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Abstract
The potential impacts of climate change on crop productivity are of widespread interest to those
concerned with addressing climate change and improving global food security. Two common
approaches to assess these impacts are process-based simulation models, which attempt to
represent key dynamic processes affecting crop yields, and statistical models, which estimate
functional relationships between historical observations of weather and yields. Examples of both
approaches are increasingly found in the scientific literature, although often published in different
disciplinary journals. Here we compare published sensitivities to changes in temperature,
precipitation, carbon dioxide (CO2), and ozone from each approach for the subset of crops,
locations, and climate scenarios for which both have been applied. Despite a common perception
that statistical models are more pessimistic, we find no systematic differences between the
predicted sensitivities to warming from process-based and statistical models up to þ2 °C, with
limited evidence at higher levels of warming. For precipitation, there are many reasons why
estimates could be expected to differ, but few estimates exist to develop robust comparisons, and
precipitation changes are rarely the dominant factor for predicting impacts given the prominent
role of temperature, CO2, and ozone changes. A common difference between process-based and
statistical studies is that the former tend to include the effects of CO2 increases that accompany
warming, whereas statistical models typically do not. Major needs moving forward include
incorporating CO2 effects into statistical studies, improving both approaches’ treatment of ozone,
and increasing the use of both methods within the same study. At the same time, those who
fund or use crop model projections should understand that in the short-term, both approaches
when done well are likely to provide similar estimates of warming impacts, with statistical models
generally requiring fewer resources to produce robust estimates, especially when applied to crops
beyond the major grains.
Introduction

Attempts to measure the impacts of climate change
on agriculture must invariably rely on models that
translate changes in climate to changes in agricultural
outcomes. This need for models exists even when
assessing the impacts of climate trends that have
already occurred, since simultaneous changes in other
factors that affect agriculture, such as technologies and
government policies, preclude direct observations of
impacts. Over several decades, many approaches to
© 2017 IOP Publishing Ltd
developing these models have evolved, with most
falling into one of two camps.

In one camp are process-based simulation models
that attempt to represent the key processes governing
crop growth and yield formation. These models
(referred to hereafter as ‘process-based’) typically
operate with a daily time step and dynamically
calculate various crop and soil properties. The history
of this approach dates back at least to the early 1960s
(De Wit 1965), and although models of this type were
typically developed for applications in field-level
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cropping systemdecisions (Brisson et al 2003, Jones et al
2003, Keating et al 2003, Stockle et al 2003, van Ittersum
et al 2003), they have been increasingly used to evaluate
climate change scenarios (Challinor et al 2014). Indeed,
one frequently citedconcernwithusing thesemodels for
climate change studies is that they were not originally
designed for this purpose, and thus may be missing key
processes related to extreme climate conditions (White
et al 2011, van Oort et al 2011).

On the other hand are models that use observa-
tions of weather and crop yields to develop statistical
models that functionally relate the former to the latter.
These models also have a long history, with early
examples by Runge (1968) and Thompson (1986,
1975), but have become increasingly common in
recent years with the growing availability of data on
both weather and crops. These data can be taken from
field measurements, farmer surveys, official govern-
ment statistics, or some combination of these and
other sources. As with process-based models, statisti-
cal approaches have relative strengths and weaknesses.
For example, a common concern relates to the
difficulty of distinguishing the effects of highly
correlated weather variables, such as temperature
and rainfall in many locations (Sheehy et al 2006,
Lobell 2007), although the growing amounts of data
can enable one to overcome some of these traditional
criticisms. In lieu of presenting detailed summaries of
the methods themselves, readers are referred to the
reviews of (Boote et al 2013, White et al 2011) for
process-based models and (Auffhammer and
Schlenker 2014, Hsiang 2016, Dell et al 2014) for
statistical approaches. Here instead we focus on
comparing predictions from the two approaches.

At the outset, it is worth recognizing that the
distinction between ‘process-based’models on the one
hand, and statistical (or often called ‘empirical’)
methods on the other is an imperfect one. All
equations in process-based models include parameters
that are derived either from experimental data or by
calibration to observations. Likewise, statistical mod-
els require summaries of weather data, and these
summaries implicitly include some assumptions about
processes. For example, statistical models that use
average daily maximum temperature over the entire
growing season, daily average temperatures for a
specific month, or a measure of degree day
accumulation each make different assumptions about
which processes are most important to capture.
Therefore, many process-based models have a high-
degree of empirical testing and calibration, whereas
many statistical models have predictors and a structure
that is informed by process understanding. Nonethe-
less, the distinction is useful for delineating the degree
of reliance on experimental vs. observational data. In
addition, the two methods are generally pursued by
different communities and published in different
journals, with process-based methods popular in
agronomy and statistical methods in economics.
2

