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Introduction
Trichloroethylene (TCE) is an important 
industrial chemical and a ubiquitous environ-
mental contaminant, and there are complex 
scientific issues related to its metabolism; the 
modes, targets, and types of toxicity; and its 
potential to be a human health hazard. The 
U.S. Environmental Protection Agency (EPA) 
and the International Agency for Research 
on Cancer have concluded that TCE is carci-
nogenic to humans (Chiu et al. 2013; Guha 
et al. 2012). Although the cancer hazard clas-
sification of TCE has been agreed upon by 
several expert panels, scientific challenges in 
the interpretation of the dose–response assess-
ment remain. Major issues include the extent 
of TCE metabolism through cytochrome 
P450–mediated oxidation and glutathione 
S-transferase–mediated glutathione conjuga-
tion pathways (Lash et al. 2000) in addition 
to the inter individual differences in the forma-
tion of liver- and kidney-toxic metabolites of 
TCE (Chiu et al. 2009).

Based on the recommendations of the 
National Research Council (NRC 2006), a 
physiologically based pharmacokinetic (PBPK) 
model was used to derive candidate reference 
dose and concentration values for noncancer 
human health effects of TCE. A comprehen-
sive PBPK model by Hack et al. (2006) was 
updated using the Bayesian framework for 
estimation and characterization of the PBPK 
model parame ter uncertainties (Chiu et al. 
2009; Evans et al. 2009). The updated model 
was used for the dose–response assessment in 
the U.S. EPA’s TCE toxicological review (U.S. 
EPA 2011), specifically for quantitative dose 
extrapolation across routes of exposure, across 
species, and within species. The latter extrapo-
lation—addressing toxicokinetic variability 
in the human population—was possible only 
because of the availability of individual human 
data on TCE toxicokinetics.

Characterizing variability remains a 
key risk assessment challenge (Zeise et al. 
2013), and there are few chemicals for 

which sufficient individual human toxico-
kinetic data are available to conduct popu-
lation PBPK modeling. Even for TCE, the 
data are limited to healthy, predominantly 
male human volunteers largely of European 
descent. Moreover, the data on glutathione 
conjugation were much more limited, and 
questions have been raised as to their reliabil-
ity for making quantitative estimates of the 
internal dose. Although it is unlikely that suf-
ficient additional human toxicokinetic data 
will become available in the future to refine 
estimates of human toxicokinetic variability, 
either for TCE or for other chemicals, new 
experimental approaches using genetically 
diverse mouse populations offer a potential 
alternative for evaluating variability. In fact, 
interstrain differences in TCE metabolism 
have been quantified using a multistrain 
panel of inbred mice (Bradford et al. 2011).

TCE offers an attractive case study for 
examining the utility of the mouse popula-
tion for characterizing variability. In the 
present study, we first showed that signifi-
cant strain and time effects are observed in 
the metabolism of TCE. Next, we calibrated 
and further refined PBPK models of TCE 
(Evans et al. 2009; Hack et al. 2006). We 
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Background: Quantitative estimation of toxicokinetic variability in the human population is a 
persistent challenge in risk assessment of environmental chemicals. Traditionally, inter individual 
differences in the population are accounted for by default assumptions or, in rare cases, are based on 
human toxicokinetic data.

oBjectives: We evaluated the utility of genetically diverse mouse strains for estimating toxico
kinetic population variability for risk assessment, using trichloroethylene (TCE) metabolism as 
a case study.

