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Introduction
Although randomized controlled trials 
(RCTs) are often conducted in a highly 
selected set of participants, exposure in such 
studies is unrelated to the selection process 
because exposures come after the randomiza-
tion of selected participants. Therefore, it is 
reasonable to believe that this initial selection 
process does not induce biased exposure–
health effect associations (i.e., associations 
that are different from the true total causal 
effect of the exposure on the outcome, in the 
absence of chance associations, in the source 
population that was sampled to obtain the 
study sample), although the findings of RCTs 
may lack generalizability (i.e., that the causal 
effect in the sampled population would not 
be the same as the causal effect in a different 
population). In observational studies, the 
initial selection process may result in biased 
exposure–health effect associations. Past or 
current exposure status may influence selec-
tion into the study or into substudies, either 
because exposure or correlates of the exposure 
are related to prespecified eligibility criteria or 
because they influence participant availability 
or willingness to participate. If both the 

exposure and the outcome or their correlates 
(including past exposure and outcome) are 
related to participation, a study’s exposure–
health effect associations may not reflect the 
true total causal effect in the source popula-
tion that was sampled to obtain the study 
sample, either because of selection bias 
(known as collider stratification bias in causal 
theory) (Hernán et al. 2004) or because the 
selection process is equivalent to conditioning 
on an intermediate between the exposure 
of interest and the outcome (Schisterman 
et al. 2009).

The impact of collider stratification bias 
is well recognized in the setting of case–
control studies. By definition, participation 
is related to the outcome; if recruitment into 
a case–control study is related to the exposure 
of interest as well, the observed exposure–
health effect association may not reflect the 
true causal effect in the sampled population 
(Hernán et al. 2004; Wacholder et al. 1992). 
Similarly, exposure–health effect associations 
in prospective cohort studies likewise may 
not reflect the true causal effect in the whole 
cohort (and by extension, the population 
from which the cohort was drawn) if both 

the exposure and outcome are related to loss 
to follow-up (Hernán et al. 2004). Perhaps 
less well appreciated is how the process of 
cohort formation can induce a similar 
problem. Structurally, this problem is the 
same as loss to follow-up. If the exposure 
and outcome, or their correlates, influence 
a person’s initial eligibility or participation, 
the resulting exposure–health effect associa-
tion may not reflect the causal effect in the 
source population.

The impact of conditioning on an 
intermediate is also well recognized in the 
epidemiologic literature. Termed “overadjust-
ment” by some, in simulation, the resultant 
bias can be substantial (Rothman et al. 2008; 
Schisterman et al. 2009). However, as with 
collider stratification bias, it is less well recog-
nized that the cohort formation process may 
induce this bias in specific situations.

Many studies of environmental toxicant 
exposures are likely susceptible to bias of the 
exposure–health effect estimates attributable 
to the study or substudy selection process—
including both collider stratification bias 
and bias due to conditioning on an inter-
mediate—for two reasons: a) Environmental 
exposures are often related to socioeconomic 
status (SES), which is known to predict 
participation (de Graaf et al. 2000; Howe 
et al. 2013; Mein et al. 2012; Weuve 2013), 
and b) exposure to an environmental toxicant 
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Background: The process of creating a cohort or cohort substudy may induce misleading 
exposure–health effect associations through collider stratification bias (i.e., selection bias) or 
bias due to conditioning on an intermediate. Studies of environmental risk factors may be at 
particular risk.

oBjectives: We aimed to demonstrate how such biases of the exposure–health effect association 
arise and how one may mitigate them.

Methods: We used directed acyclic graphs and the example of bone lead and mortality (all-cause, 
cardiovascular, and ischemic heart disease) among 835 white men in the Normative Aging Study 
(NAS) to illustrate potential bias related to recruitment into the NAS and the bone lead substudy. 
We then applied methods (adjustment, restriction, and inverse probability of attrition weighting) to 
mitigate these biases in analyses using Cox proportional hazards models to estimate adjusted hazard 
ratios (HRs) and 95% confidence intervals (CIs).

results: Analyses adjusted for age at bone lead measurement, smoking, and education among all 
men found HRs (95% CI) for the highest versus lowest tertile of patella lead of 1.34 (0.90, 2.00), 
1.46 (0.86, 2.48), and 2.01 (0.86, 4.68) for all-cause, cardiovascular, and ischemic heart disease 
mortality, respectively. After applying methods to mitigate the biases, the HR (95% CI) among the 
637 men analyzed were 1.86 (1.12, 3.09), 2.47 (1.23, 4.96), and 5.20 (1.61, 16.8), respectively.

conclusions: Careful attention to the underlying structure of the observed data is critical to identi-
fying potential biases and methods to mitigate them. Understanding factors that influence initial 
study participation and study loss to follow-up is critical. Recruitment of population-based samples 
and enrolling participants at a younger age, before the potential onset of exposure-related health 
effects, can help reduce these potential pitfalls.
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at one time point is often reasonably corre-
lated with exposure at other time points, and 
prior exposures (and their consequences) may 
be related to participation. Another, perhaps 
simpler way to think of this relies on the fact 
that environmental exposures and their corre-
lates (e.g., SES) are ubiquitous in space and 
time—the most susceptible individuals may 
not participate in studies given downstream 
consequences of past exposure or its corre-
lates (potentially including the outcome of 
interest), leading to an underestimate of any 
adverse causal effects of exposure on a given 
health effect.

In this review, we examine the issue of 
biased exposure–health effect associations 
resulting from who participates in a study or 
substudy, and ways of reducing this bias in 
the analysis. To do this, we use an example 
of the association between cumulative lead 
exposure (as measured by lead concentration 
in bone) and mortality (total, all cardio-
vascular, and ischemic heart disease) in the 
Normative Aging Study (NAS), expanding 
on an earlier analysis (Weisskopf et al. 2009). 
NAS participants were originally enrolled 
in the 1960s and bone lead concentration 
was measured between 1991 and 1999 
for a substudy of the health effects of lead 
exposure. Given the routes of lead exposure 
and cumulative nature of bone lead measures, 
measured bone lead concentration may 
include, and is almost certainly correlated 
with, lead exposures before cohort forma-
tion. Therefore, it is reasonable to think that 
a) unique prior correlates of lead exposure 
and mortality influence study participation 
at both study inception and recruitment 
into the lead substudy, resulting in collider 
stratification bias in the absence of analytical 
methods to mitigate this bias; and b) lead 
exposure–related health effects may influence 
study participation in both the original study 
and the lead substudy, resulting in bias from 
conditioning on an intermediate of the lead 
exposure–mortality association. To illustrate 
this, we describe how nonparticipation at 
each point of recruitment may bias the asso-
ciation between lead exposure and mortality 
using causal directed acyclic graphs (DAGs). 
We then use critical evaluation of the 
proposed causal structure to suggest methods 
by which we could mitigate this bias and 
apply these methods to illustrate the influence 
of such methods on study results.