A frequent perception encountered by the authors
is that statistical methods provide more pessimistic
predictions of climate change impacts than process-
based methods. This perception may arise from
various factors, such that some prominent statistical
studies have projected large negative impacts
(Schlenker and Roberts 2009) and several authors
have emphasized the simplicity or complete lack of
treatment of high temperature effects in some
prominent process-based models (e.g. White et al
2011, Asseng et al 2011, Lobell et al 2012, Siebert et al
2014). At the same time, there are several plausible
reasons that statistical models could give less
pessimistic predictions than process-based models.
For example, if statistical analyses use noisy data or
very rough measures of weather that do not
correspond to the key processes, then the estimates
will be biased towards zero. Similarly, if statistical
models include too many ‘fixed-effects’ to control for
possible omitted variables, they will tend to amplify
problems of measurement error and also be biased
toward zero (Fisher et al 2012).

The goal of the current paper is thus to provide a
more systematic comparison of predictions from
process-based and statistical models, based on the
existing literature. In making this comparison, we
view two considerations as particularly critical. First,
the variance within each method is likely to be large,
and minimizing that variance is important when
testing for differences between methods. One ap-
proach to doing this would be to average many
studies of each type, although that would require a
larger literature than typically exists for any particular
crop or region. Another approach is to limit the
comparisons to studies that represent the ‘best’ of
each approach, as the literature on both methods
exhibit a wide range of quality. It is not our intention
to single out deficient studies, but examples include
process-based studies that fail to follow best practices
on calibration and testing (as described in White et al
2011), or statistical studies that use erroneous data
(Deschênes and Greenstone 2012) or that fail to
adequately control for possible omitted variables
(Zhang et al 2015).

A second key issue is that the two methods should
be addressing an identical or nearly identical
question. That is, they should be predicting impacts
for the same crop in the same region (ideally for the
same spatial scale), and for the same scenario of
climate change factors. A common issue is that
process-based models frequently incorporate the
beneficial effects of higher carbon dioxide (CO2),
whereas statistical models rarely do (as discussed
more below). Comparisons of impacts from the two
methods for climate change scenarios when only one
considers CO2 (e.g. Estes et al 2013) may be useful for
some questions, but not for assessing how the models
differ in their response to climate trends such as
warming or drying.
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In the following sections, we discuss and compare
process-based and statistical methods for specific
climate change factors. Quantitative comparisons are
presented when possible, mainly for temperature for
which the most robust literature for both methods is
available. Whereas a few prior studies have compared
these methods for specific cases (Irmak et al 2005,
Schlenker and Lobell 2010, Maltais-Landry and Lobell
2012, Estes et al 2013, Sheehy et al 2006, Lobell and
Ortiz-Monasterio 2007), our emphasis here is on
identifying any systematic differences between the
methods.

We note that the two methods considered here
differ in several aspects beyond their predicted
responses to climate change factors, and a focus on
predictions should not be perceived as a dismissal of
these other aspects. For example, process-based
models are typically more amenable to exploration
of agronomic or genetic adaptation options, and can
enable greater scientific understanding about plant
growth and the interactions between crop genetics,
management, and climate. These features may be
valued as much or more than the ability to provide
accurate predictions. The amount of effort required to
develop robust predictions can also differ between the
approaches, a topic we return to below. The following
sections discuss differences between process-based
and statistical approaches in terms of responses to
temperature, precipitation, CO2, and ozone. We then
outline some important differences in terms of effort
required, and offer some brief conclusions.
1. Temperature responses

In recent years, the community of process-based
modelers has organized and completed several model
intercomparison studies, primarily under the auspices
of the Agricultural Model Intercomparison and
Improvement Project (AgMIP) (Rosenzweig et al
2013). A common insight from these studies is that the
median or mean of predictions from multiple models
very frequently outperforms any individual model
(Asseng et al 2013, 2015, Bassu et al 2014, Li et al 2015,
Fleisher et al 2016). This finding reflects a ‘wisdom of
the crowds’ often seen in model intercomparisons of
other fields such as climate or weather forecasting
(Pierce et al 2009, Gleckler et al 2008, Doblas-Reyes
et al 2005), which derives from the independence of
errors in different individual models.

