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Abstract
As sources of data for global forest monitoring grow larger, more complex and numerous, data
analysis and interpretation become critical bottlenecks for effectively using them to inform land
use policy discussions. Here in this paper, we present a method that combines big data analytical
tools with Emerging Hot Spot Analysis (ArcGIS) to identify statistically significant spatiotemporal
trends of forest loss in Brazil, Indonesia and the Democratic Republic of Congo (DRC) between
2000 and 2014. Results indicate that while the overall rate of forest loss in Brazil declined over
the 14-year time period, spatiotemporal patterns of loss shifted, with forest loss significantly
diminishing within the Amazonian states of Mato Grosso and Rondônia and intensifying within
the cerrado biome. In Indonesia, forest loss intensified in Riau province in Sumatra and in
Sukamara and West Kotawaringin regencies in Central Kalimantan. Substantial portions of West
Kalimantan became new and statistically significant hot spots of forest loss in the years 2013 and
2014. Similarly, vast areas of DRC emerged as significant new hot spots of forest loss, with
intensified loss radiating out from city centers such as Beni and Kisangani. While our results
focus on identifying significant trends at the national scale, we also demonstrate the scalability of
our approach to smaller or larger regions depending on the area of interest and specific research
question involved. When combined with other contextual information, these statistical data
models can help isolate the most significant clusters of loss occurring over dynamic forest
landscapes and provide more coherent guidance for the allocation of resources for forest
monitoring and enforcement efforts.
1. Introduction

Tropical forests have undergone substantial changes
over past decades, driven largely by the expansion of
agricultural lands to satisfy global demand for
commodities such as palm oil, timber, wood fiber,
soy and beef (Ramankutty et al 2008). Tropical
deforestation has multiple environmental impacts,
including greenhouse gas emissions, biodiversity
loss, and reduction of other ecosystem services such
as carbon storage and water supply (Foley et al
2007). Recognizing the environmental, economic
© 2017 IOP Publishing Ltd
and social importance of these ecosystems and the
human potential to change outcomes through
improved land management policies, many national
and international initiatives to reduce deforestation
are underway. Commitments to deforestation-free
supply chains have been made by many of the
world’s largest commodity suppliers (Supply
Change/Forest Trends 2015), and recent interna-
tional agreements include ambitious goals to reduce
or end deforestation over the next 5–15 years (UNEP
2010, UN 2015, UN Climate Summit 2014,
UNFCCC 2016).
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Figure 1. Forest loss between the years 2000 and 2014 in the Democratic Republic of Congo at three spatial scales: (a) local (Sankuru
Nature Reserve); (b) subnational (Kasaï Oriental province); and (c) national. As the extent of analysis becomes larger, spatial patterns
and trends become more difficult to observe by visual inspection alone.
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To understand whether we are making progress
towards achieving these goals, monitoring systems
that deliver timely and accurate information about
forest dynamics become critical. Due in part to
REDDþ6 initiatives and guided by simultaneous
advances in technology, many governments are
developing forest monitoring systems based on the
interpretation of imagery from Earth-observing
satellites (Romijn et al 2015). At the global scale,
Hansen et al (2013) examined Landsat satellite data to
characterize global forest extent, annual loss, and gain
from 2000 to 2012. These data and their annual
updates through the year 2014, available on the online
Global Forest Watch (GFW) platform, provide
spatially detailed and timely information on forest
6 Reducing Emissions from Deforestation and Forest Degradation
in developing countries, and the role of conservation, sustainable
management of forests, and enhancement of carbon stocks.
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dynamics that is both globally consistent and locally
relevant. The GFW platform enhances the practical
use of these data by providing solutions to the
challenges often associated with big data including
visualization, storage, analysis, sharing and querying.

These and other data products derived from
satellite imagery have fundamentally changed the way
the world’s forests are monitored. But as sources of
data become larger, more complex and more
numerous, the ability to quickly explore and interpret
patterns with confidence becomes a critical bottleneck
for effectively using these data to inform forest policy
and management decisions. The Hansen et al (2013)
data include billions of individual pixels, and visually
evaluating patterns in the data at multiple spatial and
temporal scales quickly proves infeasible, even on an
online platform optimized for this purpose. For
example, figure 1(a) shows forest loss in the Sankuru
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Nature Reserve in the Democratic Republic of the
Congo (DRC) between 2000 and 2014. At this local
scale, spatial patterns of loss are clear enough to
identify where to prioritize interventions or target
potential future loss. At the provincial (figure 1(b)) or
national (figure 1(c)) scale, however, analysis by visual
inspection alone no longer provides clear guidance on
which areas to target. Furthermore, these visual
inspections do not allow an understanding of more
subtle, but still important, trends in the acceleration or
deceleration of loss.