Methods
Study population. The NAS is a prospective 
cohort study of community-dwelling men 
initiated in 1963 (Bell et al. 1972). Eligibility 
criteria for entry into the NAS included 
having no history of treatment for hyperten-
sion; systolic blood pressure ≤ 140 mmHg; 
diastolic blood pressure ≤ 90 mmHg; and 

no other chronic conditions, including heart 
disease, diabetes mellitus, and cancer. At 
cohort inception, 2,280 participants between 
the ages of 21 and 80 years were recruited 
from the Greater Boston, Massachusetts, 
area, and since then, participants have come 
in every 3–5 years for in-person evaluations. 
Because the percentage of participants who 
are nonwhite (2%) or missing race (3%) is 
very low, we consider only the 2,159 white 
NAS participants. This research was approved 
by the Human Subjects Committees of the 
VA Boston Healthcare System, the Brigham 
and Women’s Hospital, and the Harvard 
T.H. Chan School of Public Health. Study 
participants provided informed consent at 
enrollment and at follow-up evaluations.

Blood lead measurement. Blood draws for 
blood lead concentration measurements were 
done at each regular NAS visit, starting in 
1992. In all, there were 1,206 white NAS 
men with at least one measurement of lead 
in blood. For the analyses we used the first 
blood lead measurement for each individual, 
which were collected from 1992 through 
2007. Blood was collected in special lead-free 
tubes containing EDTA and analyzed at ESA 
Laboratories (Chelmsford, MA) by Zeeman 
background-corrected flameless atomic 
absorption (graphite furnace) as previously 
described (Weisskopf et al. 2009).

Bone lead measurements and substudy. 
Between 1991 and 1999, a subset of NAS 
participants agreed to have their bone lead 
concentration measured to provide an 
estimate of cumulative past lead exposure 
over years to decades (Wilker et al. 2011) 
for a substudy of the health effects of 
lead exposure. Bone lead measurements 
were taken at both the patella and mid-
tibial shaft with an ABIOMED K-shell 
X-Ray fluorescence (KXRF) instrument 
(ABIOMED, Danvers, MA) as described 
previously (Weisskopf et al. 2009). Units of 
lead concentration are in micrograms lead/
gram bone mineral, and each measurement 
has an accompanying uncertainty related to 
background noise in the signal extraction 
procedure. We followed typical practice 
(Hu et al. 1996) and excluded measure-
ments with estimated uncertainty beyond the 
typical range (> 10 and > 15 μg/g for tibia 
and patella, respectively) because this usually 
reflects excessive subject movement during 
the measurement. In total, 835 white NAS 
men had valid patella lead measurements, and 
836 had valid tibia lead measurements.

Mortality follow-up. Most deaths of NAS 
participants are identified through next of 
kin or postal authorities. Additional deaths 
are identified via birthday cards and supple-
mental mailed questionnaires sent to the 
participants (when next of kin return them 
informing us of a death), as well as VA and 

Social Security Administration Death Master 
File searches. We considered deaths through 
March 2007 to be consistent with our earlier 
report (Weisskopf et al. 2009). Death certifi-
cates are obtained from the appropriate state 
health departments for deceased NAS partici-
pants and were reviewed by a board-certified 
cardiologist to assign cause of death according 
to the International Classification of Diseases, 
9th Revision (ICD-9). On the basis of any 
cause listed on the death certificate (under-
lying or contributing), we classified deaths 
with ICD-9 codes 390 to 459 as attribut-
able to cardiovascular disease, and ICD-9 
codes 410 to 414 and 429.2 as attributable to 
ischemic heart disease.

Causal directed acyclic graphs (DAGs). 
Causal DAGs are a type of causal diagram 
that graphically represents the underlying 
causal relations between variables (both 
measured and unmeasured) in a given study 
setting. Such diagrams are useful in identi-
fying key assumptions made about the causal 
structure of a problem and aid in identifi-
cation of potential bias in estimating causal 
effects under a variety of analytic scenarios 
(Glymour et al. 2005, 2008; Hernán and 
Robins 2016).

DAGs contain variables (also called 
nodes) and directional arrows between the 
variables (Figure 1). Arrows between any 
two variables denote that one variable causes 
the other (e.g., A causes C and C causes E in 
Figure 1A). Statistical associations between 
two variables are identified, with a few 
notable exceptions discussed below, as any 
connection through arrows (ignoring the 
direction of the arrows) between any two vari-
ables, including connections passing through 
other variables—this is known as a path. A 
statistical association between two variables 
is also a causal one if the path that emanates 
from the first variable (cause) and arrives 
at the other variable (effect) only travels in 
the direction of the arrows (e.g., A to F in 
Figure 1A), assuming the DAG is correctly 
constructed. Other paths that connect 
an exposure to the outcome, but include a 
portion that goes backwards along at least one 
arrow, indicate a statistical, but noncausal, 
association (e.g., D to C in Figure 1A). One 
limitation of DAGs is that, although they 
identify a potential source of bias, they do 
little to inform whether the magnitude of the 
bias is small or large, and the direction of bias 
is not always obvious.

Under  some condit ions  var iables 
connected by arrows are not statistically asso-
ciated; in DAG terminology these conditions 
block a path. First, if there is a variable with 
two arrows that point into it (a common 
effect of two variables, known in DAG 
terminology as a collider, e.g., variable D in 
Figure 1A), the path for statistical association 
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through that collider along those two arrows 
is blocked. Consequently, barring other 
paths, there will not be a statistical association 
between the two variables from which the 
arrows come (e.g., between variables A and B 
in Figure 1A).

Second, conditioning on a variable blocks 
statistical association that would otherwise 
go through that variable. In DAG graphical 
representation, a box drawn around a variable 
(e.g., variable C or D in Figure 1B) represents 
conditioning on that variable, which can be 
done by restriction, stratification, or regression 
adjustment. Thus, in Figure 1B, for example, 
there is no association between A and F after 
conditioning on C. However, there is one 
exception to this rule: Conditioning on a 
collider opens the path for statistical associa-
tion through the collider along the two arrows 
into the collider (so there will be a statistical 
association between the two variables from 
which the arrows come, e.g., between A and 
B after conditioning on D in Figure 1B). In 
more formal language, conditioning on a 
collider makes marginally independent vari-
ables correlated within levels of the collider.

