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Introduction
Multiple studies have found associations 
between in utero, childhood, or early adult-
hood mercury (Hg) exposure and later 
neurologic and psychological impairment. 
One of the most cited is a study of Faroe 
Islands children exposed to Hg predomi-
nantly through a seafood-heavy diet, showing 
adverse neurobehavioral outcomes at 7 and 
14 years of age (Grandjean et al. 1997). 
Early-life Hg exposure is associated with 
neuro developmental deficits (Counter and 
Buchanan 2004), including reduced newborn 
cerebellum size (Cace et al. 2011), adverse 
behavioral outcomes (Gao et al. 2007), central 
nervous system damage (Choi 1989), poor 
psychomotor development (Llop et al. 2012), 
cognitive developmental delays (Freire et al. 
2010), and later-life effects (Rice 1996), 
including increased diabetes susceptibility (He 
et al. 2013).

The placenta is crucial in regulating fetal 
growth and development, including neuro-
development (Lester and Padbury 2009; 
O’Keeffe and Kenny 2014). In utero envi-
ronmental toxicant exposures may disrupt 

placental function, affecting growth factor 
and hormone production and detoxification 
activity (Maccani and Marsit 2009). Toxicants 
may interfere with placental function through 
epigenetic alterations, including changes in 
normal placental DNA methylation patterns 
(Burris et al. 2012; Suter et al. 2011; Wilhelm-
Benartzi et al. 2012), which control the expres-
sion of genes involved in key placental cellular 
processes. Abnormal methylation alterations 
may have serious consequences for placental 
growth and functioning and, in turn, for 
developing infants’ health.

Hg crosses the placenta (Ilbäck et al. 
1991; National Research Council 2000; Yang 
et al. 1997) and also accumulates within the 
placenta, where methylmercury (MeHg) 
concentrations can be double those of 
maternal blood (Ask et al. 2002) and disrupt 
placental functioning (Boadi et al. 1992). A 
common exposure source is fish consump-
tion (Davidson et al. 2004), although 
occupational exposures and maternal dental 
amalgams with inorganic Hg (Davidson et al. 
2004; Takahashi et al. 2001) can also increase 
placental Hg. A single amalgam restoration 

is associated with a 3- to 6-fold increase in 
placental Hg (Takahashi et al. 2001).

MeHg exposure has been associated 
with SEPP1 hypomethylation in adult blood 
(Goodrich et al. 2013). SEPP1 encodes 
a selenoprotein potentially involved in Hg 
toxicity protection (Goodrich et al. 2011), 
suggesting that methylation may be exposure-
responsive. Although SEPP1 is expressed 
and active in the placenta (Kasik and Rice 
1995), there have been no examinations of 
SEPP1 methylation or its relationship to Hg 
in the placenta. The placenta is active during 
development, and variation in placental 
methylation at various genes has been associ-
ated with fetal growth and development and 
neuro behavior (Banister et al. 2011; Bromer 
et al. 2012; Filiberto et al. 2011; Marsit et al. 
2012a, 2012b; Wilhelm-Benartzi et al. 2012). 
Thus, Hg-associated placental alterations may 
mediate exposure-associated neurobehavioral 
outcomes, even at exposure levels commonly 
identified in the population. Previous studies 
(He et al. 2013; Hinners et al. 2012; Wickre 
et al. 2004; Xun et al. 2013) have assessed 
toenail Hg for integrated exposure estimates. 
We hypothesized that prenatal Hg exposure, 
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Background: Prenatal mercury (Hg) exposure is associated with adverse child neurobehavioral 
outcomes. Because Hg can interfere with placental functioning and cross the placenta to target the 
fetal brain, prenatal Hg exposure can inhibit fetal growth and development directly and indirectly.

oBjectives: We examined potential associations between prenatal Hg exposure assessed through 
infant toenail Hg, placental DNA methylation changes, and newborn neurobehavioral outcomes.

