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Background
The increase in temperatures over the last 
century and continued increases in emissions 
of greenhouse gases have focused attention 
on the effects of increasing heat (Crowley 
2000). Relatively few studies have examined 
associations between average daily ambient 
air temperature during pregnancy (Ta) and 
pregnancy outcomes. Most published work 
has focused on the relationship between 
preterm delivery (PT) and Ta with variable 
results. One study reported an increased risk 
of very low birth weight (LBW) delivery 
(birth weight < 1,500 g) with colder ambient 
temperature (Hartig and Catalano 2013). 
Another study found no association between 
preterm birth (birth at < 37 weeks completed 
gestation) and a variety of factors including 
temperature, humidity, and barometric 
pressure (Lee et al. 2008). In contrast, two 
studies have reported that PT was associated 
with increased temperature and humidity 
(Basu et al. 2010; Lajinian et al. 1997). A 
study conducted in Australia reported that 
weekly temperature was positively asso-
ciated with preterm birth < 37 weeks and 
stillbirth < 36 weeks gestation (Strand et al. 
2012). Schifano et al. (2013) reported that 
maximum apparent temperature in the 2 days 
preceding delivery was associated with PT in 

Rome, Italy, during the warm season; they 
used models adjusted for air pollution, socio-
economic status, and mother’s health.

It is important to determine whether 
ambient temperature indeed affects the length 
of gestation and birth weight at delivery, 
because LBW delivery has significant short- 
and long-term health implications. PT 
(delivery at < 37 weeks gestation), early-term 
delivery (delivery at 37–38 weeks gestation), 
and in utero growth restriction (IUGR; 
delivery at birth weight < 10th percentile for 
gestational age) also contribute to perinatal 
morbidity and mortality (Harding and Maritz 
2012; McCormick 1985; Moster et al. 2008; 
Sengupta et al. 2013). Evidence suggests that 
IUGR birth in particular may have long-
term implications for childhood and adult 
health (Bilbo and Schwarz 2009; Demicheva 
and Crispi 2014; Gluckman and Hanson 
2004; Harding and Maritz 2012; Sarr et al. 
2012; Vos et al. 2006). The pathogenesis of 
preterm, early-term, and IUGR delivery is 
multifactorial. Inflammation, infection, and 
immune dysregulation may cause preterm 
labor and early delivery; abnormalities of 
placental formation and function may result 
in preterm, early-term, and IUGR delivery 
due to placental bleeding, fetal distress, and 
preeclampsia; and genetic variation and 

multiple gestation contribute to each of these 
etiologies (Gonçalves et al. 2002; Han et al. 
2011; Leber et al. 2010; Muglia and Katz 
2010; Saito et al. 2010; Wong and Grobman 
2011). Social stressors have also been studied 
as causes of preterm, early-term, and IUGR 
delivery, due to variation in the rate of LBW 
delivery among different racial, ethnic, and 
socioeconomic groups (Kuzawa and Thayer 
2011; Wadhwa et al. 2011). Environmental 
stressors such as changes in ambient air 
temperature may also contribute to these 
birth outcomes. A recent study by Dadvand 
et al. (2014) examined the association of term 
low birth weight with residential proximity 
to major roads and surface temperature. They 
showed that living within 200 m of major 
roads was associated with an increase in term 
LBW risk [odds ration (OR) = 1.46; 95% 
confidence interval (CI): 1.05, 2.04]. They 
also found that surface temperature was 
associated with an increase in term LBW 
risk (OR = 1.18; 95% CI: 0.95, 1.45). The 
conflicting results published to date on 
relationship of ambient air temperature to 
preterm and/or LBW delivery may be attrib-
utable to variations in temperature measure-
ment and modeling. Air temperature stations 
have limited spatial coverage, particularly in 
less urban areas, and airport monitors may 
not reflect the urban heat island adequately. 
Because temperature can vary greatly both 
spatially and temporally, the use of air 
temperature stations can introduce consid-
erable measurement error (and downward 
bias in the case of heat islands), reducing 
their utility for epidemiological studies on 
the health effects of extreme temperature and 
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Background: Studies looking at air temperature (Ta) and birth outcomes are rare. 
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results: Predicted Ta during multiple time windows before birth was negatively associated with 
birth weight: Average birth weight was 16.7 g lower (95% CI: –29.7, –3.7) in association with an 
interquartile range increase (8.4°C) in Ta during the last trimester. Ta over the entire pregnancy was 
positively associated with PT [odds ratio (OR) = 1.02; 95% CI: 1.00, 1.05] and LBW (OR = 1.04; 
95% CI: 0.96, 1.13).