AgMIP studies also commonly evaluate responses
to changes in specific climate change factors,
individually and in combination, for specific sites.
For this analysis we use the model-median response to
uniform increases in temperature as the best
representation of process-based models response to
warming. Unfortunately, only comparisons for maize,
wheat, and rice were possible at the time of writing,
given a lack of published estimates for other crops.
3

For each of the sites where AgMIP estimates are
available, we then sought a study that used a statistical
model for the same crop and location. The statistical
model was evaluated to ensure it followed standard
procedures for dealing with omitted variable bias, such
as including time trends and/or fixed-effects in the
regression model. We also considered only studies that
used data spanning both temporal and spatial
variation (often referred to as ‘panel’ studies), because
statistical models relying only on spatial variation (i.e.
cross-sectional studies) are very prone to omitted
variable bias, whereas those relying only on temporal
variation (i.e. time series studies) are occasionally
subject to significant errors in estimates of tempera-
ture sensitivity (Sheehy et al 2006, Lobell and Ortiz-
Monasterio 2007, Lobell and Burke 2010). These
errors can arise from limited temporal variation in
temperature compared to other weather variables, as
well as strong temporal correlation between tempera-
ture and rainfall or radiation.
a.
 Maize
The recent study of Bassu et al (2014)

simulated yields at four sites using 23 different
maize models. For three of these sites, indepen-
dent studies using statistical models have also
been published in recent years. The statistical
models do not predict yields for the specific
location for which the simulations were applied,
but instead for a political unit that includes the
site. In the case of France and Tanzania, the
statistical predictions were only available at the
national scale, whereas for Iowa a statistical
prediction was obtained for the state level. A
comparison of the process-based and statistical
models reveals strong agreement between the two
approaches, with no more than 1% difference in
the inferred temperature response to 1 °C for all
three maize cases (figure 1).
b.
 Wheat
AgMIP activities for wheat have a slightly

longer history than for other crops, and thus a
richer set of studies and sites for which multiple
models have been compared. In addition to a
detailed study of four sentinel sites similar to maize
(Bassu et al 2014) and wheat (Asseng et al 2013), a
recent study compared predictions from 30 wheat
models at 30 irrigated or high-rainfall sites
throughout the world (Asseng et al 2015). The
latter study included predictions from one statisti-
cal model, based on a panel dataset of spring wheat
trials (Gourdji et al 2013). Figure 2 compares the
predicted yield impact of þ2 °C warming at each
wheat site from the statistical model with the
median of the 29 process-based models. The
predictions are highly correlated (r = 0.73), and
the statistical model prediction falls within the
distribution of predictions from individual
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process-based models for all sites. However, the
statistical model tended to predict less negative
yield impacts than the median process-based
model. In this case, it remains unclear whether the
statistical or process-based model-median is more
accurate. Some of the largest discrepancies were
observed for sites with low humidity, which can be
explained by the fact that the statistical model
contains interactions between temperature and
humidity. These interactions are based on evidence
from trial data used in Gourdji et al (2013) that
less humid sites are less sensitive to warming
because of greater evaporative cooling, a process
only recently included in some simulation models
(Webber et al 2016). However, this does not
necessarily mean the statistical model is better, as it
may be overly sensitive to humidity given that it
was developed with well-irrigated trials.
4

Other statistical studies have also been con-
ducted at several of the sites with AgMIP wheat
simulations (figure 1). As with maize, the
predictions from these models tend to be close
to the model-median, although the process-
based models predicted significantly less impacts
in Kansas. This is not surprising given that the
simulations in the Asseng et al (2015) study
were done for irrigated or high rainfall con-
ditions, meaning that water stress was not
simulated. Although the empirically inferred
sensitivities to temperature in Tack et al (2015)
are provided for different quartiles of rainfall,
and we use the estimates for the 75th percentile
of rainfall in figure 1, Kansas is a fairly dry
wheat growing region and it is likely that the
wheat systems still experience a nontrivial
amount of water stress at the 75th percentile of
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rainfall. Given the important role of water in
driving water stress, one would expect the actual
response to warming to be higher than seen in
simulations without water stress.

A recent study reached similar conclusions
for wheat impacts at global and regional scales
(Liu et al 2016b). Specifically, the authors consid-
ered estimated impacts of 1 °C global temperature
increase on wheat using both point scale and
gridded process-based models, as well as esti-
mates from various statistical studies. In all cases,
estimates of aggregated global impacts were
between 4.1% and 6.4% yield loss for þ1 °C,
with a mean effect of 5.7%. For individual
countries, estimated impacts from process-based
and statistical models were also frequently within
1% of each other for þ1 °C. The methods did
appear to deviate for larger warming scenarios
(i.e. þ3 °C), although the point scale process-
based models differed more from gridded pro-
cess-based models than from statistical models,
suggesting that the deviations did not result from
any systematic difference between process-based
and statistical approaches.
c.
 Rice
Similar to maize and wheat, an AgMIP study