Methods: The methylation status of > 485,000 CpG loci was interrogated in 192 placental 
samples using Illumina’s Infinium HumanMethylation450 BeadArray. Hg concentrations were 
analyzed in toenail clippings from a subset of 41 infants; neurobehavior was assessed using the 
NICU Network Neurobehavioral Scales (NNNS) in an independent subset of 151 infants.

results: We identified 339 loci with an average methylation difference > 0.125 between any two 
toenail Hg tertiles. Variation among these loci was subsequently found to be associated with a high-
risk neurodevelopmental profile (omnibus p-value = 0.007) characterized by the NNNS. Ten loci 
had p < 0.01 for the association between methylation and the high-risk NNNS profile. Six of 10 loci 
reside in the EMID2 gene and were hypomethylated in the 16 high-risk profile infants’ placentas. 
Methylation at these loci was moderately correlated (correlation coefficients range, –0.33 to –0.45) 
with EMID2 expression.
conclusions: EMID2 hypomethylation may represent a novel mechanism linking in utero Hg 
exposure and adverse infant neurobehavioral outcomes.
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assessed through infant toenail Hg, is asso-
ciated with altered placental methylation 
patterns that are, in turn, associated with 
adverse infant neuro behavioral outcomes.

Methods
Study design. This sample included 192 
infants with placental specimens from the 
Rhode Island Child Health Study (RICHS), 
a birth cohort of nonpathologic term preg-
nancies delivered at Women and Infants’ 
Hospital in Providence, Rhode Island. 
Participants underwent an informed consent 
process approved by the Institutional Review 
Boards of Women and Infants’ Hospital and 
Dartmouth College. Eligible infants were 
born at ≥ 37 weeks gestation, and small- and 
large-for-gestational-age (SGA and LGA) 
infants were oversampled. By definition, SGA 
infants weigh ≤ 10th percentile for their gesta-
tional age; 6 of 41 (14.6%) infants in the Hg 
sub cohort and 36 of 151 (23.8%) infants in 
the NNNS (NICU Network Neurobehavioral 
Scales) subcohort had a birthweight percen-
tile ≤ 10%. By definition, LGA infants weigh 
≥ 90th percentile for their gestational age; 14 
of 41 (34.1%) infants in the Hg sub cohort 
and 45 of 151 (29.8%) infants in the NNNS 
subcohort had a birth weight percentile 
≥ 90%. This analysis included 41 samples 
with Hg data and an independent subcohort 
of 151 samples with neurobehavioral assess-
ments. Within 2 hr of birth, full-thickness 
sections were taken from the maternal side 
of the placenta and 2 cm from the umbilical 
cord-insertion site, free of maternal decidua. 
These sections were immediately placed in 
RNAlaterTM (AM7020; Applied Biosystems 
Inc.). Following ≥ 72 hr at 4°C, samples were 
blotted dry, snap-frozen in liquid nitrogen, 
homogenized via pulverization and stored at 
–80°C until analysis. Infants were examined 
with a newborn neurobehavioral assessment, 
the NNNS (Lester and Tronick 2004), after 
24 hr of life, but before hospital discharge. 
Examinations were performed from 24 to 
96 hr following birth.

Exposure assessment. First toenail clip-
pings from all toes were requested from 
mothers as well as infants following discharge, 
and were available for 41 of 192 infants. 
Parents were asked to collect their own and 
their children’s toenail clippings and mail 
back toenail clippings in provided enve-
lopes. Average time from birth to collection 
was 2.8 months (range, 0.3–7.1 months). 
Micrograms Hg per gram of toenail were 
analyzed (Rees et al. 2007) in the Dartmouth 
Trace Element Analysis laboratory. Within 
batches, samples below the limit of detec-
tion limit (LOD) were assigned a value half 
the lowest observed Hg value in that batch. 
Average LOD across batches was 0.382 μg/g; 
26 samples were below LOD.

DNA extraction and modification. 
DNA was extracted, quantified, and bisulfite 
modified via QIAmp DNA Mini Kit (51304; 
Qiagen), ND-1000 spectrophotometer 
(NanoDrop) and EZ DNA Methylation Kit 
(D5008; Zymo Research).

Methylation profiling. Placental methyla-
tion was assessed at the University of 
Minnesota Genomics Center via Illumina 
Infinium HumanMethylation450 BeadArray 
(Illumina). Samples were randomized across 
batches stratified by birth weight group and 
sex. β-values—the ratio of fluorescent signals 
from methylated (M) and unmethylated (U) 
alleles—were used as the measure of methyla-
tion status at each locus, where β = Max(M,0)/
[Max(M,0) + Max(U,0) + 100]. β-values 
ranged from 0 (no methylation) to 1 (complete 
methylation). Array quality assurance was 
assessed; poor-performing loci, X- and 
Y-linked loci, and SNP (single nucleotide 
polymorphism)–associated loci were removed 
(Banister et al. 2011), yielding 384,474 loci for 
192 infants.