Methods: We used data on oxidative and glutathione conjugation metabolism of TCE in 16 
inbred and 1 hybrid mouse strains to calibrate and extend existing physiologically based pharmaco
kinetic (PBPK) models. We added onecompartment models for glutathione metabolites and a 
twocompartment model for dichloroacetic acid (DCA). We used a Bayesian population analysis of 
interstrain variability to quantify variability in TCE metabolism.

results: Concentration–time profiles for TCE metabolism to oxidative and glutathione conjuga
tion metabolites varied across strains. Median predictions for the metabolic flux through oxidation 
were less variable (5fold range) than that through glutathione conjugation (10fold range). For oxi
dative metabolites, median predictions of trichloroacetic acid production were less variable (2fold 
range) than DCA production (5fold range), although the uncertainty bounds for DCA exceeded 
the predicted variability.

conclusions: Population PBPK modeling of genetically diverse mouse strains can provide useful 
quantitative estimates of toxicokinetic population variability. When extrapolated to lower doses 
more relevant to environmental exposures, mouse populationderived variability estimates for 
TCE metabolism closely matched population variability estimates previously derived from human 
toxicokinetic studies with TCE, highlighting the utility of mouse interstrain metabolism studies for 
addressing toxicokinetic variability.
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added one-compartment models for S-(1,2-
dichlorovinyl)glutathione (DCVG) and 
S-(1,2-dichlorovinyl)-l-cysteine (DCVC) and 
a two-compartment model for dichloroacetic 
acid (DCA). Finally, we added a population 
model for interstrain variability to quantify the 
extent of variability in metabolism through 
oxidation and glutathione conjugation.

Materials and Methods
Animals, treatments, and data availability. 
Data used for the analyses presented herein 
were previously reported (Bradford et al. 
2011; Kim et al. 2009b). Additional unpub-
lished data from the study by Bradford et al. 
(2011) in AKR/J or WSB/EiJs mouse strains 
are provided in Supplemental Material, 
Table S1. Males (7–9 weeks of age) from 
these 16 inbred and 1 hybrid (B6C3F1/J) 
mouse strains (Jackson Laboratory, Bar 
Harbor, ME) were gavaged with TCE 
(2,100 mg/kg) in corn oil (10 mL/kg) and 
sacrificed at 2, 8, and 24 hr after treatment. 
Concentrations of DCA, trichloroacetic acid 
(TCA), DCVG, and DCVC in mouse serum 
were determined as detailed by Bradford 
et al. (2011) and Kim et al. (2009a). All 
studies were conducted with approval of 
the University of North Carolina at Chapel 
Hill Institutional Animal Care and Use 
Committee, and the animals were treated 
humanely and with regard for alleviation 
of suffering.

Analysis of variance (ANOVA) modeling 
of strain and time effects on concentration–
time profiles of TCE metabolites in mouse 
serum. Individual animal-level serum TCE 
metabolite data were examined in a series 
of power transformations across a grid from 
0 (the log transformation) to 1 (untrans-
formed). The transformation y_new = y^0.25 
produced the closest average fit to normality 
across the metabolites, with no influential 
outliers. Histograms of the transformed 
values and quantile–quantile plots for each 
TCE metabolite are shown in Supplemental 
Material, Figure S1.

ANOVA models were fit to the data with 
strain as a factor within each time point, and 
with strain and time point as factors in an 
overall model, with time point added first 
to the ANOVA model. An approximate 
“heritability” was computed as the portion 
of variation attributable to strain, which was 
determined using the partial R2. Statistical 
tests involving each metabolite were treated 
as separate hypotheses of independent inter-
est and, thus, not subjected to multiple 
 comparison control.

Monte Carlo analysis of concentration–
time profiles of TCE metabolites in mouse 
serum. Monte Carlo analysis of the data was 
carried out using the TCE PBPK model 
(Hack et al. 2006) with slight modifications 