involving multiple models for four sentinel sites
was recently published for rice (Li et al 2015). In
this case, 13 different models were compared,
and the median model again agreed best with
experimental data at the four sites. Unfortunately,
only a few empirical studies that have used a
panel dataset have been published for rice, and
some of these do not report sensitivities per
degree of warming (Welch et al 2010, Auffham-
mer et al 2012). Figure 1 compares a panel-based
estimate for India with the AgMIP results in
Ludhiana. Although there is a significant scale
discrepancy between an estimate for all of India
and simulations for a single site, the two
estimates are fairly similar, with 6.6% for the
statistical model vs. 9.1% for the process-based
model-median.

The comparison summarized in figure 1 focuses
on the impacts at low levels of warming. In most
locations impacts are fairly linear with temperature up
to roughly 3 °C of local warming (Rosenzweig et al
2014, Porter et al 2014). However, at higher levels of
warming the impacts likely become more nonlinear,
with each additional degree causing more yield loss in
process-based models (Li et al 2015, Rosenzweig et al
2014) as well as many statistical models (e.g. Schlenker
and Roberts 2009). For example, Li et al (2015) report
an average process-model yield loss of 5.3% per °C for
rice yield for 0–3 °C warming (at ambient CO2), which
increases to 8.3 % per °C for 3–6 °C of warming. In a
statistical study of U.S. yields, Schlenker and Roberts
5

(2009) report an average 8.2% per °C loss for maize
and 5.7% for soybean up to 3 °C, which increases to an
average of 10.4% per °C loss for maize and 10.6% for
soybean between 3–6 °C of warming.

Given the fewer number of estimates for either
method for high levels of warming, it is difficult to
assess whether the general agreement between the
methods for near-term warming would translate to
warming of 3 °C or more. In general, one would expect
certain processes that are not included in process-
based models to become more important under
extreme warming scenarios, which could lead to
process-based models becoming less pessimistic than
statistical models. For example, processes that
accelerate senescence in wheat appear important
above 34 °C but are not included in many models
(Asseng et al 2001, Liu et al 2016a, 2016c), and
discrepancies between process-based models and
observed senescence are largest under late sowing
conditions which exacerbate heat exposure (Lobell
et al 2012, Asseng et al 2015, Ottman et al 2012).
2. Precipitation responses

AgMIP studies have generally not published systematic
sensitivity tests of process-based model responses to
rainfall changes, unlike the case with temperature. A
focus on temperature can be justified by the fact that
warming is expected to be the more important driver
of both expected impacts from climate trends and the
associated uncertainties, especially at regional to global
scales (Lobell and Burke 2008). Nonetheless, the
impacts of rainfall trends may be important in some
locations and time scales.

Although the lack of studies on rainfall precludes
the type of comparisons presented for temperature, it
is worth noting that many statistical studies have
found a surprisingly small sensitivity to rainfall. For
example, a widely cited panel analysis of U.S. corn
yields (Schlenker and Roberts 2009) estimated a fairly
small effect of changing growing season rainfall, with a
50% reduction in rainfall resulting in a predicted yield
loss of just 10%. This is substantially less than the
sensitivities shown for individual process-based
models in the same region (Brown and Rosenberg
1997). A comparison of the DSSAT models with
statistical models based on time-series analysis for
wheat and maize at several U.S. sites also found much
higher sensitivity to rainfall in the process-based
models (Maltais-Landry and Lobell 2012).

In our experience, at least five reasons can be
considered to contribute to discrepancies between
rainfall sensitivities for process-based and statistical
models, and in particular lower sensitivity for the
latter. First, simulation experiments are usually carried
out for a specific soil, whereas statistical models are
derived from yields measured across a mix of soils. Soil
characteristics (Asseng et al 2001), initial soil water
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conditions (Moeller et al 2009) and in particularly soil
rooting depth (Wong and Asseng 2007) can have large
impacts on crop yield and on the response of yield to
rainfall. In some environments, the ranking of a soil
for grain yield can reverse depending on rainfall
(Wong and Asseng 2006, Kaspar et al 2003). Thus, one
would expect that the sensitivity to rainfall would
diminish as one aggregates across soils with differential
responses to rainfall. For example, for wheat yields in
Western Australia, reported yields varied from 0.9 to
2.3 t/ha during a 10 year period at the state level, which
aggregates across a mixture of soils. For the same
period, grain yields for individual farms with
predominant sandy soils varied across a wider range
of 0.2 to 3.0 t/ha (Asseng et al 2012). Although it is
unlikely that soil differences alone explain the
reduction in variance at broader aggregates, it is likely
an important component. Similarly, studies that have
examined sensitivity of simulated yields to rainfall
changes have reported reduced sensitivity when
aggregating across multiple soil types (Lobell and
Burke 2010).