Statistical analysis. Figure 1 presents 
our analysis strategy. Before analysis, we 
assured random sample distribution across 
batches by Hg tertile and neurobehavioral 
profile; there were no associations between 
Hg exposure tertile and the chip or plate on 
which the placenta DNA sample was arrayed 
(p > 0.05). Methylation data were adjusted 
for plate effects via ComBat (Johnson et al. 
2007), which performs effectively compared 
with competing adjustment methodologies. 
Effectiveness of this adjustment was assessed 
using principal components analysis and 
assuring no association between plate or chip 
and the top three principal components (all 
p > 0.05). In 41 infants with Hg data, the 
omnibus association between Hg tertile and 

methylation over 384,474 loci was tested via 
permutation test (Westfall and Young 1993), 
involving 384,474 linear regression models, 
one per locus, each permuted 1,000 times 
and controlled for maternal age (in years), 
birth weight percentile (continuous), delivery 
method (vaginal or cesarean section), and 
infant sex. Minimum p-value (over individual 
regression models for 384,474 loci) was used 
as a test statistic. Its null distribution was 
obtained by 1,000 draws from the permu-
tation distribution obtained by permuting 
infant toenail Hg with respect to methyla-
tion and putative confounders. To avoid 
assuming linear response, to allow capture 
of relationships at the highest exposures, 
and to limit bias due to detection limits, 
we used tertiles in all analyses (Kuan et al. 
2010). Individual, locus-specific p-values for 
Hg tertile were computed via standard F-test 
for H0:β1 = β2 = 0, where coefficients β1 
and β2 correspond to nonreferent tertiles. 
Δβ-values were calculated as the difference in 
mean β-values between any tertile pairs. To 
balance sensitivity (i.e., the need to identify a 
comprehensive list of loci) and specificity (i.e., 
the need to limit false discovery), we limited 
the analysis of methylation and the high-
risk neuro behavioral outcome to loci with 
Δβ > 0.125 for at least one pair of Hg tertiles.

Similar to latent profile analyses described 
for NNNS scores (Liu et al. 2010), mutually 
exclusive neurobehavioral profiles based on 
13 NNNS scores were defined using recur-
sively partitioned mixture modeling (Lesseur 
et al. 2013). From this analysis, seven profiles 
were identified, with one profile demon-
strating similar attributes to that described 
as high-risk by Liu et al. (2010). We defined 
these infants as “high-risk” compared with 
all other infants in further analyses. Infants 

Figure 1. Analysis strategy: 192 placental samples were arrayed on a HumanMethylation450 BeadArray. 
Following quality assurance, sex-linked and SNP-associated loci were removed. Forty-one samples with 
Hg data were analyzed for Hg-associated placental methylation differences; 339 loci with methylation 
differences between Hg tertiles > 0.125 were analyzed for associations with high-risk NNNS profile in an 
independent set of 151 samples with NNNS data.

192 placenta samples with
methylation array data

(384,474 loci after QA/QC)

41 placenta samples with
toenail Hg data

151 placenta samples with
NNNS profile data

10 CpG loci identified with
p < 0.01 for association with

NNNS risk profile

339 CpG loci identified with  
Δβ > 0.125 across 
toenail Hg tertiles
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in this high-risk group demonstrated poorer 
quality of movement, poorer self-regulation, 
increased signs of physiologic stress and 
abstinence, greater excitability and the need 
for additional techniques for handling the 
infant to change state. For details on each of 
the summary scores between the high-risk 
group and other infants, see Supplemental 
Material, Table S1. For loci with greatest 
methylation differences by Hg level, we 
estimated the null multivariate distribution 
of test statistics via permutation distribu-
tion (controlled for potential confounders 
above) to investigate associations with the 
high-risk infant neurobehavioral profile in 
an independent sample (n = 151) of infants 
from the same study population, for whom 
NNNS data were available. Socioeconomic 
status (measured by maternal education) was 
examined as a possible confounder; no signifi-
cant associations were identified between Hg 
or NNNS profile and maternal education 
(p = 0.37 and p = 0.70, respectively; chi-
square tests), so these were not included in 
final models for parsimony.