(see Supplemental Material, Figure S2). The 
model was modified to incorporate the pro-
duction of DCVG. DCVG clearance was 
described as metabolism to DCVC. The pro-
duction of DCA was also altered. In the origi-
nal model (Hack et al. 2006), DCA was only 
the product of direct metabolism of TCE. In 
the modified model, DCA is the product of 
both the direct metabolism of TCE as well 
the enzymatic dehalogenation of TCA (Kim 
et al. 2009b). Model parame ters are given in 
Supplemental Material, Table S2. All other 
parame ters were fixed to the mean posterior 
value reported by Hack et al. (2006). Monte 
Carlo analysis was carried out by varying the 
metabolism and excretion of TCE, TCA, 
DCA, DCVG, and DCVC while holding 
all other parame ters constant (an approach 
supported by a sensitivity analysis, discussed 
below, that confirmed the lack of sensitivity 
of PBPK model calibration to these parame-
ters). Values for the metabolism were gener-
ated randomly from a normal distribution in 
acslX (Aegis Technologies, Huntsville, AL). 
The Monte Carlo simulation was run for 
100 iterations.

Model refinement and Bayesian approach 
to estimating interstrain variability in 
 concentration–time profiles of TCE metabo-
lites in mouse serum. After completing the 
preliminary analysis, the additional DCVG, 
DCVC, and DCA sub models were added 
to the update by Evans et al. (2009) to the 
TCE PBPK model of Hack et al. (2006). 
One-compartment models were used for 
DCVG and DCVC, and, based on Kim 
et al. (2009b), a two-compartment model 
was used for DCA. Complete mathematical 
details and code are provided in Supplemental 
Material (Supplemental Material, “Methods,” 
pp. 32–47, and Supplemental Material—
PBPK Model Code).

A hierarchical Bayesian population 
approach was used, as before, to estimate 
model parame ters and their uncertainty and 
variability (Bois 2000; Evans et al. 2009; 
Hack et al. 2006). This involved specifica-
tion of the hierarchical population statistical 
model; specification of prior distributions for 
model and population parame ters; estima-
tion of the posterior distributions for model 
parame ters using Markov chain Monte Carlo 
(MCMC); and evaluation of convergence, 
the consistency of estimated parame ters, and 
model fit. Parameter scaling relationships and 
prior distributions, similar to those previously 
reported by Chiu et al. (2009) and Evans 
et al. (2009), are provided in Supplemental 
Material, Tables S3–S6. The likelihood func-
tions used in the Bayesian statistical analy-
sis are described in Supplemental Material, 
“Methods,” pp. 32–47.

Previously reported population statistical 
models for TCE PBPK modeling (Chiu et al. 

2009; Evans et al. 2009; Hack et al. 2006) did 
not include variability between mouse strains, 
and the analyses only characterized variability 
between studies. Because most of the previ-
ously reported data available for PBPK model-
ing involved only the B6C3F1 strain, most of 
this inter study variability was due to variation 
in laboratory conditions or among studies. 
In order to separately characterize variation 
between strains, the following approach was 
used. For studies other than Bradford et al. 
(2011), only data using the B6C3F1 strain 
were included. The B6C3F1 data (Kim 
et al. 2009b) were excluded for the study by 
Bradford et al. (2011). Inter study variability 
(θ) in PBPK model parame ters was character-
ized using a population model, and included 
for all studies. A population model for inter-
strain variability was constructed by adding 
interstrain scaling parame ters (ψ) that are 
equal to the ratio between the PBPK model 
parame ter for a specific strain and the PBPK 
model parame ter for the B6C3F1 strain. Prior 
distributions for interstrain variability are pro-
vided in Supplemental Material, Table S5. 
All other aspects of the population statistical 
model were as reported previously (Chiu et al. 
2009; Evans et al. 2009).

Sensitivity analyses reported by the U.S. 
EPA (2011) showed that the PBPK model 
calibration was not sensitive to many parame-
ters. Therefore, most of the physiological 
parame ters and partition coefficients for which 
there were in vitro estimates available were 
fixed to their baseline values. The remaining 
parame ters were estimated and evaluated using 
the previously reported approach (Chiu et al. 
2009; Evans et al. 2009).