Finally, conditioning on a descendant of 
a variable (an effect of a variable) has effects 
similar to conditioning on the variable itself. 
For example, if you condition on variable F in 
Figure 1A (a descendant of C), the association 
between A and E will be partially blocked 
because you have partially conditioned on 
C. The degree to which conditioning on F 
conditions on C depends on the strength 
of the association between C and F. For 
example, adjusting for a weak effect of 
smoking (e.g., bad breath) would be insuf-
ficient to effectively condition on smoking 
behavior. In a similar manner, if you condi-
tion on variable G in Figure 1A (a descendant 
of the collider D), you partially open the path 
between A and B through D, which creates 
an association between A and B. Again, the 
degree to which that path is opened by condi-
tioning on G depends on the strength of the 
association between D and G.

Bias of an exposure–outcome association 
occurs when there is any noncausal path on 
the DAG from the exposure to the outcome. 
In Figure 1A, there is no causal effect of D on 
F, yet there is a statistical association through 
the path D←A→C→F, indicating that an 
estimate of the causal association between D 
and F would be biased if the D←A→C→F 
path is not blocked (e.g., through condi-
tioning on A or C). Similarly, in Figure 1B, 
there is an association between A and B (via 
the path A→D←B) in the absence of a causal 
effect, so we conclude our estimate of the 
causal effect of A on B (or vice versa) will 
be biased from a model that conditions on 
D. Such bias can result in an estimate of an 
exposure–outcome association that is stronger 

or weaker than the true causal effect, and 
has the potential to mute or even reverse the 
direction of the association relative to the true 
causal effect.

Bias can also occur when the selec-
tion process results in conditioning on 
an intermediate between the exposure and 
outcome of interest, because this produces 
an exposure–outcome estimate that does not 
reflect the causal effect of the exposure on 
the outcome in the source population. For 
example, in Figure 1B, we condition on C, 
an intermediate of the causal effect of A on 
E. If this conditioning was done by restricting 
the study sample to those in the source popu-
lation who had a given level of C, then we 
would not see an association between A and E 
despite a causal effect of A on E in the source 
population. When one analyzes an entire 
population, or a representative sample of a 
population (i.e., a truly random sample of the 
entire population), then an exposure–outcome 
association found when conditioning on an 
intermediate can accurately estimate any 
effect of the exposure that is not through the 
intermediate on which one conditions, under 
certain assumptions (e.g., no confounding of 
the intermediate and outcome) (Schisterman 
et al. 2009). However, when conditioning 
on an intermediate is the result of selecting 
and analyzing only a subset of the original 
population (as is the case in our situation 
described below), then the exposure–outcome 
association may not be a valid estimate of 
either the total effect of the exposure on the 
outcome, or the portion of the effect operating 
through causal pathways that do not involve 
the  intermediate variable.

DAG representing our data. The DAG 
shown in Figure 2 represents our assumptions 
about the structure of the causal relationships 
between lead, mortality, and related variables 
in our data. The subscripts refer to variables 
at entry into the NAS (0) and at the time 

of KXRF bone lead measurement (1). This 
DAG does not show all of the possible vari-
ables of interest individually—for simplicity, 
CV0 and CV1 represent clinically detectable 
cardiovascular disease or cardiovascular risk 
factors at times 0 and 1, L represents measured 
covariates, and U represents other unmeasured 
covariates. In addition, we combined U and 
L into a single node because the arrows into 
and out of the L and U variables have the 
same structure. Education is a good example 
of an L variable because it is known to affect 
study nonparticipation and loss to follow-up 
and is related to both health status and lead 
exposure. Other SES factors could be poten-
tial U variables. Study participation is denoted 
as S (for selection); two types are shown, SNAS 
and SKXRF. The former indicates participation 
in the NAS cohort at its inception and the 
latter refers to participation in KXRF measure-
ments. These two selection steps combine 
to determine the people that can actually be 
analyzed to examine the association between 
bone lead concentration and mortality. Both 
SNAS and SKXRF have boxes around them 
because restricting to the subset that entered 
the NAS and the subset of those who had 
KXRF measurements is a form of condi-
tioning. The CV0→SNAS and CV1→SKXRF 
arrows are included because health status, 
including cardiovascular problems, is known 
to affect participation in epidemiologic studies 
(generally, the more healthy are more likely to 
initiate and maintain participation) (Alonso 
et al. 2009; Mein et al. 2012). In addition, 
observed cardiovascular health issues were 
part of the eligibility criteria at NAS entry 
(Bell et al. 1972). The U0&L0→SNAS, 
U0&L0→ SKXRF, and U1&L1→SKXRF arrows 
are included because we are assuming some 
subset of the L (e.g., smoking, education) and 
U (e.g., other markers of SES, health status) 
variables affect study nonparticipation and 
loss to follow-up (generally, those with lower 

Figure 1. (A) Introduction to causal DAGs: A, B, C, D, E, F, G represent variables, or nodes, and directional 
arrows indicate causal relationships between these variables. A variable with two arrows pointing into it 
(a common effect of the two variables, e.g., D) is referred to as a collider. (B) Conditioning on a variable 
(either by restriction, stratification, or adjustment in a model) is indicated by drawing a box around the 
variable, as shown for variables C and D. See text for details on how DAGs indicate causal and noncausal 
associations between variables.
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SES, those with worse health, and smokers are 
less likely to initiate and maintain participa-
tion), an assumption well supported by the 
literature (de Graaf et al. 2000; Howe et al. 
2013; Mein et al. 2012). The U&L→Pb 
arrows are included because we are assuming 
some subset of the L and U variables (e.g., 
age, SES variables) are also causally related 
to lead exposure (e.g., older age and lower 
SES are associated with higher lead concen-
tration) (Park et al. 2009). Similarly, the 
U&L→CV arrows indicate the assumption 
that some subset of the L and U (e.g., age, 
SES variables) are causally related to devel-
opment of poor cardiovascular health (e.g., 
older age and lower SES are associated with 
more health problems). Pb0 and Pb1 represent 
summary measures of lead exposure at time 
0 and time 1; however, we measure Pb only 
at time 1, so Pb0 is unobserved. However, 
we consider an effect emanating from Pb0 or 
Pb1 and terminating in mortality to repre-
sent a causal effect of Pb on mortality for the 
purposes of identifying potential bias in our 
DAG. This is a reasonable approach given that 
Pb1 and Pb0 are both measurements of cumu-
lative lead exposure. Note that a) the observed 
Pb1 could include Pb0 exposure from before 
NAS entry, as represented by the arrow from 
Pb0 to Pb1 in Figure 2; and b) an individu-
al’s exposure to lead is likely correlated over 
time (not depicted in the DAG). We wish 
to examine the total causal effect of Pb (Pb0 
or Pb1) on mortality in the source popula-
tion. This total causal effect includes all causal 
paths through or independent of other vari-
ables (e.g., CV), because we hypothesize that 
lead exposure could contribute to mortality 
both through and  independent of induction of 
 cardiovascular disease.