conclusions: Ta during pregnancy was associated with lower birth weight and shorter gestational 
age in our study population.
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climate change. Previous studies examining 
the association of preterm and LBW delivery 
and Ta have typically used available monitors 
in the study area. This introduces exposure 
error and likely biases the effect estimates 
downward (Armstrong 1998; Zeger et al. 
2000). Furthermore, lack of spatially resolved 
daily Ta concentration data restricts these 
studies to populations surrounding moni-
toring sites, which may not be representative 
of the population as a whole.

The lack of high-resolution continuous 
spatiotemporal Ta data resulted in our group 
developing a method to predict 24-hr mean 
Ta at a very fine spatial resolution (Kloog et al. 
2012a, 2014). Specifically, we developed new 
methodologies to predict daily Ta, based on 
land use regression plus a daily calibration of Ta 
ground measurements and MODIS (Moderate 
Resolution Imaging Spectroradiometer; http://
modis.gsfc.nasa.gov/data/) surface temperature 
(Ts) over a large area with varying geographical 
characteristics (covering the entire Northeast 
and Mid-Atlantic areas of the United States) 
at a 1 × 1 km spatial resolution. We incorpo-
rated land use and meteorological variables to 
predict daily 24-hr mean Ta for grid cells even 
when satellite Ts measures were not available. 
A similar model has previously been devel-
oped for PM2.5 on the same resolution (Kloog 
et al. 2012c).

We used our Ta prediction data to 
study associations between Ta and live 
birth outcomes among singleton births in 
Massachusetts during 2000–2008, including 
term birth weight, LBW (< 2,500 g) among 
term births, preterm birth (< 37 weeks), and 
gestational age.

Methods

Study Domain and Population

In the analysis we included the entire state 
of Massachusetts (Figure 1). The study 
population included all live singleton births 
> 22 weeks of gestation in Massachusetts 
from 1 January 2000 through 31 December 
2008 (Figure 1). Birth data and the latitude 
and longitude of each eligible address at 
birth were provided by the Massachusetts 
Birth Registry (MBR; http://www.mass.
gov/eohhs/gov/departments/dph/programs/
admin/dmoa/vitals/). The term birth weight 
and LBW (< 2,500 g) analyses included 
453,658 births ≥ 37 weeks gestational age, 
and the gestational age and preterm birth 
(< 37 weeks) analyses included 473,977 
births. The study and the use of birth 
data was approved by the Massachusetts 
Department of Public Health and the human 
subjects committee of the Harvard T.H. Chan 
School of Public Health. Informed consent 
was not required because we used anonymous 
administrative data.

Exposure Data
For exposure data we used three different indi-
cators: predicted 1 × 1 km Ta from our model, 
ground Ta from the nearest National Climatic 
Data Center (NCDC; http://www7.ncdc.
noaa.gov/CDO/) monitoring stations, and 
residence-specific cumulative traffic density. 
We describe each metric in more detail below.

Predicted air temperature. Ta exposure 
data were generated by the previously 
mentioned Ta prediction model (Kloog et al. 
2014). In these prediction models we used 
mixed models to first calibrate Ts and Ta 
measurements, regressing Ta measurements 
against day-specific random intercepts, fixed 
and random Ts slopes, and several spatial and 
temporal predictors [Normalized Difference 
Vegetation Index (NDVI), percent urban 
and elevation]. Then to make use of the 
ability of neighboring cells to fill in the cells 
with missing Ts values, we regressed the Ta 
predicted from the first mixed-effects model 
against the mean of the Ta measurements on 
that day from monitors within 60 km, sepa-
rately for each grid cell. We used 10-fold of 
sample cross-validation (CV) to validate our 
predictions at monitor locations at each step. 
We randomly divided our data into 90% and 
10% splits 10 times. We predicted for the 
10% data sets using the model fitted from the 
remaining 90% of the data. We then reported 
these computed R2 values. To test our results 
for bias, we regressed the measured Ta values 
against the predicted values in each site on 
each day. We estimated the model predic-
tion precision by taking the root mean square 
prediction error (RMSPE). Mean out-of-
sample R2 values for days with and without Ts 
data were 0.947 and 0.940, respectively, indi-
cating excellent model performance. Mean 
out-of-sample temporal and spatial R2 values 
also were high (0.956 and 0.832, respectively) 
(Kloog et al. 2014).