A second possibility is that some process-based
models tend to overstate the importance of rainfall
even at the site level, because simulated soil water
depletion is too fast (Eitzinger et al 2004). However,
other studies have found simulated water depletion in
line with observations (Asseng et al 1998, Probert et al
1998, Probert et al 1995, van der Velde et al 2011).

A third, related factor is that crop models ignore
factors that can be important for crop growth in some
environments or seasons. These factors include crop
damage from waterlogging, lodging, freeze events, and
pest and diseases, all of which potentially prevent high
yields in otherwise favorable conditions. Thus,
process-based models may overstate the benefits of
wet years, and thus the sensitivity to drying, whereas
statistical models should implicitly include any of
these yield dampening factors that would reduce the
rainfall signal. Although this issue would also pertain
to temperature sensitivity in many cases, it may be that
excess moisture is particularly important in some
regions (Urban et al 2015b, van der Velde et al 2011).

A fourth potential factor is that statistical models
may understate rainfall’s importance because of
measurement error, in that rainfall tends to be more
spatially heterogeneous than temperature and thus
harder to measure accurately across large regions. A
study that attempted to characterize the potential
magnitude of measurement error in rainfall and its
implications for statistical models concluded that this
factor could cause statistical models to underestimate
the importance of rainfall by a factor of two or more in
some regions (Lobell 2013). However, measurement
errors in regions such as the United States are not likely
to be large, so this factor alone is unlikely to explain
some of the discrepancies noted above.

Fifth, process-based and statistical modeling
approaches tend to make different assumptions about
6

how other weather variables change when simulating
impacts of total growing season precipitation. For
example, sensitivity tests with process-based models
tend to use a multiplier for precipitation amounts on
each day, such that the number of rainy days is
preserved, and they also do not change other factors
such as radiation or temperatures. Statistical models,
on the other hand, often do not include explicit
treatment of several factors that are correlated with
total rainfall, such as rainy day frequency or radiation.
When these models are then used to predict the
impacts of changes in total rainfall, they will implicitly
assume that the historical correlation between rainfall
and the omitted variables are preserved (since this
correlation is implicitly included in the estimated
effect of rainfall). For example, whereas a simulation
study typically assumes radiation is unchanged, a
statistical model would implicitly assume a reduction
in radiation with increased rainfall.

Disentangling these various causes of discrepancy
between process-based and statistical models will
require more study. One potential approach is to
develop statistical models that include measures that
more explicitly capture within-season rainfall dynam-
ics (Rowhani et al 2011, Fishman 2016), so that these
aspects can be explicitly held constant or changed as
desired. Another approach is to compare process-
based models to statistical models trained on their
output (i.e. emulators). This removes any concern
about scale mismatches (the first factor discussed
above), model errors (the second and third) or
measurement error (the fourth), since the statistical
model is trained on the inputs and outputs of the
process-based model.

As an example of this approach, figure 3 shows the
output of process-based models for three different
sites based on prior work for wheat and maize, with
simulated yields plotted against the in-season rainfall
for the weather data used as input for the simulations.
The rainfall response for a statistical model fit to the
simulation data is shown for comparison. Note that
because the statistical model also includes non-rainfall
predictors such as temperature, the curve does not
represent a fit to only the data shown in the plot. In
particular, for the maize examples, the inferred
sensitivity to precipitation is slightly less than what
would be estimated if using only rainfall as a predictor.
The rightmost panel in figure 3 then compares the
predicted yield responses to a 20% decline in
precipitation (holding other variables fixed at their
historical values), using both the statistical model and
the process-based model. In all cases, the distribution
of predictions from the statistical model, obtained by
bootstrap resampling of the simulation years, is shown
in blue along with the mean estimate. The ‘true’
response of mean yield to rainfall change from the
process-based model, shown in red, is within the
distribution of statistical estimates for all cases, but less
negative than the mean estimate for the wheat example
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Figure 3. (a–c) Simulated yields for one wheat and twomaize sites using the APSIM cropmodel, plotted against in-season rainfall for
each year. Blue line shows sensitivity to rainfall inferred by statistical model fit to the data using linear and quadratic rainfall terms. (d)
Simulated effect of a 20% reduction in rainfall for mean yields at each site (red line), along with the predicted impact based on the
statistical models (blue distribution). Black line shows mean prediction from the statistical model based on 1000 bootstrap samples of
the historical simulations. APSIM simulations were taken from previous work for wheat (Asseng et al 2001) and maize (Lobell et al
2013).
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and more negative for the maize examples. These
examples illustrate that even without issues of scale
mismatches or errors in process-based models or
measurements, it is possible to have nearly a factor of
two difference between predictions from process-
based models and those from statistical models based
on total seasonal rainfall. However, it does not appear
that using total seasonal rainfall in statistical models
always leads one to underestimate the true importance
of rainfall, as the direction of bias depends on the
relationship of total rainfall to other aspects of weather.
3. CO2 responses