Possible sources of bias. Standard epide-
miological analyses tend to focus exclusively 
on bias of exposure–health effect estimates 
from confounding. Both the L and U variables 
in our DAG introduce typical confounding 
bias because they are a common cause of the 
exposure and outcome under study: Statistical 
association between, for example, Pb0 and 
mortality occurs via a path that does not 
emanate from Pb0 (Pb0←L0→Mortality). 
However, assuming our DAG is correctly 
specified, the DAG reveals that there are two 
other potential sources of bias that arise as a 
result of who participated in the NAS study 
and KXRF substudy. Both may result in the 
analysis of a sample that is less likely to be 
susceptible to the adverse health effects of lead 
exposure than the general population, which 
would lead to an underestimate of the observed 
effect estimate of lead exposure on mortality. 
These are collider stratification bias and bias 
from conditioning on an intermediate.

Collider stratification (selection) bias. 
Collider stratification bias (i.e., selection bias) 

is a source of potential exposure–health effect 
estimate bias that is often not considered in 
analyses that are not case–control studies. In 
our study, if we ignore for the moment issues 
related to selection into the KXRF substudy 
and focus on selection into the NAS, we can 
consider the simplified DAG of Figure 3A, 
including only a portion of the Figure 2 
DAG, that illustrates this problem. SNAS is 
a collider on which we condition through 
the process of cohort formation. Therefore, 
statistical association between L0 and CV0 
is induced along the path CV0→SNAS←L0 
and Pb0 is connected to mortality via a 
path that does not emanate from Pb0 
(Pb0←L0→SNAS←CV0→Mortality). This 
path is noncausal because it does not emanate 
from Pb0 (but goes backward along the arrow 
from Pb0), so analyses that ignore this may 
be biased. L0 could be replaced with U0 in 

the path above. This bias has exactly the same 
structure as collider stratification bias from 
loss to follow-up before selection into the 
KXRF substudy, which can be seen if we only 
consider the follow-up period after entry into 
the NAS (Figure 3B). Conditioning on SKXRF 
opens the path CV1→SKXRF←L1 (or U1) 
and thereby we can observe an association 
between Pb1 and mortality in the absence of a 
causal effect of Pb1 on mortality.

Bias from conditioning on an inter-
mediate. A second, often ignored, potential 
source of bias of exposure–health effect esti-
mates is conditioning on an intermediate. 
Although this is more frequently recognized 
in terms of variables that lie on the causal path 
between an exposure and outcome, that this 
can occur as a result of selection processes 
is more often missed. This arises from the 
fact that conditioning on a descendant of a 

Figure 2. DAG representation of our assumptions about the structure of the data in the study, where we 
are interested in estimating the causal effects of cumulative lead exposure on mortality. See “Methods” 
for details. Abbreviations: CV, cardiovascular symptoms; L, measured variables; Pb, lead exposure/bone 
lead concentration; SKXRF, selection into the KXRF substudy; SNAS, selection into the NAS cohort; U, 
unmeasured variables. Subscripts 0 and 1 refer to the time of NAS recruitment and KXRF measurement, 
respectively. The U and L variables are separate variables, but the structure of arrows into and out of them 
are the same, and so for simplicity they are shown together.

At entry into NAS At time of KXRF

Mortality

SKXRFSNAS
U1 and L1

U0 and L0

CV0 CV1

Pb1Pb0

Figure 3. Illustration of selection bias (or collider stratification bias) (A) at the time of entry into the NAS 
and (B) due to loss to follow-up before KXRF lead measurements. See “Methods” for details. See Figure 2 
for variable definitions.

At entry into NAS At time of KXRF

Mortality Mortality

SKXRFSNAS U1 and L1

U0 and L0 CV0 CV1

Pb0 Pb1
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variable is akin to conditioning on the variable 
itself, especially if the association between the 
variable and its descendant is strong. Thus, 
in our study, if participation or selection into 
the NAS is at least partly driven by cardiovas-
cular disease at the time of enrollment, then 
the participant selection process effectively 
conditions on CV0, a causal intermediate 
between lead exposure and mortality. This is 
illustrated in simplified form in Figure 4A. 
Conditioning on SNAS blocks some of the 
association that goes from Pb0 to mortality 
through CV0, because conditioning on SNAS 
partially conditions on CV0. We know this 
to be true at NAS inception, because absence 
of cardiovascular disease and hypertension 
were eligibility requirements; thus we expect 
downward bias of the lead–mortality effect 
estimate from an analysis that ignores this, 
masking the total true adverse effect of lead 
exposure on mortality in the source popu-
lation from which we sampled to form the 
NAS. Similarly, we expect this problem to 
repeat at the time of selection into the KXRF 
substudy (Figure 4B) because health status is 
a known predictor of study participation and 
loss to follow-up (Alonso et al. 2009; Mein 
et al. 2012). However, the downward bias 
of the lead–mortality effect estimate at this 
stage may be less than at NAS entry because 
there were no explicit health related inclusion 
criteria for the KXRF substudy.

Methods to account for bias. Adjustment. 
Adjustment for relevant L variables assessed 
both at baseline and at the time of the KXRF 
substudy—standard practice in most epide-
miological studies—should be sufficient to 
address biases of the lead–mortality effect 
estimates from both confounding and collider 
stratification biases introduced by these L 
variables (assuming adequate and appropriate 
measurement and parameterization of the L 
variables, and that the earlier lead exposure 
does not causally affect the later L variables, 
in which case conditioning on them would be 
conditioning on an intermediate). However, 
if there remain uncontrolled U variables 
as depicted in the DAG (Figure 5A), both 
confounding and collider stratification bias of 
the lead–mortality effect estimate will remain. 
(Adjusting for CV to block collider stratifica-
tion bias is not possible because it induces 
conditioning on an intermediate of the effect 
of lead on mortality.) Adjusting for additional 
variables can help to remove some of the bias 
introduced by the uncontrolled U variables 
by effectively converting them to controlled L 
variables (in practice, U variables may actually 
be measured, but just not initially consid-
ered as potential confounders by the investi-
gator)—for example, adjusting for other SES 
variables beyond education (Figure 5B). Such 
adjustment may also help reduce bias from 
yet other uncontrolled (U) SES variables to 

the extent that the controlled SES variables 
act as proxies for other uncontrolled (possibly 
unmeasured) SES variables.