Results
ANOVA modeling of strain and time effects 
on serum concentration–time profiles of TCE 
metabolites. The TCE metabolite data were 
examined for evidence of strain and time 
effects using a fixed-effect two-way ANOVA 
model, with partial R2 used to describe the 
portion of variability attributable to “strain” 
and “time.” For strain effects, the partial R2 
may be viewed as serving as an index of heri-
tability, although this term is used here in an 
approximate sense, due to the non random 
sampling of strains. The overall effects of 
strain in the two-way model (Table 1) were 
highly significant for DCVG (p = 9 × 10–5), 
and not significant for TCA, DCA, and 
DCVC. Time effects were significant for 
TCA, DCA, and DCVG, but not significant 
for DCVC. Overall, concentration–time pro-
filing in a multistrain experimental design 
illustrated the importance of both strain and 
time on TCE metabolite concentrations. The 
heritability (partial R2 attributable to strain) 
estimates ranged from 0.18 to 0.49 for all 
time periods (Table 1).
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Inter s t ra in  var iabi l i t y  in  s e rum 
concentration– time profiles of TCE metabo-
lites. We examined how well the Hack et al. 
(2006) TCE PBPK model corresponds to the 
concentration–time profiles of oxidative TCE 
metabolites in serum of B6C3F1/J mice, the 
strain used in developing this model. A good 
fit was observed for the time-course TCA and 
DCA concentrations (Figure 1A,B). When 

compared with the kinetic data across the 
strains (Figure 1C,D), the B6C3F1/J strain 
showed a peak concentration of TCA near 
the bottom of the distribution at 2 and 
8 hr after dosing and fell near the middle of 
the distribution at 24 hr (Figure 1C). For 
DCA, the B6C3F1/J strain was above the 
distribution of plasma concentration at 2 hr 
and fell near the middle at 8 and 24 hr after 

dosing (Figure 1D). The Monte Carlo analy-
sis of the multistrain data (see Supplemental 
Material, Figure S3) using the modified Hack 
et al. (2006) model was reasonably consistent 
with the range of measured concentrations 
of TCA at 8 and 24 hr, and most measured 
values were below the distribution at 2 hr. 
For DCA, the simulations over predicted 
the observed data by about a factor of two. 
The spread of measured concentrations for 
DCVG were captured by the Monte Carlo 
analysis at 2 hr, but with approximately 50% 
of the strains falling below the distribution of 
the simulations. The model failed to capture 
the rapid clearance of DCVG with all of the 
measured concentrations at 8 hr falling below 
the simulations. For DCVC, however, the 
Monte Carlo simulation was able to reason-
ably capture both the distribution and shape 
of the measured data for most strains at all 
three time-points.

Model refinement and Bayesian esti-
mates of interstrain variability in serum 
 concentration–time profiles of TCE metabo-
lites. Because the Hack et al. (2006) model 
and Monte Carlo simulations did not ade-
quately capture the extent of interstrain vari-
ability in serum concentration–time profiles 
of TCE metabolites, we conducted additional 

Table 1. Results of ANOVA modeling of the effect of time and strain on TCE metabolite concentrations in 
mouse serum.

Metabolite
Time point 

(hr)
Sample 
size (n)

Partial R 2 
(“heritability”)