To estimate Ta exposure, we linked each 
mother’s residence at the time of delivery to 
its corresponding grid cell (Figure 2). Daily Ta 

exposures were calculated for the day of birth; 
the day before birth; moving average values 
for 3 days, 7 days, 14 days, 30 days, the last 
trimester; and the entire pregnancy.

PM2.5. Particulate matter ≤ 2.5 μm (PM2.5) 
was estimated on a 1 × 1 km grid from the 
same MODIS satellite, using daily measures 
of aerosol optical depth using a similar 
methodology (daily calibration, land use, 
and meteorology) as the temperature model. 
Further details have been published previously 
(Chudnovsky et al. 2014; Kloog et al. 2012c). 
Because warm days are often more polluted, 
PM2.5 was included as a covariate with the same 
time periods used to classify Ta.

Monitored air temperature. Daily data 
for monitored Ta across Massachusetts were 
obtained from the NCDC. NCDC is a govern-
ment agency and has been collecting meteoro-
logical data for close to a century. Ta is measured 
at a reference height of 2 m above the ground in 
most weather stations (NCDC 2010).

Cumulative traffic density. Traffic emis-
sions have been associated with birth 
outcomes in many previous studies (Gryparis 
et al. 2009; Zeka et al. 2006). Therefore, 
Massachusetts road data [average daily traffic 
(ADT)] were obtained from the Massachusetts 
Department of Transportation (MassDOT; 
http://www.massdot.state.ma.us/) 2002 Road 
inventory. These data are based on automatic 
vehicle counts on major highways, periodic 
counts on other major roads, and estimated 
counts for all other roads (Kloog et al. 2012b). 
Each 200 × 200 m grid was assigned a value 
for normalized cumulative ADT (CADT) 
based on average daily traffic on all road 
segments within 100 m of the center of each 
grid, where CADT = Σ(ADT × road segment 
length). Each birth address was assigned the 
average CADT value for the four grids with 
center points closest to the address, using 
bilinear interpolation.

On the basis of previous literature on the 
potential risk factors associated with low birth 
weight (Kloog et al. 2012b; Zeka et al. 2006, 

Figure 1. Map of the study area showing the location of a sample subset of mothers [randomly selected 
with the QGIS tool “random points” (http://www.qgis.org/)], the location of the ground air monitoring 
stations, and the areas within and outside 30 km of an air temperature station (urban vs. rural areas).
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2008), we included the following individual 
and contextual covariates:

Percent of open space. The percent of 
open space data was obtained from the office 
of geographic information Commonwealth 
of Massachusetts, information technology 
division MassGIS [Massachusetts Office of 
Geographic Information Executiver Office for 
Administration and Finance (MassGIS-EOEA) 
2006]. The subset of the open space designated 
for recreation and conservation was intersected 
with 2000 Census tract boundaries (also 
downloaded from MassGIS) using ArcGIS© 
10.1 (ESRI). The percent of each census 
tract that was open space was then calculated 
and assigned to birth addresses belonging to 
that tract.

Socioeconomic indicators. Socio economic 
data at the individual level were obtained from 
the Massachusetts birth registry. Information 
included the mother’s race/ethnicity [classi-
fied as Hispanic, non-Hispanic white, African 
American, Asian, and other (all other ethnic 
groups)], mother’s years of education, and 
the Kotelchuck adequacy of prenatal care 
utilization index (APNCU). The APNCU is 
based on the number and the time of start 
of mother’s prenatal visits (Alexander and 
Kotelchuck 1996) and was recoded into inad-
equate (< 50% of expected visits used), inter-
mediate (50–79%); appropriate (80–109%), 
and appropriate plus (≥ 110%) categories. We 
categorized education of the mother as no high 
school (< 9 years of educational attainment), 
some high school (9–12 years of educational 
attainment); some college (13–15 years); and 
college or postgraduate (≥ 16 years).