Perhaps themost importantdifferencebetweenprocess-
based and statistical approaches is that the latter rarely
include the effects of changes in CO2. Statistical
estimation of CO2 effects is much harder than for
weather variables because, unlike temperature or
rainfall, CO2 does not exhibit strong gradients over
space or time that can be exploited for statistical
estimation. Instead, CO2 is fairly uniform across space
and varies gradually over time. Given the large
differences in technology uptake over time, or soils
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and other factors over space, it becomes extremely
difficult to identify the signature of CO2 in statistical
analyses. Attempts have beenmade to exploit anomalies
in the year-to-year growth rates of CO2 and yields
(Lobell and Field 2008), but the precision of these
estimateswere too low toallowmeaningfulcomparisons
with process-basedmodel responses. Another approach
has been to incorporate into statistical studies obser-
vations from experiments with CO2 enrichment, and
then simultaneously estimate a technology and CO2

effect (Attavanich and McCarl 2014). However, this
approach is not truly independent of process-based
models, which are calibrated to these experiments.

Another challenge in statistically quantifying CO2

effects on crop yields is that the growth-stimulation
might be heterogeneous. The elevated CO2 impact is
accelerated under water deficit conditions (Kimball
et al 2001, Wall et al 2006), but this effect could vary
within a season and among soils. Also, the CO2

growth-stimulation could be negligible when
nutrients (Hungate et al 2003, Kimball et al 2001,
Ziska and Bunce 2007) or intense drought (Gray et al
2016) are growth limiting. Increasing atmospheric
CO2 might also increase high temperature stress of
crops due to stomatal closure and increasing canopy
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temperatures (Batts et al 1997). While CO2 and water
and nitrogen interactions are captured in some
process-based models (O'Leary et al 2015), inter-
actions of canopy temperature in models (Webber et al
2016) and atmospheric CO2 are not considered yet.

Rather than attempting to estimate the total effect
of elevated CO2, one study attempted to isolate the
effect of CO2 on water-use efficiency by comparing
yields over time in wet vs. dry conditions (McGrath
and Lobell 2011). While promising, this approach
required assumptions about changes in genetic and
management factors that occurred simultaneous with
CO2 increases and also affected the yield differential
between wet and dry conditions, for which only a few
experimental estimates are available. Notwithstanding
these examples, the vast majority of statistical studies
simply ignore CO2 effects, and thus predictions made
with these models focus on the impacts of changes in
other global change factors.

Moving forward, there are several opportunities to
better incorporate CO2 into predictions from statisti-
cal models. One would be to identify novel approaches
to estimating effects of CO2 in the statistical models
themselves. As mentioned, this is extremely difficult
given the strong correlation of CO2 with other slowly
varying factors. A second option is to simply take
predictions from statistical models and then add
estimates of CO2 impacts based on other models. This
was the approach taken in the recent Risky Business
study of impacts in the United States (Houser et al
2015), which utilized estimates of CO2 impacts on
yields for different crops and regions (McGrath and
Lobell 2013).

A third approach is to explicitly modify predictors
in statistical models, based on process understanding
of how CO2 interacts with other factors that affect crop
growth and yield. For example, Urban et al (2015a)
developed a statistical model for maize in the United
States that included a term for vapor pressure demand
(VPD), which varies with temperature and humidity
and is a strong predictor of yields in the region
(Roberts et al 2012, Lobell et al 2014). The authors
allow VPD to interact with rainfall, and use this
statistical model to project impacts of future VPD
changes, allowing CO2 increases to reduce the effective
increase in VPD based on the equations used in the
APSIM process-based model which relate transpira-
tion efficiency to VPD and CO2. This represents a
parsimonious approach to account for interactions
between CO2 and weather. The projected impacts
demonstrated the importance of CO2 changes in the
region, even for a C4 crop such as maize (figure 4).
4. Ozone responses

Ozone (O3) is formed in the atmosphere when
sunlight causes complex photochemical reactions
involving oxides of nitrogen (NOx), volatile organic
8

hydrocarbons, and carbon monoxide that originate
from burning of fossil fuels. Near surface ozone
(referred to as just ‘ozone’ hereafter) is a major
atmospheric pollutant, which enters leaves through
stomata during normal gas exchange and causes leaf
chlorosis and necrosis.