Strain Time

F-statistic p-Value F-statistic p-Value
TCA 2 37 0.25 0.53 0.890

8 36 0.63 2.51 0.028
24 23 0.76 2.65 0.066
All 0.18 1.24 0.263 59.00 < 1 × 10–10

DCA 2 38 0.56 2.13 0.052
8 36 0.58 2.09 0.061

24 25 0.78 2.53 0.073
All 0.22 1.69 0.075 6.19 0.003

DCVG 2 36 0.82 6.62 0.00001
8 33 0.89 8.88 < 1 × 10–10

24 12 1.00 1,376 0.021
All 0.49 3.75 0.00009 40.50 < 1 × 10–10

DCVC 2 32 0.60 1.83 0.118
8 19 0.72 1.27 0.404

24 8 0.74 0.48 0.801
All 0.34 1.41 0.189 1.53 0.229

Figure 1. Hack et al. (2006) TCE PBPK model simulation of TCA and DCA compared to the measured data from Kim et al. (2009b) for the B6C3F1/J strain (A,B), 
which was used in the original model development and compared to data from a panel of inbred mouse strains (C,D) from Bradford et al. (2011).
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model refinements using the Evans et al. 
(2009) update to the Hack et al. (2006) 
model (Figure 2), and performed Bayesian 
population modeling. Physiological models 
were added for TCA and trichloroethanol 
(TCOH), and a 2-compartment model was 
added for DCA. For the Bayesian population 
modeling, we ran eight independent MCMC 
chains, each to 160,000 iterations, with the 
first half discarded as “burn-in” iterations. 
Values of the convergence diagnostic “R” were 
< 1.07 for all parame ters, indicating conver-
gence (a < 7% change would be expected with 
further simulation). Only every 500th itera-
tion was retained to reduce auto correlation. 
Therefore, a total of 1,280 parame ter samples 
[(8 × 80,000)/500)] were available for analysis.

Posterior distributions are summarized in 
Supplemental Material, Table S6. Posterior 
distributions for the previously developed 
TCE, TCA, and TCOH/TCOG (trichloro-
ethanol glucuronide) sub models were consis-
tent with the analyses of Chiu et al. (2009) 
and Evans et al. (2009). All posteriors were 
well within the truncation range of the priors, 
so the priors were not overly constraining. 

Furthermore, the data appeared to be infor-
mative as to the parame ters for the new 
DCVG, DCVC, and DCA sub models, as 
evidenced by the posteriors being significantly 
narrower than the priors.

Figure 3 demonstrates an overall com-
parison of model predictions and observed 
data, showing that the majority of predic-
tions are within 3-fold of the data. Individual 
time-courses are provided in Supplemental 
Material, Figures S4–S7, with predictions 
for the B6C3F1/J strain (Kim et al. 2009b) 
and two representative inbred strains DBA/2J 
and KK/HIJ (Bradford et al. 2011) depicted 
in Figures 4 and 5, respectively. The most 
influential model refinements leading 
to improved predictions were the use of a 
two- compartment model for DCA and the 
change in glutathione-related parame ters—
specifically, both increased production and 
increased clearance of DCVG.

Overall, model predictions are con-
sistent with metabolism of TCE occurring 
predominantly by oxidation compared with 
glutathione conjugation, and with more TCA 
produced from oxidation compared with 

DCA. Estimates of metabolism parame ters 
and metabolic fluxes for the B6C3F1/J mice 
are shown in Table 2.

Figure 6 shows PBPK model predic-
tions for the overall flux of TCE metabo-
lism across mouse strains. Figure 6A shows 
that less interstrain variability is predicted for 
TCA (a 2-fold range) than DCA (a 5-fold 
range), although the uncertainty bounds for 
DCA were wider than the predicted range 
of variability. All strains were estimated 
to produce significantly more TCA than 
DCA; median estimates for their ratio var-
ied from 11 to 53 (a 5-fold range of vari-
ability). Compared to B6C3F1/J, median 
predictions for most other strains estimated 
less TCA and DCA production, but with a 
higher TCA/DCA ratio. Figure 6B shows 
results for the oxidative and glutathione 
conjugation pathways. Less variation was 
predicted for oxidative metabolism (5-fold 
range across strains) compared with glutathi-
one conjugation (10-fold). Interestingly, in 
terms of total oxidative metabolism, all but 
two strains (MOLF/EiJ and 129S1/SvlmJ) 
were within 2-fold of each other, probably 

