE, 
respectively (see Supplemental Material, 
“Sampling periods and EC measurements,” 
for detailed information). In addition to the 
sampling period, other differences in carbon 
sampling between the networks could have 
contributed to inconsistencies in the data. 
NPACT used a blank correction protocol 
based on backup quartz filters, whereas 
CSN did not apply blank corrections. Filter 
handling, transport, and storage in NPACT 
may also have introduced artifacts and resulted 
in differences in measurements between the 
two networks, despite our extensive quality 
assurance and control procedures. However, 
the good agreement between total carbon 
measurements in the CSN and NPACT 
networks (Vedal et al. 2013) suggests that 
the inconsistency of EC and OC measures 
between the two networks is more likely 
driven by the EC–OC split rather than the 
sampling and blank correction protocols.

Differences between silicon measurements 
from co-located NPACT and CSN monitors 
placed a few meters away from each other 
might be driven by microscale local plume 
gradients. Another possible explanation could 
be the use of different sampling equipment. 
Contamination of the filters by the silicon 
grease used in the HPEM sampler can result 
in increased silicon concentrations. However, 
grease contamination usually appears as 
very large spikes in contaminated samples 

compared with other samples; such spikes were 
not observed in our data (data not shown). 
Consistency between PM2.5 and sulfur concen-
trations measured by the co-located monitors 
(data not shown) suggest that the Teflon filters 
used by the two networks generally sampled 
the same fine particles.

Some studies have developed calibration 
models to allow combined analysis of data 
collected by CSN and IMPROVE networks. 
White (2008) and Malm et al. (2011) 
used elemental, organic, and total carbon 
data in 2005 and 2006 at 7–12 co-located 
urban CSN and IMPROVE sites over the 
continental United States to estimate rela-
tionships of EC between the two networks. 
Their IMPROVE-adjusted EC at CSN sites 
was highly correlated with EC at co-located 
IMPROVE sites (R2 = 0.80–0.94). However, 
these calibrations were based on data collected 
at a relatively small number of co-located sites 
during a short time period. More research is 
needed to determine whether these calibra-
tions can be applied to other areas or years.

Unlike our study, other published 
studies of the health effects of long-term 
average PM2.5 component concentrations 
have relied exclusively on regulatory moni-
toring data. Ostro et al. (2010) used CSN 
data and assigned PM2.5 components at the 
nearest monitors to participant homes in 
California. Bergen et al. (2013) used CSN 
and IMPROVE data to build universal 
kriging models across the United States. Both 
studies used long-term averages and devel-
oped purely spatial models in large spatial 
domains. To take advantage of the extensive 
project-based monitoring campaigns designed 
to represent fine-scale spatial variability of 
PM2.5 component concentrations across the 
target cohort residences, the NPACT options 
were either to use the NPACT data alone or 
to combine the NPACT data with regulatory 
monitoring data.

Our findings suggest that it may be 
difficult to transfer existing spatiotemporal 
prediction modeling approaches developed 
for PM2.5 (Keller et al. 2015; Paciorek et al. 
2009; Sampson et al. 2011; Yanosky et al. 
2009) to modeling PM2.5 components. 
Several features of the PM2.5 component 
data make a direct transfer difficult. Although 
the regulatory PM2.5 monitoring data were 
collected under consistent protocols over a 
relatively long period since the 1990s and 
across about 1,000 monitoring locations in 
the United States (Hand et al. 2011; U.S. 
EPA 2004), this is not the case for PM2.5 
component data. Furthermore, there is 
reasonable agreement for PM2.5, unlike for 
PM2.5 components, between these regulatory 
monitoring data and the data collected by 
community-based campaigns such as MESA 
Air (correlation coefficients = 0.77–0.96 at 

six co-located sites in six MESA city regions; 
data not shown). Thus, although Keller et al. 
(2015) and Sampson et al. (2011) were 
able to combine regulatory and MESA Air 
monitoring data in city-specific spatiotem-
poral predictive models of PM2.5, we were 
unable to take the same approach in NPACT. 
Instead, we used only the NPACT data in 
PM2.5 component prediction modeling in 
order to avoid introducing heterogeneity and 
bias into our results.

Given widespread scientific interest in 
understanding the associations between long-
term air pollution exposure and health for 
multiple pollutants, it is important that we 
also acquire sufficient understanding of moni-
toring data features, which may in turn affect 
exposure predictions and the resulting health 
effect estimates. Methodological research 
has shown that features of the underlying 
exposure surface, exposure assessment design, 
and approaches to exposure modeling may all 
affect health effect estimates (Gryparis et al. 
2009; Kim et al. 2009; Szpiro and Paciorek 
2013; Szpiro et al. 2011). This study adds 
monitoring data from multiple sources as 
another feature that could affect exposure 
modeling for inference about health effects.

Conclusions
U.S. regulatory monitoring data for 
PM2.5 components measured at CSN and 
IMPROVE sites are a potentially rich data 
resource to be used alone or combined with 
project-based monitoring data for the study of 
health effects of PM2.5 components. However, 
the sparse spatial coverage of these networks 
and differences across networks in the analysis 
and sampling protocols for some PM2.5 
components could lead to biased or impre-
cise findings in health analyses, particularly if 
the data from different sources are combined 
without careful consideration. Future studies 
of long-term average concentrations of PM2.5 
components and health need to assess exposure 
data characteristics before designing their 
own monitoring campaigns and developing 
exposure prediction models.
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