Median income. Data were obtained 
from the U.S. Census Bureau 1999 median 
household income (U.S. Census Bureau 
2000) for every census tract in the study area, 
and assigned these to births with an address 
located within that tract.

Individual-level covariates. Maternal 
age, parity, gestational age (calculated by the 
maternal recall of last menstrual period), 
number of cigarettes smoked per day during 
and before pregnancy, chronic conditions 
of mother or conditions of pregnancy (lung 
disease, pregnancy-induced hypertension, 
gestational diabetes, and nongestational 
diabetes, all modeled separately as single 
variables), previous occurrence of a preterm 
birth, whether the mother ever had a previous 
infant weighing ≥ 4,000 g, and sex of infant 
were all obtained through the Massachusetts 
Birth Registry (Boston, MA) through the 
index child’s birth certificate.

Statistical Methods 
To identify factors affecting birth weight, 
we used linear mixed regression models 
to estimate associations between both 
monitor and modeled Ta during different 

time windows and term birth weight, and 
logistic mixed regression to estimate asso-
ciations with preterm birth (< 37 weeks) 
and LBW (< 2,500 g) (Kloog et al. 2012b; 
Zeka et al. 2008). Seasonality was controlled 
using sine and cosine terms with a period 
of 365.24 days. Both sine and cosine were 
included to allow the regression to estimate 
both the amplitude of the seasonal cycle and 
its phase. A random intercept for census tract 
was used to capture unmeasured similarities 
in persons residing in the same neighborhood.

Specifically, we fit the following models:

BWij = (α + uj) + β1Tai + β2PMi + γXi  
 + eij(uj) ~ N[0,σu

2]  and  [1]

Logit (PTij/LBWij = 1|X )  
 = (α + uj) + β1Tai + β2PMi  
  + γXi + eij(uj) ~ N[0, σu

2], [2]

where BWij, PTij, and LBWij represent birth 
weight, preterm, and LBW, respectively, for 
the ith subject in census tract j; α and uj are 
the fixed and random (tract-specific) inter-
cepts, respectively; γXi denote the set of vari-
ables included in the model, which include 
predicted ambient air temperature, predicted 
ambient PM2.5, cumulative traffic density, 
percent of open spaces, age of mother, median 
income, gestational age, chronic conditions 
of mother or conditions of pregnancy (lung 
disease, hypertension, gestational diabetes 
or nongestational diabetes), parity, previous 
infant weighing ≥ 4,000 g and sex of infant, 
sine and cosine (controlling for seasonality), 
APNCU (as a categorical variable), mother’s 
race (as a categorical variable), mother’s 
education (as a categorical variable), and 
previous preterm occurrences. eij is the error 
term and finally, σ2

u is the variance of the tract 
random effects, and ejj ~ N[0, σ2].

We estimated associations between Ta 
during different time windows and gesta-
tional age using an accelerated failure time 
model (AFT).

Such models are a form of survival 
analysis that model the survival time directly 
instead of the hazard. Gestational age is used 
as a continuous outcome in the AFT model. 
The log-linear form of the AFT model with 
respect to time (T) is given by

logTi = μ + α1X1i + α2X2i + ...  
 + αpXpi + σεi, [3]

where μ is the intercept, σ is a scale param-
eter, and εi is a random variable, assumed to 
have a particular distribution. We adopted a 
gamma distribution for εi, which can flexibly 
model a wide range of distributions for the 
failure times (births). A two-sided p-value 
< 0.05 was considered statistically significant.

We also ran analyses stratified on subject 
residence < 30 km or ≥ 30 km of a Ta 
monitor (as proxy indicators of urban and 
rural residences, respectively). Statistical 
analyses were performed in SAS (version 9.3; 
SAS Institute Inc., Cary, NC) and R (R Core 
Team 2014). Cases with missing data were 
excluded from the analysis. An alpha level of 
0.05 indicates statistical significance.