Restriction. If we could eliminate the 
arrow between Pb0 and CV0 or CV0 and 
SNAS, the bias of the lead–mortality effect 
estimate from both collider stratification 
bias and conditioning on an intermediate 
at cohort recruitment would not exist. This 
could be done by restricting the analysis to 
those who were young enough at entry into 
the NAS (e.g. ≤ 45 years old) that cardio-
vascular disease–related health effects of lead 
exposure that affect participation would be 
relatively rare. In such a group, there are no 
arrows from Pb0 to CV0 or from CV0 to 
SNAS because there are essentially no CV0 
(Figure 5C). Removing the CV0 to SNAS 
arrow also removes collider bias from condi-
tioning on SNAS whether that bias involves 
an L variable or a U variable, and so is more 
effective at removing this bias than simple 
adjustment for L variables.

Inverse probability weighting. Restriction 
based on age at entry into the NAS does not 
eliminate similar collider stratification bias 
or bias from conditioning on an interme-
diate resulting from selection into the KXRF 
substudy (Figure 5C). We cannot restrict to 
a group ≤ 45 years old at the time of KXRF 
because there are virtually none, given the 
age at NAS recruitment and time from that 
until the KXRF substudy. Instead, here 
we can use inverse probability of attrition 
weighting (IPW) (Hernán et al. 2000; Weuve 
et al. 2012) to alleviate the potential bias of 
the lead–mortality effect estimates from both 
collider stratification bias and conditioning 
on an intermediate resulting from selection 
into the KXRF substudy.

IPW uses information available for partici-
pants with and without KXRF measurements 
to weight observations from participants with 
a KXRF measurement, so that the weighted 
subpopulation is representative of all NAS 
participants who are alive at the time of the 
KXRF substudy. [It is possible to address 

attrition by death with this technique as well; 
however, this is controversial and particularly 
problematic for the current study, where the 
outcome is mortality—we refer readers to 
the work of others for further consideration 
of what to do with attrition due to death 
(Andersen and Keiding 2012; Chaix et al. 
2012; Kurland et al. 2009; Lau et al. 2009; 
Tchetgen Tchetgen 2014; Tchetgen Tchetgen 
et al. 2012; Varadhan et al. 2014; Weuve et al. 
2012)]. In this way the arrows into SKXRF are 
removed (because the group is weighted to be 
representative of the whole living NAS popu-
lation and, therefore, not a selected group of 
the original NAS study sample), thus elimi-
nating the bias induced by conditioning on a 
collider or conditioning on the intermediate 
CV1 through conditioning on its descendant 
SKXRF (Figure 5D). We could not use IPW to 
address the similar problem at NAS initiation 
because we have no data on those who did not 
participate in the NAS.

Statistical analysis. We used Cox propor-
tional hazards modeling with age as the 
time metameter, to estimate adjusted hazard 
ratios (HRs) and 95% confidence intervals 
(CIs) for mortality in association with lead 
exposure. Participants contributed follow-
up time from the date of their first blood or 
bone lead measurement to the date of death 
or last contact with the NAS. We adjusted for 
covariates by including the covariates in the 
model. We used missing indicators to account 
for missingness (< 5% for all variables except 
for mother’s occupation—21.4% missing—
which likely reflected the mother’s not being 
in the workforce). We present DAGs for our 
base model (Figure 5A, model 1) and then 
illustrating the impact of layering on addi-
tional SES adjustment (Figure 5B, model 2), 
restriction (Figure 5C, model 3), and IPW 
(Figure 5D, model 4) to address issues of 
confounding, collider stratification bias, and 
conditioning on an intermediate.

Adjustment. Model 1 included age 
at blood or bone lead measurement and its 
square, smoking (never/former/current and 

Figure 4. Illustration of bias due to conditioning on an intermediate (A) at the time of entry into the NAS 
and (B) due to loss to follow-up before KXRF lead measurements. See “Methods” for details. See Figure 2 
for variable definitions.
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linear pack-years), and education (less than 
high school, high school, technical school, 
some college, college graduate or more), 
represented by adding boxes around the L 
variables in Figure 5A. Model 2 also adjusted 
for additional markers of SES, including 
mother’s and father’s occupation (laborer, 
clerical, craftsman, manager, professional, 
other), mother’s and father’s education 
(grammar school, high school, college or 
more), occupation at NAS entry (categorized 
into broad job categories of the U.S. Bureau 
of the Census 2000 classification of private 
industry employees (U.S. Equal Employment 
Opportunity Commission 2013), and 
quintiles of salary at NAS entry. We assume 
that after this additional adjustment, we 
have no remaining influential uncontrolled 
confounders, and so have removed the U 
variables from Figure 5B. However, as in 
any epidemiological study one can never 
completely rule out unmeasured confounding.

Restriction. Model 3 includes model 2 
covariate adjustment but only includes 
persons ≤ 45 years of age at NAS recruitment 
given that overt cardiovascular disease–related 

health effects of lead exposure that affect 
participation would be relatively rare at these 
younger ages. This eliminates all arrows into 
or from CV0 (Figure 5C).

Inverse probability of attrition weights. 
We used methods that have been described 
in detail elsewhere to create inverse prob-
ability of attrition weights (IPW) for non-
death dropout after formation of the original 
NAS cohort (i.e., it will not address issues 
of selection into NAS) (Hernán et al. 2000; 
Kurland and Heagerty 2005; Power et al. 
2013). Briefly, we used a single logistic regres-
sion model, with one record per study visit 
from inception through April 1999 (the last 
date of the bone lead measurements used 
in this study) to predict the probability of 
continuation in the study given that they 
were alive. Given the large number of possible 
predictors among the a priori–defined set 
of probable predictors (see Supplemental 
Material, Table S1) relative to the number 
of persons who dropped out of the study, 
we used forward selection to inform the 
variables included in the final models 
(see Supplemental Material, Table S2), 

as described in Supplemental Material, 
“Details of inverse probability weighting.” 
Unstabilized weights were calculated as the 
inverse of the final probability for each KXRF 
participant of remaining in the cohort at the 
time of KXRF lead assessment. Model 4 is 
the same as model 3, but includes this IPW 
weighting. In the DAG, IPW removes all 
arrows into SKXRF (Figure 5D). The final 
DAG, incorporating adjustment, age restric-
tion at NAS entry, and IPW for the KXRF 
subgroup (Figure 5D), now does not have 
either the collider stratification bias or condi-
tioning on an intermediate bias problems 
identified in the original DAG (Figure 2).