Figure 2. Schematic of the mouse PBPK model of TCE and its metabolites after model refinement, used for Bayesian estimation of interstrain variability. 
Abbreviations: i.a., intraarterial injection; i.v., intravenous injection; p.v., portal venous injection. The image has been modified from Chiu et al. (2009).
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a result of blood-flow–limited metabolism. 
The two “outlier” strains were predicted to 
have notably less flux through this pathway. 
The B6C3F1/J strain was predicted to have 

more glutathione metabolism than other 
strains, and median estimates for the oxi-
dation/conjugation ratio was lower than all 
but the 129S1/SvlmJ strain. Still, all strains 

were estimated to have a greater metabolic 
flux through oxidation compared with glu-
tathione conjugation; median estimates for 
their ratio varied about 30-fold (from 620 
to 19,000).

Discussion
One of the biggest gaps in risk assessment, as 
identified by the NRC (2009), is that inter-
individual variability is not being addressed at 
all (in animals), or incompletely (in epidemio-
logical studies). There is a crucial need for the 
development of approaches to estimate the 
quantitative impact of human inter individual 
variability in personal risk from chemical 
exposures (Zeise et al. 2013), and with ade-
quate human data, a number of statistical and 
computational tools are available to toxicolo-
gists and risk assessors (Dorne et al. 2012).

However, there are no experi mental 
data with which to derive such popula-
tion distributions for most toxicants. Some 
studies have been performed using data on 
pharmaceuticals (Hattis and Lynch 2007), 
but the variability in individual responses 
to drugs—which have generally similar 
pharmacokinetic properties—is unlikely 
to encompass the extent of variability in 
responses to environmental agents (Clewell 
et al. 2004). Epidemiological data are also of 
limited use because the variation in response 
is confounded by the variability in expo-
sure. Combined in vitro and computational 
approaches have been proposed to character-
ize toxicokinetic variability (Wetmore et al. 
2013), but these are limited to first-order 
kinetics and characterization of variability in 
parent compound dosimetry. Other in vitro 
approaches to evaluating the extent of and 
molecular mechanisms for inter individual 
variability using genetically diverse cell lines 
have also been proposed (Lock et al. 2012; 
O’Shea et al. 2011). However, these and 
other in vitro approaches that do not capture 
the complexity of whole body toxico kinetics 
would not be successful for compounds such 
as TCE. Indeed, the metabolism of TCE 
is complex, with multiple metabolizing tis-
sues and inter organ transport, and toxicity is 
largely attributed to metabolites rather than 
the parent compound. As a consequence of 
these data limitations, current approaches are 
largely limited to applying default uncertainty 
factors to account for uncertainty associated 
with within-species variability (Stedeford 
et al. 2007).

One possible way to fill this gap is by 
characterizing the nature and quantitative 
extent of human variability through studies 
in the mouse model of the human popula-
tion (Rusyn et al. 2010). Accordingly, we 
hypothe sized that by using data from a mouse 
population we can build kinetic models to 
account for inter individual variability in 
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Figure 4. Comparison of data (data points with ± 1 SD error bars) and PBPK model predictions (solid lines, 
interquartile range; gray area, 95% CI) for TCE metabolites in B6C3F1 mice (data from Kim et al. 2009b). 
Dotted lines indicate the limits of detection.
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metabolism from the point of view of genetic 
variability. Specific focus was on PBPK mod-
eling to generate information and kinetic 
parame ters that may be used for verifying the 
models used in TCE risk assessment (Evans 
et al. 2009; Hack et al. 2006). In addition, 
a Bayesian modeling approach was used for 
uncertainty and sensitivity analysis (Chiu 
et al. 2009).