Heatmaps were created in R (R Core Team 
2014), using a Euclidean distance measure, 
to cluster placenta samples and loci based on 
methylation of 339 Hg-associated loci.

Gene expression. Total RNA was extracted 
via RNeasy Mini Kit (Qiagen), quantified via 
Nanodrop 2000 (ThermoFisher Scientific), 
aliquoted, and stored at –80C. Expression 

Table 1. Study population demographics.

Variable

Subset 1: Infants with toenail Hg data (n = 41) Subset 2: Infants with NNNS data (n = 151)

Low Hg tertile 
(n = 14)

Medium Hg tertile 
(n = 13)

High Hg tertile 
(n = 14) p-Value

Non-high-risk 
profile (n = 135)

High-risk profile 
(n = 16) p-Value

Infant sex
Female [n (%)] 8 (57.1) 3 (23.1) 10 (71.4) 0.037 65 (48.1) 12 (75.0) 0.08
Male [n (%)] 6 (42.9) 10 (76.9) 4 (28.6) 70 (51.9) 4 (25.0)

Maternal age (years)
Mean ± SD 31.9 ± 3.1 32.8 ± 4.4 31.4 ± 3.3 0.76 28.4 ± 6.0 26.8 ± 6.1 0.33
Median (range) 32.5 (26–39) 33 (23–39) 30 (26–38) 29 (18–40) 26.5 (18–38)

Tobacco use during pregnancya
Yes [n (%)] 0 (0) 0 (0) 0 (0) NA 7 (5.2) 2 (12.5) 0.55
No [n (%)] 14 (100) 13 (100) 14 (100) 126 (93.3) 14 (87.5)

Birth weight (g)
Mean ± SD 3647.5 ± 628.2 3978.4 ±473.3 3175.7 ± 524.4 0.046 3462.9 ± 737.7 3443.8 ± 779.6 0.93
Median (range) 3,740 (2,280–4,465) 4,185 (3,035–4,530) 3,230 (2,160–4,090) 3,415 (1,705–5,465) 3,385 (2,370–4,570)

Gestational age (weeks)
Mean ± SD 39.8 ± 1.0 39.5 ± 1.0 39.5 ± 1.3 0.53 39.2 ± 1.1 39.7 ± 1.3 0.44
Median (Range) 40 (37.4–41.3) 39.7 (37.3–41.1) 39.8 (37.1–41.1) 39.3 (37–41.9) 39.5 (37–41.3)

Maternal ethnicity
Caucasian [n (%)] 13 (92.9) 13 (100) 11 (78.6) 0.53 99 (73.3) 10 (62.5) 0.62
Non-Caucasian [n (%)] 1 (7.1) 0 (0) 3 (21.4) 36 (26.7) 6 (37.5)

Cesarean section delivery
Yes [n (%)] 8 (57.1) 9 (69.2) 10 (71.4) 0.69 71 (52.6) 7 (43.8) 0.69
No [n (%)] 6 (42.9) 4 (30.8) 4 (28.6) 64 (47.4) 9 (56.3)

Recreational drug use during pregnancy
Yes [n (%)] 0 (0) 0 (0) 1 (7.1) 0.37 3 (2.2) 1 (6.3) 0.9
No [n (%)] 14 (100) 13 (100) 13 (92.9) 132 (97.8) 15 (93.8)

Maternal educationb
High school graduate/equivalent or less [n (%)] 2 (14.3) 0 (0) 1 (7.1) 0.37 49 (36.3) 5 (31.3) 0.79
Junior college graduate/equivalent or greater [n (%)] 12 (85.7) 13 (100) 12 (85.7) 86 (63.7) 11 (68.8)

NA, not applicable.
aOne sample with Hg data missing smoking data. bOne sample with Hg data missing education data.