Tests for linear trend across lead tertiles 
were computed by entering an ordinal 
variable corresponding to lead tertile as a 
continuous variable in the models. Statistical 
significance was evaluated with an alpha level 
of 0.05. All analyses were conducted using 
SAS, version 9.3 (SAS Institute Inc.), except 
for analyses incorporating penalized splines 
for the continuous lead term, which were 
completed using R, version 3.0.1 (R Core 
Team 2013). 

Figure 5. Demonstration of impact of efforts to alleviate bias due to collider stratification bias and conditioning on an intermediate (CV). (A) DAG reflecting 
structure of our data in the base analysis among white men adjusting for age, education, and smoking (Model 1). (B) DAG reflecting data structure after additional 
regression adjustment (model 2) under the assumption that we no longer have important uncontrolled variables (U), although we recognize that we cannot rule 
out such variables entirely. (C) DAG reflecting data structure after additionally restricting to those ≤ 45 years of age at NAS entry. (D) DAG reflecting data struc-
ture after additionally using IPW to account for loss to follow-up between cohort inception and KXRF among those ≤ 45 years of age at baseline. See “Methods” 
for details. See Figure 2 for variable definitions.
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Results
At the time of bone lead measurement, the 
mean ± SD age of the 835 participants with 
bone lead data was 67 ± 7 years old. Most 
were well educated, and only 14% were 
current smokers (see Supplemental Material, 
Table S3). The health characteristics of those 
with a bone lead measurement and those 
without (either because they chose not to have 
it done or they were censored before the time 
of bone lead measurements) approximately 

10 years before recruitment for the lead 
substudy (mean, 1983 ± 3 years) suggest that 
those without bone lead measurements are 
less healthy, although the differences are slight 
(Table 1). Notably, though, NAS men who 
provided bone lead measurements were more 
likely to be never smokers, suggesting generally 
better health habits overall.

Results of our base model, restricted to 
white men and adjusting for education and 
smoking, suggested that there is a slight, but 

nonsignificant increase in the HR for all-
cause, all cardiovascular, and ischemic heart 
disease mortality with increasing patella lead 
concentration tertile (Table 2, model 1). The 
effect estimates were materially unchanged 
with additional adjustment (Table 2, 
model 2), suggesting that our base adjustment 
variables reasonably controlled for SES or 
that bias from SES was minimal, although it 
cannot prove that we have not omitted some 
critical unmeasured (U) variable.

Restriction. In analyses restricted to NAS 
participants who were ≤ 45 years old at entry 
into the NAS (n = 637), the magnitude of the 
association between the top tertile of patella 
lead concentration and mortality increased 
substantially, and the trends for all mortality 
categories were significant (Table 2, model 3).

IPW. Finally, using IPW to weight the 
maximally adjusted analysis among those 
≤ 45 years of age at NAS recruitment further 
strengthened effect estimates (Table 2, 
model 4); analyses using weights truncated 
at the 1st and 99th percentiles were similar 
(see Supplemental Material, Table S4). The 
results of the base model analyses and of the 
additionally adjusted, restricted, and weighted 
analyses when treating patella lead concentra-
tion continuously and using splines are shown 
in Supplemental Material, Figures S1 and S2.

Analyses that considered blood lead or 
tibia lead concentration found no associations 
with mortality under any of the models. See 
Supplemental Material, Tables S5 and S6.

Discussion
According to the assumptions about the 
causal structure detailed in our DAG, we 
applied methods to mitigate bias of the total 
exposure–health effect association through 

Table 1. Characteristics at the time of first VA visit after 1980 (mean, 1983 ± 3 years) by age at NAS entry 
and participation in bone lead measurements among those who were alive at the time the bone lead 
analyses were started.

Characteristic

≤ 45 years of age at NAS entry 
n = 1,004

> 45 years of age at NAS entry 
n = 350

Bone lead 
measured 
(n = 637)

Bone lead 
not measured 

(n = 367)

Bone lead 
measured 
(n = 198)

Bone lead 
not measured 

(n = 152)
Smoking status [n (%)]

Never 167 (26.2) 74 (20.2) 78 (39.4) 43 (28.3)
Former 332 (52.1) 194 (52.9) 105 (53.0) 92 (60.5)
Current 137 (21.5) 99 (27.0) 14 (7.1) 16 (10.5)
Missing 1 (0.2) 0 (0) 1 (0.5) 1 (0.6)

Education [n (%)]
< High school 72 (11.3) 41 (11.2) 11 (5.6) 18 (11.8)
High school 217 (34.1) 130 (35.4) 67 (33.8) 57 (37.5)
Technical school 60 (9.4) 47 (12.8) 29 (14.7) 22 (14.5)
Some college 92 (14.4) 45 (12.3) 21 (10.6) 17 (11.2)
College graduate or more 172 (27.0) 88 (24.0) 63 (31.8) 28 (18.5)
Missing 24 (3.8) 16 (4.4) 7 (3.5) 10 (6.6)

History of heart disease [n (%)] 37 (5.8) 26 (7.1) 15 (7.6) 12 (7.9)
History of hypertension [n (%)]a 237 (37.2) 138 (37.6) 94 (47.5) 77 (50.7)
History of diuretic medications [n (%)] 73 (11.5) 39 (10.6) 28 (14.1) 31 (20.4)
History of cardiovascular medications [n (%)] 117 (18.4) 77 (21.0) 51 (25.8) 42 (27.6)
Age at visit (years) (mean ± SD) 53.3 ± 5.5 53.9 ± 6.4 64.4 ± 4.6 64.7 ± 4.2
Diastolic blood pressure (mmHg) (mean ± SD) 77.6 ± 8.7 79.0 ± 9.4 75.4 ± 8.2 75.8 ± 8.3
Systolic blood pressure (mmHg) (mean ± SD) 123.8 ± 14.7 125.7 ± 16.0 127.5 ± 16.4 129.3 ± 13.9
Total cholesterol (mg/dL) (mean ± SD) 241.1 ± 40.9 247.5 ± 45.5 242.6 ± 41.9 237.1 ± 41.9
Uric acid (mg/dL) (mean ± SD) 6.7 ± 1.3 6.6 ± 1.2 6.3 ± 1.1 6.5 ± 1.4
aDiagnosis, medications, or based on blood pressure. 