We found considerable variability in 
TCE metabolism across mouse strains 
(Bradford et al. 2011) and our novel ana-
lytical techniques offer data on additional 
key metabolites (Kim et al. 2009b) that were 
used to extend existing TCE PBPK models. 
Whereas the Hack et al. (2006) model accu-
rately describes the kinetics of TCA in the 
B6C3F1/J mouse, we found that it only par-
tially (mostly at the lower range) accounts for 
the variability in the toxicokinetics of TCE 
observed in a genetically diverse population 

of mouse strains. A hierarchical Bayesian 
approach was more successful in estimat-
ing the population variability. Using this 
approach, variability in the rate of produc-
tion of metabolites (TCA, DCA, DCVG) was 
seen across strains. All strains were predicted 

to have a greater metabolic flux through oxi-
dation compared with glutathione conjuga-
tion, but with 31-fold variability in the ratio 
across strains (Figure 6B). Although most 
strains had predicted total oxidative metabo-
lism within a narrow 2-fold range (likely a 

Table 2. TCE metabolism parame ters for B6C3F1/J strain: median (2.5%, 97.5%) of posterior distribution.

Parameter or prediction Abbreviation Value
Vmax for liver oxidation (mg/hr) VMax 2.1 (0.73, 5.6)
Km for liver oxidation (mg/L) KM 3.3 (0.63, 19)
Vmax for liver GSH conjugation (mg/hr) VMaxDCVG 0.006 (0.003, 5.9)
Km for liver GSH conjugation (mg/L) KMDCVG 0.06 (0.003, 9.8 × 104)
Vmax/Km for liver GSH conjugation (L/hr) Vmax/KM 0.1 (4 × 10–5, 2.1)
Dose (mg) [fixed] 76.4
Amount of TCE metabolized (mg) AMetOx 16 (5.5, 60)
Amount of TCE conjugated (mg) AMetGSH 0.05 (0.03, 0.5)
Amount of TCA produced (mg) TotTCAProd 3.4 (1.4, 15)
Amount of DCA produced (mg) TotDCAProd 0.3 (0.02, 3.7)
Oxidation/GSH ratio (mg TCE oxidized/mg TCE conjugated) OXtoGSHRatio 290 (41, 1,070)
TCA/DCA ratio (mmol TCA produced/mmol DCA produced) TCAtoDCAratio 10 (0.9, 130)

Abbreviations: GSH, glutathione; Vmax, maximum reaction velocity.
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Figure 5. (A) Hierarchical population statistical model for PBPK model uncertainty and variability. Square nodes represent fixed or observed quantities, circle 
nodes represent uncertain or unobserved quantities, and the inverted triangle represents PBPK model outputs; solid arrows indicate a stochastic relationship 
represented by a conditional distribution [e.g., A→B means B ~ P(B|A)], whereas dashed arrows indicate a functional relationship [e.g., B = f(A)]. The population 
consists of studies i, each of which contains experiments or strains j, with exposure parame ters Eij, and data yij collected at times tij. The PBPK model produces 
outputs fij. The difference between data and predictions is assumed to have a distribution with variance σ2, which is assigned a prior distribution (Pr). The PBPK 
model uses non–strain-specific parame ters θi, measured covariates φi, and strain-specific parame ters ψj. The parame ters are each drawn from population 
distributions with mean Mθ or ψ and variance Vθ or ψ, each of which are in turn assigned prior distributions. (B) Comparison of data (data points with ± 1 SD error 
bars) and PBPK model predictions (solid lines represent interquartile range, gray area represents 95% CI) for two representative mouse inbred strains (data from 
Bradford et al. 2011). Dotted lines indicate the limits of detection.



Chiu et al.

462 volume 122 | number 5 | May 2014 • Environmental Health Perspectives

result of blood-flow–limited metabolism), 
two strains were predicted to have notably 
less metabolism by this pathway. The meta-
bolic flux through glutathione conjugation 
had a greater range of variability (10-fold) 
across strains.

These results have a number of limita-
tions. First, the confidence intervals in some 
cases are quite wide, particularly for DCA. 