Figure 2. Heat map demonstrating Hg tertile differences > 0.125. Placental samples in columns; 339 loci 
in rows. Methylation β-values indicated by key at top left. Below figure, color bars indicate Hg tertiles 
(green, low tertile; yellow, medium; red, high), infant sex (blue, males; pink, females), maternal ethnicity 
(purple, Caucasian; green, non-Caucasian), maternal age tertiles (light gray, 23–29 years; dark gray, 
30–33 years; black, 34–39 years), birth weight group [orange, LGA (≥  90%); teal, appropriate-for- 
gestational-age (AGA); olive, SGA (≤ 10%)].
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analysis was performed via CFX Connect 
Real-Time PCR Detection System (BioRad). 
First-strand reactions were performed in trip-
licate with BioRad iScript cDNA Synthesis 
Kit and qPCR (quantitative polymerase 
chain reaction) reaction with BioRad iQ 
SYBER Green Supermix. The sample with 
lowest expression served as a reference sample 
for delta-delta-Ct normalization. EMID2 
and SDHA  expression were measured 
using primers: EMID2: forward 5´-TTTC 
AGCC TTGG ACTT AGCG A, reverse 
5´-GCCA AAAT CCTG T CCTT GTCA, 
SDHA: forward 5´-TGCT CAGT ATCC 
AGTA GTGG A, reverse 5´-TTCT CTTA 
CCTG TGCT GCAA. 

Results
Table 1 describes the two study groups (infants 
with toenail Hg data, n = 41; and infants with 
NNNS data, n = 151). All infants were born 
at ≥ 37 weeks gestation, as required for the 
parent study. There is over sampling for SGA 
and LGA infants. Children in the two study 
groups were generally similar with regard 
to maternal age, infant sex, birth weight, or 

gestation time. No mothers of Hg-subcohort 
infants reported smoking. Among NNNS-
subcohort infants, there were higher percent-
ages of non-Caucasian mothers and cesarean 
section births than in the Hg-subcohort 
infants. Low (referent) Hg tertile ranged from 
0.005 μg/g to 0.031 μg/g; medium, 0.032 μg/g 
to 0.076 μg/g; high, 0.077 μg/g to 0.425 μg/g. 
These values fall largely within a toenail Hg 
reference range of 0.07–0.38 μg/g derived 
from 130 healthy volunteers in a French study 
(Goullé et al. 2009). Within the Hg sub cohort, 
there were more male infants within the 
medium tertile, and birth weights were higher 
amongst this tertile; thus, these variables were 
included in all models.

Mean methylation β-values were calculated 
for each locus by Hg tertile. Placental methyla-
tion epigenome-wide was associated with Hg 
(omnibus p = 0.017). At 339 loci, methylation 
differed by > 0.125 between tertiles (Figure 2; 
see also Supplemental Material, Table S2); 
generally, samples clustered by Hg and sex, 
but not by maternal ethnicity, maternal age, 
or birthweight group. Mean β-values increased 
monotonically with increasing Hg tertiles for 

79 loci, 34 loci had a monotonic decrease 
with increasing tertiles, and 226 loci had a 
non-monotonic relationship across tertiles.

We performed supervised clustering 
of samples with NNNS profiles using 339 
Hg-associated loci (see Supplemental Material, 
Figure S1), but observed no obvious clus-
tering pattern of high-risk neurobehavioral 
profile. Thus, we examined individual asso-
ciation of loci with high-risk profile using 
a series of linear models; comparison of the 
distribution of p-values obtained from these 
models to a null distribution determined by 
permutation suggested that some degree of 
variability in risk for high-risk neurobehavioral 
profile membership could be attributed to 
methylation variation at these loci (omnibus 
p = 0.007). See Supplemental Material, 
Table S2, for profiles of the results of indi-
vidual models. Ten loci (Table 2) residing in 
CPLX1, TTC23, and EMID2 were associated 
with high-risk profile (p < 0.01). Six of 10 
reside in a CpG island within EMID2, the 
only gene with multiple loci associated with 
high-risk profile within those loci at p < 0.01.

Four of six loci are within 200 bases of 
EMID2’s transcription start site: cg13267931 
is in the 5´ untranslated region upstream of 
the first exon, and cg14048874 in the gene 
body. Figure 3 illustrates their methylation 
by Hg tertile. In general, those infants in the 
highest tertile of exposure demonstrated the 
highest extent of methylation at each of the 
CpGs present on the array.