Table 2. Adjusted hazard ratios [HR (95% CI)] for all-cause, cardiovascular disease, and ischemic heart disease mortality, by tertilea of patella lead at baseline 
among either all white men in the Normative Aging Study (n = 835), or those ≤ 45 years old at NAS study entry (n = 637).

Model Deaths

Tertile of patella Pb

p-Trend
1st  

(< 20 μg/g)
2nd  

(20–31 μg/g)
3rd  

(> 31 μg/g)
Model 1: base modelb (n = 835)

All-cause mortality 235 Reference 1.23 (0.82, 1.85) 1.34 (0.90, 2.00) 0.16
All cardiovascular mortality 134 Reference 1.22 (0.71, 2.10) 1.46 (0.86, 2.48) 0.15
Ischemic heart disease mortality 61 Reference 1.73 (0.74, 4.07) 2.01 (0.86, 4.68) 0.12

Model 2: additional SES adjustmentc (n = 835)
All-cause mortality 235 Reference 1.16 (0.76, 1.79) 1.25 (0.83, 1.90) 0.30
All cardiovascular mortality 134 Reference 1.16 (0.65, 2.08) 1.45 (0.83, 2.53) 0.16
Ischemic heart disease mortality 61 Reference 1.96 (0.79, 4.88) 2.11 (0.87, 5.13) 0.13

Model 3: additional SES adjustmentc and restriction to ≤ 45 years old at 
NAS inception (n = 637)
All-cause mortality 135 Reference 1.30 (0.75, 2.26) 1.72 (0.98, 3.03) 0.05
All cardiovascular mortality 75 Reference 1.36 (0.63, 2.90) 2.23 (1.02, 4.84) 0.03
Ischemic heart disease mortality 35 Reference 2.74 (0.78, 9.63) 4.60 (1.26, 16.8) 0.02

Model 4: additional SES adjustment,c restriction to ≤ 45 years old at 
NAS inception, and IPW (n = 637)
All-cause mortality 135 Reference 1.41 (0.86, 2.30) 1.86 (1.12, 3.09) 0.02
All cardiovascular mortality 75 Reference 1.53 (0.78, 2.99) 2.47 (1.23, 4.96) 0.009
Ischemic heart disease mortality 35 Reference 3.09 (1.01, 9.46) 5.20 (1.61, 16.8) 0.005

aTertiles of patella lead are based on the distribution among NAS participants ≤ 45 years old at NAS entry. bModel 1: adjusted for age at KXRF, age at KXRF squared, smoking (never/
former/current and pack-years), and education. cAdditionally adjusted for occupation and salary at NAS entry, mother’s education and occupation, father’s education and occupation.
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adjustment for age and SES-related variables, 
restriction to those ≤ 45 years of age at NAS 
entry, and use of IPW to account for nonpar-
ticipation after study entry. After applying 
these methods, we found that our patella 
lead–mortality effect estimates were substan-
tially increased and consistently statistically 
significant; the effect estimate comparing 
those in the lowest tertile to the highest tertile 
of patella bone lead concentration increased 
39% (HR = 1.34 to HR = 1.86) for all-cause 
mortality, 69% (HR = 1.46 to HR = 2.47) 
for all cardiovascular mortality, and 159% 
(HR = 2.01 to HR = 5.20) for ischemic heart 
disease mortality (Table 2).

Bias of the exposure–health effect associa-
tion introduced by selection—both at cohort 
formation and later selection into subgroups 
within the formed cohort—can arise when 
these forms of selection are related to the 
outcome and the exposure under study. In 
the case of collider stratification bias related to 
selection into a study or substudy, this requires 
the exposure and outcome (or causes of the 
exposure or outcome, potentially including 
past exposure or outcome status) to determine 
selection (Greenland 2003). For many health 
studies it is likely that the outcome or its causes 
influence study enrollment and continued 
participation because health is an important 
predictor of participation, even absent cohort 
entry criteria that can produce the same 
phenomenon (Alonso et al. 2009; Mein et al. 
2012). For environmental health studies in 
particular, exposures are often expected to be 
related to participation because such exposures 
are determined, in part, by socio economic 
status, which influences participation (de Graaf 
et al. 2000; Howe et al. 2013; Mein et al. 
2012; Weuve 2013) and because current or 
future exposure is often highly correlated with 
past exposures, which may influence participa-
tion through their downstream consequences. 
Importantly, when selection is related to 
causes of the outcome that are also on the 
causal path between exposure and outcome, 
bias of the causal effect of the exposure on 
the health effect may arise from conditioning 
on an intermediate even if exposure is not 
otherwise related to selection. In our case, 
the selection process involved in creating the 
NAS led to conditioning on an intermediate, 
which produced a downward bias in the 
effect estimate for patella lead. Intuitively, if 
an intermediate factor between lead exposure 
and cardiovascular mortality is held fixed, 
then variation in lead exposure before that 
factor is irrelevant and can have no effect on 
the outcome through that intermediate factor 
because that factor cannot vary—everyone has 
the same level of it. Thus, any effect of Pb0 on 
cardiovascular mortality is blocked.

In our example, both of these sources of 
bias of exposure–health effect estimates can 

also be thought of as an issue of the deple-
tion of susceptibles. Intuitively, the problem 
is that, on average, those people with high 
lead exposure who participate in the NAS 
KXRF examination may be a select sample of 
people who are much less sensitive to cardio-
vascular or other effects of lead exposure. If 
they were not less sensitive, then those effects 
of lead exposure would have prevented them 
from entering the NAS or participating in the 
KXRF substudy, either because they would 
be less inclined to participate due to poor 
health, or they would be excluded based on 
eligibility criteria for the NAS. In practice, 
analysis can be done only among those who 
were recruited into the study. Naïve analyses 
among this group must be interpreted as the 
association with lead exposure among those 
who entered the study, and we can argue that 
this is a group enriched with people who are 
not—or are less—sensitive to the cardiovas-
cular effects of lead than what would be seen 
in the larger source population as a whole. 
Thus, even the association with lead exposure 
after entry into the study would be expected to 
be less than what one would get if the analysis 
was done on a population-representative 
group, although exactly how much less may be 
difficult to predict.