Experiments have demonstrated that O3 concen-
trations above roughly 40 ppb lead to reduced
assimilation rates, leaf conductance and consequently
growth and yield (Ewert and Porter 2000, Heck et al
1983). Several authors have combined estimates of O3

impacts on yields from experiments with global
chemical transport models to estimate current damage
from O3 around the world (Van Dingenen et al 2009,
Avnery et al 2011). These studies have estimated global
aggregate impacts of~10% for wheat and soybean, and
~5% for maize and rice. Tai et al (2014) use a similar
approach to evaluate alternative future emission
scenarios, finding large potential impacts of O3 on
future production depending on emission scenarios.

Thus, the effects of O3 on crop production are
increasingly viewed as comparable to weather and
CO2, and thus deserving of more explicit consider-
ation in modeling efforts and policy decisions.
However, unlike for CO2, the effects of O3 are not
included in most process-based model studies. There
are a few attempts in the literature (Ewert et al 1999,
Ewert and Porter 2000) and more work is ongoing, but
these effects have not yet been applied at a global scale.

Most statistical studies also do not explicitly model
the effects of O3, given a lack of good data on O3.
However, some recent work has exploited new datasets
on variation in O3 concentrations or precursors to O3

formation. Burney and Ramanathan (2014) used
emissions inventories in India to estimate the net effect
of short-lived climate pollutants, namely O3 and black
carbon. They estimate losses of roughly 30% and 20%
for wheat and rice, respectively, but with fairly large
uncertainties. McGrath et al (2015) included data on
U.S. rural O3 concentrations in maize and soybean



Table 1. Mapping of yield impacts for selected crops in the
study of Nelson et al (2014). Left column shows the crop impact
estimate needed for the economic model, and right columns
show how that estimate was obtained for three different crop
models using estimates for other crops.

Impact DSSAT EPIC LPJmL

Millet Maizea Sorghum Millet

Palm kernels b Sunflower Sunflower

Rapeseed b Rapeseed Rapeseed

Sunflower b Sunflower Sunflower

Cassava b Cassava Cassava

Chickpeas Groundnuts Groundnuts Groundnuts
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statistical models, estimating roughly 10% and 6%
losses for the two crops, respectively.

Given the fairly low precision in statistical
estimates, and the lack of treatment of O3 in most
process-based models, meaningful comparisons of the
two approaches are not yet possible. However, this
remains an important area for future work, arguably as
or more important than factors such as rainfall whose
trends do not appear to have as large of a potential
impact on aggregate crop production as O3.
Cotton b b b

Potatoes b b b

Sugar beet b b Sugar beet

Sugar cane Maize Sugar cane Sugar cane

Sweet potatoes b b b

Temperate fruit b b b

Vegetables b b b

a Only one-half of negative impacts are applied, to represent

improved drought tolerance.
b Average of rice, wheat, soybeans, and groundnuts.
5. The costs of obtaining robust projections

To consumers of yield impact estimates, such as
integrated assessment modelers, the time and resour-
ces required to develop robust estimates can be as
important as accuracy, particularly if results from
process-based and statistical approaches are likely to
be very similar in accuracy, at least for some factors. It
is worth emphasizing, therefore, that the costs of
producing such estimates can be very different for the
two approaches, and vary with crop. For the four
major grains (wheat, maize, rice, and soybean),
multiple process-based models have been developed
and international networks of researchers participat-
ing in model intercomparisons have already been
established, so that the marginal cost of deriving new
estimates for one of these crops from a process-based
approach is relatively small. Yet consumers of yield
impact estimates often require values for the full suite
of crops relevant to economic activity and human
nutrition. The typical approach is to either assume that
a crop responds the same as one of the four grains, or
that the impacts on a crop can be safely assumed to be
zero. For example, when defining productivity shocks
for an economic analysis of climate change impacts,
Hertel et al (2010) assumed that cotton impacts were
identical to rice, and that sugarcane impacts were zero.
Nelson et al (2014) provide a more exhaustive
description of crop assumptions for their analysis of
economic impacts, a subset of which are illustrated in
table 1. Some choices are clearly arbitrary, such as that
the impact of cassava should be equal to the mean of
wheat, rice, maize, and groundnuts, or that sugarcane
should be treated the same as maize.