Results
Descriptive statistics are presented in Table 1. 
Of the 450,407 births included in all births 
in our analyses, 50% of the births were male, 
72% were white, only 8% had maternal age 
< 20 years for full-term births, and 21% of 
the mothers had > 15 years of education. 
Mean (± SD) birth weight was 3,395 ± 502 g 
among term births and 3,391 ± 511 g among 
all births. Table 2 contains a summary of the 
predicted Ta and traffic exposure across all grid 

Figure 2. Map of the study area showing the residential location of a subset of mothers over the daily 
predicted air temperature (°C) 1 × 1 km grid averaged for the entire year of 2005.
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cells in the analysis. Table 3 presents the inter-
quartile range (IQR) for each time window 
used in the analysis. Table 4 presents the results 
from the regression across all exposure periods 
tested for both the predicted exposures and 
monitor exposure analyses. Using our spatially 
and temporal resolved predicted Ta as exposure 
resulted in all exposure windows showing 
decreased birth weights with increased Ta with 

almost all exposure windows showing statis-
tical significance. We observed a pattern of 
increasing impact of an IQR change in temper-
ature exposure with increasing averaging time 
up until the last trimester of gestation average. 
The effect for the full pregnancy was smaller 
than that of the last-trimester moving average.

Term birth weights were negatively associ-
ated with predicted Ta in almost all exposure 

time windows (Table 4). In general, the 
average estimated difference in term birth 
weight with an 8.4°C (IQR) increment in Ta 
increased as the averaging time increased up 
to the last trimester before birth, whereas asso-
ciations were weaker for average exposure over 
the entire pregnancy. For example, average 
term birth weight was 8.9 g lower (95% CI: 
–16.2, –1.5) in association with a 9.0°C IQR 

Table 1. Characteristics of live births in Massachusetts during the 9-year period 2000–2008 for both the full-term analysis and AFT models.

Characteristic

Term births All births ≥ 22 weeks

Percent of all births  
(n)

Mean birth  
weight ± SD (g) Missing (n)

Percent of all births  
(n)

Mean birth  
weight ± SD (g)

Missing 
(n)

Overall (450,407) 3,395 ± 502 3,251 (462,400) 3,391 ± 511 3,381
Maternal race 0 0

White 72 (323,819) 3,443 ± 496 72 (332,383) 3,440 ± 503
African American 7 (33,775) 3,257 ± 520 8 (34,803) 3,246 ± 540
Hispanic 13 (60,339) 3,297 ± 496 13 (62,029) 3,313 ± 522
Asian 7 (31,491) 3,234 ± 463 7 (32,174) 3,229 ± 473
Other 0.3 (983) 3,347 ± 505 0.3 (1,011) 3,339 ± 527

Maternal education (years) 1,699 1,748
≤ 8 3 (12,718) 3,293 ± 492 3 (13,121) 3,288 ± 501
> 8–12 34 (154,723) 3,319 ± 511 34 (159,307) 3,313 ± 523
13–15 42 (187,792) 3,407 ± 503 42 (192,246) 3,455 ± 491
≥ 15 21 (94,994) 3,457 ± 485 21 (97,726) 3,403 ± 512

Maternal age (years) 1 1
≤ 20 5 (22,900) 3,219 ± 489 5 (23,618) 3,211 ± 505
20–29 33 (146,668) 3,335 ± 518 33 (150,538) 3,330 ± 504
30–34 32 (142,033) 3,427 ± 493 32 (145,720) 3,424 ± 500
35–39 24 (106,542) 3,459 ± 518 24 (109,365) 3,455 ± 512
> 39 7 (32,244) 3,434 ± 518 7 (33,159) 3,431 ± 530

Maternal chronic conditions
Gestational diabetes 3 (15,047) 3,419 ± 633 1,342 3 (15,388) 3,407 ± 562 1,420
Nongestational diabetes 1 (3,128) 3,419 ± 633 1,342 1 (3,219) 3,411 ± 649 1,420
Previous infant ≥ 4,000 g 1 (3,503) 3,936 ± 508 1,342 1 (3,594) 3,937 ± 511 1,420
Hypertension 3 (12,721) 3,258 ± 567 1,342 3 (13,038) 3,253 ± 575 1,420
Lung disease 3 (14,535) 3,295 ± 531 1,342 3 (14,906) 3,287 ± 547 1,420
Previous preterm birth 1 (4,331) 3,080 ± 576 1,342 1 (4,475) 3,070 ± 593 1,420