Because there is some confounding between 
a low rate of production and rapid clearance 
of DCA (both of which could account for 
the low levels of DCA in blood), DCA dos-
ing would undoubtedly reduce the associated 
uncertainty. In addition, the predominant oxi-
dative metabolite is TCOH, which was not 
measured in our studies. Thus, estimating the 
balance of oxidation to TCOH in these strains 

relied on information from previous studies of 
B6C3F1 mice, which introduces uncertainty 
due to inter study variation. Finally, many 
measurements of DCA, DCVC, and DCVG 
were near the limit of detection, where ana-
lytical errors are larger, so the precision was 
limited by experimental variation.

We also posit that the “mouse variabil-
ity distribution” may be further extrapolated 
to humans using the PBPK model and the 
resulting human variability distribution 
may be compared with available data on the 
variability of the human pharmacokinetics 
of TCE to determine whether the mouse-
derived distribution is consistent with the 
human evidence. Because of previous work 
developing human population PBPK mod-
els (Bois 2000; Chiu et al. 2009; Hack et al. 
2006) a direct comparison is possible, for 
instance, between the extent of population 
variability predicted in the human population 
based on individual human data, and that 
predicted in a mouse based on multiple strain 
data. As shown in Table 3, where the ratio of 
95th percentile and median in humans were 
compared with those for mouse strains, there 
was a remarkable correspondence between 
the predictions when evaluated at low doses, 
which are more relevant to environmental 
exposures. Specifically, both the mouse- and 
human-based analyses predicted the general 
trend of the lowest variability in oxidative 
metabolism (about 1.1-fold between the 95th 
percentile and the median), greater variabil-
ity in TCE productions (about 2-fold), and 
the greatest variability in glutathione con-
jugation (about 7-fold). Moreover, central 
estimates were within 20% of each other, 
with the confidence intervals based on mouse 
data completely encompassing those based 
on human data. The difference in confi-
dence intervals may simply reflect the larger 
number of individuals in the human analysis 
(n = 42) compared with the number of mouse 
strains (n = 17). The combination of using a 
PBPK model, data from the population-wide 
experimental model, and statistically rigor-
ous parame ter estimation gives this approach 
its predictive power. Overall, the results 
reported here based on interstrain variability 
in mice are consistent with estimates derived 
from previously published analyses based on 
 individual human data.

Conclusions
The present case study demonstrates the fea-
sibility of using mouse population models to 
characterize the nature and extent of human 
inter individual variability in pharmaco-
kinetics for toxicologically relevant measures 
of internal dose—a similar approach that 
could be applied to other chemicals. Because 
characterization of pharmacokinetic variabil-
ity is a necessary precursor to characterization 

Figure 6. Predictions for TCE metabolites and metabolite fluxes across mouse strains (median and 95% CI). 
(A) TCA produced, DCA produced, and the ratio of TCA/DCA produced. (B) Flux of TCE metabolism through 
oxidation, flux through glutathione conjugation, and ratio of oxidation to glutathione conjugation. A solid 
circle is used for the “index” B6C3F1 strain, whereas solid squares are used for the other strains.
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Table 3. Comparison of Chiu et al. (2009) human variability predictions for TCE metabolism with variability 
predictions for TCE metabolism among mouse strains. Ratios of 95th percentile/50th percentile individual 
or strain are shown. Median estimate and 95% CI were calculated at an oral dose of 0.001 mg/(kg-day), 
where non linearities in toxicokinetics are negligible.

Parameter
Human inter individual variability 

(Chiu et al. 2009)
Mouse interstrain variability 

(present analysis)
TCE oxidized by P450 1.11 (1.05, 1.22) 1.05 (1.01, 1.27)
Total TCA produced 2.09 (1.81, 2.51) 1.77 (1.36, 2.99)
TCE conjugated with glutathione 6.61 (3.95, 11.17) 7.12 (3.43, 20.66)
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of pharmacodynamic variability, this work 
considerably extends the risk assessment util-
ity of PBPK-modeling tools and Bayesian 
methods for analysis of population-wide data, 
having both immediate impact and future 
translational potential.
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