One remedy for this gap between producers and
consumers of yield impacts would be to invest in the
development of process-based models for each crop,
and indeed most crops have at least one functioning
process-based model. However, as emphasized above
and elsewhere (Asseng et al 2013, Palosuo et al 2011,
Li et al 2015), obtaining the most accurate results with
process-based approaches generally involves running
not one but three or more independent models.

In contrast, statistical approaches require less
effort, provided that sufficient quality and quantity of
data exist to develop robust statistical relationships.
In most major agricultural countries or regions
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(i.e. India, China, United States, European Union,
Argentina, Brazil), public datasets on aggregate
production and yield for district or county adminis-
trative units are available online, and cover most
economically important crops in the region. For many
African and Asian countries, subnational data on
dozens of agricultural outcomes are increasingly
available (www.countrystat.org/). The quality of these
data are still unknown, but even noisy data can be
successfully used in statistical studies if sample size is
big enough and the errors are uncorrelated with
weather.

It is difficult to precisely measure the costs of
obtaining robust estimates. One line of evidence is
that AgMIP papers for a single crop often have 30
or more authors (e.g. Asseng et al 2013) whereas
statistical studies are often done for multiple
countries and crops, including minor crops such
as cassava, millet, and groundnuts, with only one
or two authors (e.g. Schlenker and Lobell 2010).
Despite the lack of good measures, though, it is likely
in most situations that the costs of process-based
approaches are considerably higher than statistical
approaches.

There are many good reasons to continue investing
in process-based approaches, and our intention here
is not to flag them as too costly. For example, the
additional systems understanding from building
simulation models and their suitability for exploring
climate change adaptation options might be worth-
while, and superior to statistical approaches. However,
in our experience users of yield estimates are not aware
of how much more work is involved to obtain robust
estimates with process-based models, particularly for
crops beyond the main grains. For decisions in the
next few years that need information on climate
change impacts for crops such as sugarcane, rapeseed,
cassava, or oranges, statistical models are likely to

http://www.countrystat.org/
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produce the needed estimates much sooner and at
much lower levels of investment.
6. Conclusions and future directions

In the long term, we expect that the distinction
between process-based and statistical models will
dissolve, as simulation modelers strive to make better
use of observational data and statistical modelers
incorporate more predictors that represent process
understanding reflected in process-based models.
Increased use of Bayesian approaches in process-
based models (Iizumi et al 2009), efforts by simulation
modelers to incorporate or improve processes that
appear important in statistical studies (Lobell et al
2015, Boote et al 2013), and incorporation of sub-
seasonal temperature and rainfall measures in
statistical models (Fishman 2016, Rowhani et al
2011) are among the examples of the field moving in
this direction. Moreover, the move toward model
ensembles can readily accommodate models of both
types, with the resulting model-mean or model-
median reflecting aspects from each approach (Liu
et al 2016b).

These developments are welcome, but do not
reduce the short term need to assess and reconcile any
differences between published results for the methods
for the various users of predicted yield changes.
Toward that end, we think four conclusions from the
current study are particularly worth emphasizing:
1)
 There are no apparent systematic differences
between the predicted sensitivities to temperature
change from process-based and statistical models
for low levels of warming (figures 1 and 2).
Currently, differences can only be evaluated for
low levels of warming (<2°C) given the lack of
projections from both methods for similar loca-
tions and crops for larger temperature increases.
More work is needed to compare responses to
larger warming scenarios, as well as for interac-
tions between temperature and other variables.
2)
 For precipitation, fewer estimates are available to
compare, and thus whether systematic differences
exist is unknown at this time. We discuss five
reasons that estimates could be expected to differ,
but also note that changes in precipitation are
rarely the dominant factor for predicting impacts
given the prominent role of temperature, CO2,
and O3 changes.
3)
 Predicted impacts from the two methods often
differ because process-based models tend to
include the effects of CO2 increases that accom-
pany warming, whereas statistical models typical-
ly do not. Whether the impacts of warming
alone or warming plus CO2 is of most interest
will depend on the user. For users who desire the
10
net impacts of both warming plus CO2, process-
based models would be an appropriate tool, but
we also offer several suggestions for incorporat-
ing the effects of CO2 into statistical models.
4)
 Many opportunities exist to combine process-
based and statistical models in climate change
impact research, for instance by using insights
from statistical studies to guide process-model
development, using process-based models to
identify useful predictors for statistical models,
using CO2 responses from process-based models
to complement climate impact estimates from
statistical models, and enhancing confidence in
impact estimates through multi-method (i.e.
process-based and statistical) applications.
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