Gestational age (weeks) (450,407) 39.0 ± 1.83 0 (462,400) 38.97 ± 1.95 0
APNCU 0 0

1 (inadequate) 9 (40,427) 3,309 ± 507 9 (41,692) 3,304 ± 518
2 (intermediate) 8 (35,519) 3,438 ± 476 8 (36,559) 3,438 ± 477
3 (appropriate) 48 (215,188) 3,465 ± 463 48 (222,638) 3,465 ± 465
4 (appropriate plus) 35 (159,273) 3,312 ± 539 35 (163,511) 3,304 ± 555

Mean household Income (US$) (453,658) 52,313 ± 21,566 0 (462,400) 52,296 ± 21,573 0
Sex 0 0

Male 50 (226,589) 3,452 ± 511 50 (232,720) 3,447 ± 521
Female 50 (223,818) 3,337 ± 486 50 (229,680) 3,334 ± 494

Parity (number of births) (450,407) 2 ± 2.7 0 (462,400) 2 ± 2.7 0
Cigarettes per day during pregnancy (smokers) (450,407) 0.6 ± 2.7 642 (462,400) 0.7 ± 2.7 656
Cigarettes per day before pregnancy (smokers) (450,407) 1.8 ± 5.1 616 (462,400) 1.8 ± 5.1 631
Cumulative traffic density (average daily traffic counts) (450,407) 39.4 ± 23.5 0 (462,400) 39.2 ± 23.2 0
Elevation (m) (450,407) 59.9 ± 68.3 0 (462,400) 60 ± 68.4 0
Percent of open space (450,407) 12.0 ± 11.1 0 (462,400) 12.0 ± 11.1 0
Season of birth 0 0

Winter 22 (97,982) 3,379 ± 504 24 (108,896) 3,378 ± 514
Spring 26 (117,669) 3,402 ± 502 26 (118,182) 3,399 ± 512
Summer 27 (121,629) 3,399 ± 501 26 (121,917) 3,396 ± 510
Fall 25 (113,127) 3,393 ± 500 25 (113,405) 3,390 ± 508

Abbreviations: AFT, accelerated failure time; APNCU, Adequacy of Prenatal Care Utilization index.

Table 2. Descriptive statistics for daily air temperature, daily PM2.5 exposure, and traffic density across mother’s residences (397,698) in Massachusetts between 
2000 and 2008.

Covariate Mean Median SD Minimum Maximum IQR
25th 

percentile
75th 

percentile
Days of data 

available
Predicted air temperature (°C) 11.3 11.4 5.6 –12.1 35.49 8.9 6.9 15.8 3,285
Cumulative traffic density (daily traffic × length) 1,309 702 2,076 0 29,000 1,352 258 1,611 3,285
Predicted PM2.5 (μg/m3) 10.9 9.27 5.9 0.2 56.9 6.8 6.7 13.5 3,285
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increase in Ta during the 7 days before birth; 
16.6 g lower (95% CI: –27.4, –5.9) and 
16.7 g lower (95% CI: –29.7, –3.7) for the 
30 days and last trimester before birth, respec-
tively (IQR increase of 9.1°C and 8.4°C); and 
5.0 g lower (95% CI: –7.8, –2.3) with an 
IQR increase of 2.7°C in average Ta over the 
entire pregnancy.

The OR for low term birth weight with 
a 2.7°C increase in model-based Ta over 
the entire pregnancy was 1.04 (95% CI: 
0.96, 1.13), compared with 1.07 (95% CI: 
0.87, 1.27) for monitor-based Ta (Table 5). The 
OR for preterm birth with a 2.7°C increase in 
model-based Ta over the entire pregnancy was 
1.04 (95% CI: 0.96, 1.13) compared with 1.02 
(95% CI: 1.00, 1.05) for monitor-based Ta.