Given that for many environmental toxi-
cants, exposures measured after study initiation 
are strongly correlated with exposures before 
study initiation, environmental studies may 
be highly susceptible to these biases, which 
would typically result in under estimation of 
the total adverse effects of the contaminants on 
the health outcome under study in the whole 
population from which one samples. When 
exposures after study initiation are not corre-
lated with exposures before study initiation, 
the potential biases we describe are less likely. 
In pharmacoepidemiology studies, investiga-
tors often aim to avoid bias by considering 
only cohorts of “new users” of treatments. 
Studies of occupational exposures that enroll 
subjects when they start working can also 
avoid these problems because the workplace 
exposures occur only after study initiation. 
However, the ubiquitous nature of environ-
mental exposures makes these issues highly 
problematic for environmental epidemiological 
studies. Similarly, studies of social or nutri-
tional exposures would also likely suffer from 
these issues because those exposures also tend 
to be longstanding.

Although we believe that mitigation of 
effect estimate bias in our assumed causal 
structure accounts for our findings, alter-
nate explanations are possible. For example, 
the change in results after restriction of the 
sample to those ≤ 45 years old at baseline, 
which we have labeled as attributable to miti-
gation of effect estimate bias, could also be 
explained by effect modification by age. That 

is, our results are also compatible with lead 
exposure at younger ages having a different 
effect on the risk of cardiovascular mortality 
than lead exposure at older ages. Specifically, 
if lead exposure at younger ages increases the 
risk of cardiovascular mortality, whereas lead 
exposure at older ages decreases—or at least 
does not increase—the risk of cardiovascular 
mortality, we would expect a difference in 
results similar to that which we found when 
restricting the sample to those ≤ 45 years old 
at NAS entry. However, from a biological 
perspective, a reduced effect of lead exposure 
at older ages seems unlikely; increasing age is 
often accompanied by increased vulnerability 
to stressors (Clegg et al. 2013).

The lack of association with tibia lead 
concentration in any analysis may imply 
that it is re-release of lead from bone at older 
ages that is most relevant for cardiovascular 
mortality than cumulative past exposure at 
earlier ages. Lead in patella is more mobiliz-
able than lead in tibia, so it better reflects lead 
that can be re-introduced into circulation in 
later life as a result of bone reformation or 
bone loss than does lead in tibia, which better 
reflects long-term past exposures because of 
the very long half-life of lead in tibia bone 
(Wilker et al. 2011). The lack of associa-
tion with blood lead concentration, though, 
suggests that the time window of relevance 
for these effects of lead re-released from bone 
is still a longer-term one because the half-life 
of lead in blood is on the order of a month, 
whereas that of lead in patella is on the order 
of years (Hu et al. 1998; Wilker et al. 2011). 
A few prior papers using National Health and 
Nutrition Examination Study (NHANES) 
data, however, did see associations between a 
single blood lead concentration measurement 
and mortality (Jemal et al. 2002; Lustberg 
and Silbergeld 2002; Menke et al. 2006; 
Schober et al. 2006). The different findings 
could relate to differences in ages of the study 
population, differences by race or sex, or—
if the associations with blood lead were the 
result of correlation with bone lead—possibly 
because of more variability in lead exposure in 
the Boston, Massachusetts, area resulting in 
worse correlation with bone lead in our group 
than in NHANES.

This work has some limitations. Although 
we think our methods have mitigated bias 
of the exposure–health effect association, we 
acknowledge that they are unlikely to have 
completely eliminated it. For example, SES 
is a complex factor, and our adjustments may 
not have fully accounted for the aspects of 
SES that drive study participation. Similarly, 
restriction to those ≤ 45 years of age is 
unlikely to have completely eliminated bias of 
the exposure–health effect association, given 
that cardiovascular outcomes, though less 
common, still occur in that group. Finally, 
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our IPW, as implemented, do not include 
lead measurements on nonparticipants and, 
therefore, assume that all effects of lead 
exposure on participation occur through 
measureable health effects or other condi-
tions available in our data. Unmeasured 
confounding or incomplete control for 
confounding may remain a source of bias. 
Because our outcome was mortality, we 
ignored selection due to death and estimated 
our effect among the survivors at the time 
of the KXRF. Although IPW and other 
methods can be used to address selection due 
to death, the utility of such efforts is contro-
versial (Chaix et al. 2012; Tchetgen Tchetgen 
et al. 2012; Weuve et al. 2012), and we refer 
the reader elsewhere (Andersen and Keiding 
2012; Chaix et al. 2012; Kurland et al. 2009; 
Lau et al. 2009; Tchetgen Tchetgen 2014; 
Tchetgen Tchetgen et al. 2012; Varadhan 
et al. 2014; Weuve et al. 2012).

The problem of collider stratification bias 
in the setting of cohort studies is beginning 
to receive more attention. Several studies have 
shown that the magnitude of bias from loss 
to follow-up is potentially substantial, espe-
cially when SES is the exposure of interest 
(Howe et al. 2013; Weuve 2013; Weuve et al. 
2012). Given the strong correlation between 
many environmental toxicants and SES, we 
would expect potentially large bias due to loss 
to follow-up to be possible and even expected 
because the combination of SES and factors 
related to many outcomes are likely to be a 
particularly strong predictor of participation, 
but are often difficult to measure. Similarly, 
bias from selective enrollment has been 
proposed as one potential explanation for a 
common pattern of association in studies of 
dementia risk, where associations with a risk 
factor (e.g., smoking, hypertension) suggest 
harm when participants are recruited and the 
risk factor is measured in mid-life, but protec-
tion when participants are recruited and the 
risk factor is measured in late life (Hernán 
et al. 2008; Power et al. 2011, 2013). The 
basis for this explanation posits that the most 
susceptible persons—those for whom the risk 
factor is most likely to result in dementia—are 
the most likely to be lost to follow-up, because 
both declining cognition and many of the risk 
factors of interest are known to influence attri-
tion; as risk factor–related health effects and 
declining cognition are more likely manifest 
with advanced age, the problem worsens 
with older age of recruitment. However, 
these issues are not unique to health issues of 
older age. Birth cohorts, for example, can be 
affected in a similar manner by the fact that 
participants are (usually) selected on being 
live births. This can bias exposure–outcome 
effect estimates downward if the exposure 
under study is associated with reduced like-
lihood of conception or increased fetal loss 

(Hernán and Robins 2016). Our work 
suggests that selective enrollment in studies or 
substudies of environmental toxicants has the 
possibility to substantially bias results.

Conclusions
Careful attention to the causal structure of 
one’s research study is critical to identifying 
potential biases and ways to mitigate them. 
Careful attention to factors that influence 
participation and loss to follow-up is critical, 
and may be especially important for studies 
of environmental risk factors. Recruitment of 
population-based samples and recruitment at 
earlier ages for all studies, including those of 
aging-related outcomes can help reduce these 
potential pitfalls by providing data necessary 
to address these issues analytically.
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