We then examined the average extent of 
methylation across all of the EMID2 loci in 
the NNNS subset, comparing those infants 
in the high-risk and non–high-risk groups. 
As shown in Figure 4, those in the high-risk 
group demonstrated hypomethyla tion of 

Table 2. Ten loci associated with infant toenail Hg tertile (omnibus p = 0.017 and Δβ > 0.125 between any 
two Hg tertiles) and high-risk NNNS profile (p < 0.01).

Illumina CpG designation Genomic position
Relation to 
CpG island Gene symbol

p-Value for high-risk 
NNNS profile

cg13267931 Chr 7: 101006308 Island EMID2 8.25 × 10–6

cg14175932 Chr 14: 23018807a 2.84 × 10–5

cg27179533 Chr 7: 101006052 Island EMID2 5.46 × 10–5

cg14874750 Chr 7: 101006063 Island EMID2 6.06 × 10–5

cg23424003 Chr 7: 101006035 Island EMID2 7.30 × 10–5

cg27528510 Chr 7: 101006058 Island EMID2 9.00 × 10–5

cg14048874 Chr 7: 101006573 Island EMID2 0.0023
cg17128947 Chr 4: 779480 Island CPLX1 0.0054
cg25385940 Chr 15: 99789637 N Shoreb TTC23 0.0059
cg10470368 Chr 11: 64146517a 0.0075

Chr, chromosome. 
aAccording to Illumina array annotation, these loci are not located within an annotated CpG region and are not associated 
with any gene. bThe north shore of a CpG island is defined as the region just upstream (5’) of the CpG island region.

Figure 3. Plot of six Hg- and high-risk profile–associated EMID2 loci in 41 samples with Hg data by tertile. 
y-Axis represents EMID2 methylation β-value. Loci in order of appearance (+ strand, 5’ to 3’).
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this gene. qRT-PCR in a subset of samples 
revealed moderate correlations between 
placental methylation at these loci and 
EMID2 gene expression, with correlation 
coefficients for individual CpG loci and 
expression ranging from –0.33 to –0.45 (see 
Supplemental Material, Figure S2).

Discussion
Placental methylation patterns were associated 
with infant toenail Hg and a potential high-
risk infant neurobehavioral profile in our study 
population. Many of the 339 loci with greatest 
differences by Hg (see Supplemental Material, 
Table S2) reside in neurodevelopment-, 
neurogenesis- and behavior-related genes 
based on mutant or knockout gene studies in 
animal models, gene expression and knock-
down studies, as well as whole genome and/or 
in silico studies (Barreto-Valer et al. 2013; 
Glynn et al. 2007; Heinrich et al. 2012; Ju 
et al. 2014; Kivimäe et al. 2011; Konno et al. 
2012; Kremerskothen et al. 2002; Larsson 
et al. 2008; Morimura et al. 2006; Porro et al. 
2010; Shimizu et al. 2010; Silver et al. 2012). 
Some have been associated with neurodevel-
opmental disorders: schizophrenia (DIXDC1, 
ARVCF, MAGI2, ZIC2) (Bradshaw and 
Porteous 2012; Chen et al. 2005; Sim et al. 
2012), ADHD (attention deficit/hyperactivity 
disorder) (TCERG1L) (Neale et al. 2010), 
movement disorders (NOL3, TP53INP2) 
(Bennetts et al. 2007; Russell et al. 2012), 
Huntington’s disease (H2AFY2, AGPAT1) 
(Cong et al. 2012; Hu et al. 2011), Parkinson’s 
disease (LMX1B) (Tian et al. 2012), and 
autism (PLXNA4, WNT2) (Kalkman 2012; 
Suda et al. 2011). Others have been associ-
ated with diabetes (ZBED3) (Ohshige et al. 
2011), asthma (EMID2) (Pasaje et al. 2011), 
and cancer (FBXO3, HOOK2, MT2A, EIF3E, 
RPH3AL, PTRF, MT1M, STK32A) (Cha et al. 
2011; Krzeslak et al. 2013; Liu et al. 2012; 
Mao et al. 2012; Shimada et al. 2005).