A 2.7°C increase in Ta over the entire 
pregnancy was associated with a 0.26% 
decrease in gestational age (95% CI: 
–0.28, –0.25%), and an 8.4°C increase in Ta 
over the last trimester before birth was asso-
ciated with a 0.15% decrease in gestational 
age (95% CI: –0. 26, 0.05%) (Table 5). For 
monitor-based Ta, the results were signifi-
cant as well, but showed an increase in gesta-
tional age: a 0.89% increase in gestational 
age (95% CI: 0.88, 0.90%) for full-term 
birth and 0.37% increase in gestational age 
(95% CI: 0.37, 0.38%) for the last trimester.

The association between an IQR increase 
in predicted Ta during the entire preg-
nancy and birth weight was stronger among 
births to mothers with residences in urban 
areas (< 30 km from a monitor, 8.1 g lower; 
95% CI: –12.2, –4.0) compared with births to 
mothers residing in rural areas (> 30 km from 
a monitor, 4.2 g lower; 95% CI: –8.4, 0.1), 
though the differences were not statistically 
significant (interaction p-value = 0.26).

Discussion
In the presented study, we estimated the asso-
ciations of Ta on birth outcomes in a study 
of singleton births in Massachusetts counties 
between 2000 and 2008. Using a model 
enhanced with satellite remote sensing, we 
were able to assign exposure to all subjects with 
less spatial and temporal error (compared with 
using a closest-monitor approach), regardless of 
the distance between a participant’s residence 
and the closest Ta monitor.

We found a consistent negative association 
between Ta and birth weight for infants who 
were born full term after adjusting for other 
potential risk factors, such as previous and 
current mother’s health conditions, socio-
economic factors, and physical environ-
ment risk factors such as traffic density in 
surrounding grid cells. The association with Ta 
over the entire pregnancy was stronger in more 
urban areas (< 30 km from a monitor) than in 
more rural areas (≥ 30 km from a monitor), 
though the difference was not statistically signif-
icant. In contrast to the associations found with 
our modeled predicted Ta, associations between 
birth weight and Ta measured at the nearest 
ground monitor stations were close to the null, 
suggesting that predicted Ta classified exposure 
more accurately than monitor-based estimates. 
Interestingly, for the AFT analysis we found 
that an increase in Ta over both periods were 
associated with a decrease in gestational age; yet 
in the monitored Ta analysis, these associations 
were significantly associated with an increase 
of gestational age. These findings need to be 
further explored in future studies.

A key advantage of the presented study is 
the exposure assignment. Because our model 
allows us to predict temporally and spatially 
resolved Ta, we can assign daily Ta exposure to 
the entire study population, avoiding potential 
selection bias that would yield a nonrepresenta-
tive sample. It also captures the urban heat 

island effect, as shown in Figure 2. In addition, 
we account for small area measures of potential 
confounders at a 1 × 1 km spatial resolution 
such as individual and census measures of 
socioeconomic status, and medical history.

The literature on the potential impact of Ta 
on birth weight and its determinants is still very 
limited. Increased Ta may affect birth weight 
through direct or indirect means. The causes of 
preterm birth and LBW are largely unknown, 
but are likely to be a complex mix of genetic, 
behavioral, socioeconomic, and environmental 
factors (Strand et al. 2011). Heat stress during 
spells of high Ta has been suspected as a cause 
of premature birth, resulting in high prevalence 
of LBW (Basu et al. 2010). Pregnant women 
may be more susceptible to changes in tempera-
ture because of the extra physical and mental 
strain, and may be at a greater risk of heat stress 
because of multiple factors, such as increased 
fat deposition; the ratio of surface area to body 
mass, which decreases, reducing the capacity 
to lose heat by sweating; weight gain, which 
increases heat production; and the fetus adding 
to the maternal heat stress by adding its own 
body’s composition and its own metabolic rate 
(Wells and Cole 2002). Three studies have 
reported positive associations between preterm 
birth and Ta (Flouris et al. 2009; Lajinian et al. 
1997; Yackerson et al. 2008), but two other 
studies did not report an association (Lee et al. 
2008; Porter et al. 1999).

Table 3. IQR (interquartile range) values for each 
time window used in the study.

Exposure period IQR (°C)
Day of birth 8.9
One day before birth 8.9
Moving average of 3 days before birth 9.0
Last week (7 days before birth) 9.0
Last 2 weeks (14 days before birth) 9.0
Last month (30 days before birth) 9.1
Last trimester 8.4
Entire pregnancy 2.7

Table 4. The adjusted association between a one interquartile range increase in air temperature (°C) and 
PM2.5 and birth weight for full-term births at various exposure periods (n = 453,658).

Exposure period
Predicted air temperature (°C) 

β (95% CI)
Closest monitor temperature (°C) 

β (95% CI)
Day of birth –3.6 (–8.1, 0.9) 0.6 (–4.8, 6.0)
One day before birth –4.4 (–9.6, 0.7) 1.8 (–3.8, 7.5)
Moving average of 3 days before birth –4.1 (–9.8, 1.5) 3.0 (–2.8, 8.8)
Last week (7 days before birth) –8.9 (–16.2, –1.5) 1.5 (–4.6, 7.7)
Last 2 weeks (14 days before birth) –15.5 (–24.2, –6.8) 0.5 (–6.4, 7.3)
Last month (30 days before birth) –16.6 (–27.4, –5.9) 2.0 (–6.3, 10.2)
Last trimester –16.7 (–29.7, –3.7) –8.0 (–20.3, 4.3)
Entire pregnancy –5.0 (–7.8, –2.3) 2.6 (–17.1, 22.4)

All models adjusted for predicted air temperature, predicted PM2.5, cumulative traffic density, percent of open spaces, 
age of mother, gestational age, chronic conditions of mother or conditions of pregnancy (lung disease, hypertension, 
gestational diabetes, or nongestational diabetes), parity, previous infant weighing ≥ 4,000 g and sex of infant, sine 
and cosine (controlling for seasonality), APNCU (as a categorical variable), mother’s race (as a categorical variable), 
mother’s education (as a categorical variable), and previous preterm occurrences.

Table 5. Accelerated failure time model (AFT) results on the relationship between gestational age and 
Ta (n = 473,977) and logistic model results on preterm (n = 473,977) and low birth weight outcomes 
(n = 453,658).

Outcome and exposure time period
Predicted air  

temperature (°C)
Closest monitor  
temperature (°C)

AFT model (gestational period) β (95% CI)
Last trimester –0.0015 (–0.0026, 0.0005) 0.0037 (0.0037, 0.0038)
Entire pregnancy –0.0026 (–0.0028, –0.0025) 0.0089 (0.0088, 0.0090)

Preterm births (< 37 weeks) [OR (95% CI)]
Entire pregnancy 1.02 (1.00, 1.05) 1.07 (0.87, 1.27)

Low birth weight (< 2,500 g) [OR (95% CI)]
Entire pregnancy 1.04 (0.96, 1.13) 1.02 (0.45, 2.30)

All models adjusted for predicted air temperature, predicted PM2.5, cumulative traffic density, percent of open spaces, 
age of mother, chronic conditions of mother or conditions of pregnancy (lung disease, hypertension, gestational 
diabetes or non-gestational diabetes), parity, previous infant weighing ≥ 4,000 g and sex of infant, sine and cosine 
(controlling for seasonality), APNCU (as a categorical variable), mother’s race (as a categorical variable), mother’s 
education (as a categorical variable), and previous preterm occurrences.
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Race, ethnicity, education, and other 
socioeconomic status factors are often clustered 
spatially and can act as potential confounders 
since they do not vary by time but do vary 
by space. We use a random-effects model 
with a random intercept for FIPS (Federal 
Information Processing Standard) code while 
controlling for seasonality to reduce bias as well.

There are several limitations in the present 
study. First, the spatial resolution of the 
exposures was 1 × 1 km. As satellite remote 
sensing evolves and progresses, higher spatial 
resolution data should become available in 
the coming years, which will further reduce 
exposure error. Such increased resolution 
should enable us to more precisely estimate 
daily intraurban exposures and how these 
vary across spatial locations. Other limitations 
include the lack of some health and personal-
level data such as maternal weight, body mass 
index, differences across different locations in 
physical activity, and pollen exposure. We also 
lacked data on indoor temperature exposure 
and information on air conditioning use in 
households. Finally, another limitation is the 
lack of information on road noise as in some 
recent pregnancy outcome studies (Dadvand 
et al. 2014; Gehring et al. 2014).

In summary, our findings suggest that 
higher Ta during pregnancy may be a risk 
factor for lower birth weight.
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