Because of previously reported links 
between Hg and neurodevelopmental deficits 
and numerous Hg-variable genes involved in 
neurodevelopment, we examined these loci 
for associations with a high-risk newborn 
neurobehavioral profile defined by the NNNS, 
which are associated with later-life behavioral 
outcomes (Lester and Tronick 2004; Liu et al. 
2010). In this analysis, 16 infants were observed 
to have a high-risk NNNS profile. We used 
a latent profile methodology to account for 
correlations between these scales and reduce 
data dimensionality. Liu et al. (2010) reported 
associations of such profiles with later-child-
hood outcomes: acute medical and behavior 
problems, school readiness, and IQ through 
4.5 years of age. Of 339 loci, 10 (Table 2) were 
associated with a high-risk profile (p < 0.01) 
similar to that of Liu et al. (2010); 6 of 10 
resided in the EMID2 promoter.

Although EMID2’s placental function is 
unknown, its genetic variation has been associ-
ated with aspirin-sensitive asthma (Pasaje et al. 
2011), and with hearing and vision side effects 
of the antidepressant citalopram (Adkins et al. 
2012). EMID2 (or COL26A1) contains an 
emilin and two collagen domains primarily 
expressed in testes and ovary (Sato et al. 
2002). EMID2 is linked to a sonic hedgehog 
(SHH) enhancer adoption mutation, where an 
EMID2 enhancer drives ectopic SHH expres-
sion (Lettice et al. 2011), although the loci 
identified are not located within that enhancer 
element. Future investigation is warranted to 
define EMID2’s placental role and how its 
modulation can impact neurodevelopment. It 
may be of interest to explore its role in SHH, 
which plays roles in neural tube patterning 
and cell survival (Ho and Scott 2002; 
McCarthy and Argraves 2003).

Interestingly, this potential risk neuro-
behavioral profile was associated with EMID2 
hypomethylation in low- and medium-Hg 
tertiles, with greatest hypomethylation in the 
mid-range group. This suggests a nonmono-
tonic and potentially complicated relationship 
between exposure, methylation, and outcome. 
We were limited in our ability to address 
these relationships in the same individuals. 
In addition, as we were making use of infant 
toenail samples, a large proportion were below 
the limits of detection for the assay, so extrap-
olation to a dose response may not be possible. 
Therefore, we urge caution in this interpre-
tation, particularly until these results can be 
expanded and validated in a larger population.

Evidence from an autopsy study of adults 
has suggested strong correlations between 
levels of total Hg in toenails and MeHg levels 
in blood or occipital cortex (Björkman et al. 
2007), suggesting that toenails are relevant 
biomarkers. Because of slow growth of toenails, 
toenail Hg likely reflects exposures in the 
past 3–5 months (Goullé et al. 2009). Thus, 
infant toenail Hg likely reflects prenatal expo-
sures occurring over most of pregnancy. We 
note that toenail Hg observed in this cohort 
falls within toenail Hg reference ranges (Goullé 
et al. 2009), suggesting we are likely examining 
common, low-level variation in exposure and 
associations with methylation, which poten-
tially could contribute to later developmental 
deficiencies. An important future direction will 
be investigating potential postnatal epigen-
etic × environment interactions in high-risk 
profile children in addition to confirming these 
findings in additional cohorts.

Limitations to this study include unde-
termined Hg exposure sources, infant toenail 
Hg as a proxy for prenatal exposure, use of 
term placentas, a relatively small sample size 
(including n = 16 high-risk NNNS profile 
infants), independent sample sets for Hg and 
neurobehavior analyses, which limits our 

ability to examine direct relationships between 
them, and a large proportion of samples falling 
below the limit of detection. Future analyses 
may benefit from examining, in larger data 
sets with Hg and NNNS data, whether high-
risk profile infants were also exposed to more 
Hg. Since EMID2 methylation has not been 
associated with Hg or neurodevelopment, 
and its placental function is unknown, it is 
unclear whether hypo- or hypermethylation 
with high-risk profile is expected, and future 
mechanistic and epidemiologic studies should 
investigate this.

Conclusions
This study provides evidence for a potential 
role for placental epigenetic alterations as a 
mechanism linking Hg exposure and adverse 
infant neurodevelopment, and specifically 
a role for EMID2. This suggests possible 
associations between prenatal Hg exposure, 
placental methylation changes, and the devel-
opmental origins of mental/behavioral and 
physical health and disease.
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