Several machine learning techniques and land
cover change prediction models have been developed
to project future deforestation based on where it has
occurred historically (Harris et al 2008, Fuller et al
2011, Rosa et al 2013, Aguilar-Amuchastegui et al
2014). Despite differences in model structure and
complexity, most require at least two land cover maps
as well as spatial information about the biophysical
and socioeconomic factors that correlate with ob-
served change. These models are conceptually robust,
but predictive accuracy is dependent on the availability
of spatially-explicit information about drivers of
land cover change for model calibration that may
not be available.

Spatial pattern analysis, while not inherently
predictive, also has the potential to assist in rapid,
consistent identification of priority areas for manage-
ment intervention. For example, statistical methods
have been used to identify trends in biodiversity
(Myers 1988, Mittermeier 1998, Myers et al 2000),
pollution (Yong-Hui et al 2010, Li et al 2014, Ding et al
2015), and crime (Grubesic 2006, Chainey et al 2008,
Xiaoland and Grubesic 2010, Sangamithra et al 2012).
In the context of forest conservation, spatial statistics
can assist in quickly identifying spatiotemporal trends
of forest loss without the explicit need for pre-existing
information on what underlying factors are driving
these trends. It is clear that tropical forest countries
must drastically reduce deforestation over the next
several years if the goal set in the New York Declaration
on Forests to halve natural forest loss by 2020 is to be
realized (Zarin et al 2016). To succeed, decision
makers could benefit from accessible information not
just about specific locations of historical forest loss,
but also about broader trends in these data that can be
detected early enough to influence a new trajectory.

The objective of this study was to develop a
scalable methodological approach that allows for rapid
evaluation of statistical trends in forest monitoring
data. To demonstrate our approach, we use the 14-year
annual time series forest loss data for Brazil, Indonesia
and the Democratic Republic of the Congo (DRC)
fromHansen et al (2013). Recent research has pointed
out the significant roles these three countries play
under various scenarios to reduce deforestation (Zarin
et al 2016), but did not identify where, geographically,
each country should focus policy within its borders to
achieve these reductions. An approach that delivers
3

rapid insight towards answering this question could
assist in the creation of more timely and coherent
policies on where to focus forest monitoring and
enforcement efforts going forward.
2. Methods
2.1. Definitions
The term ‘hot spot’ has been used generically across
disciplines to describe a region or value that is higher
relative to its surroundings (Lepers et al 2005, Aben
et al 2012, Isobe et al 2015). In a forest conservation
context, WWF (2015) identified deforestation ‘fronts’
as broad regions of concern based on expert opinion
and scenario analyses where available. Here, we define a
hot spot as an area that exhibits statistically significant
clustering in the spatial pattern of forest loss. Hot
spots are locations where observed patterns are not
likely the result of random processes or of subjective
cartographic design decisions; they represent places
where there are underlying spatial processes at work
(Getis and Ord 1992). Emerging Hot Spot Analysis
extends this definition to incorporate information
about the temporal dimension of the data.

In this analysis, forest is defined at the 30 m
Landsat pixel scale as areas with the biophysical
presence of trees>5 m in height and with tree canopy
density greater than 25% in the base year 2000;
these areas may take the form of natural forests or
tree plantations. Forest loss is defined as a ‘stand
replacement disturbance’, meaning the removal or
significant reduction of tree cover that can result from
a variety of factors globally (Hansen et al 2013). Thus
‘forest loss’ as defined here does not always equate to
deforestation, i.e. conversion of forest to a new, non-
forest land use (FRA 2015, Tropek et al 2014). However,
deforestation dominates the forest loss dynamic
observed within the three study areas chosen for this
analysis. We analyzed emerging hot spots of forest loss
only, because the forest gain product of Hansen et al
(2013) is not annual. Furthermore, data from Hansen
et al (2013) are used here for illustrative purposes;
these could be combined with other information on
land use or forest type or replaced with other
spatiotemporally explicit data where available (e.g.
annual deforestation data for the Brazilian Amazon,
1988–2014, INPE 2016) to reflect alternate defini-
tions of forest and forest loss/deforestation.

2.2. Study area
Emerging Hot Spot Analysis could be performed at a
global scale using one set of standardized parameters
across all geographic domains. However, to be relevant
for land use policy, these analyses are likely to be more
useful if they relate to dynamics occurring within
specific domains of legal responsibility. Brazil,
Indonesia and DRC consistently rank within the top
ten countries globally for highest absolute forest loss
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Figure 2. Data processing and analysis workflow for converting raster data (30 m) into an emerging hot spot map. (a) Raster data are
stored in a cloud environment; (b) Raster data are converted to points; (c) points are aggregated into space-time bins and point counts
are tallied; (d) data are extracted for analysis for an area of interest; (e) data are converted into a net CDF data cube format; and (f) for
each bin in the cube, the Getis-Ord Gi� statistic is calculated, and the Mann-Kendall trend test is calculated for each bin’s time series to
produce an emerging hot spot map.

Environ. Res. Lett. 12 (2017) 024012
(Hansen et al 2013), and are home to the largest
remaining contiguous expanses of tropical forest
(Potapov et al 2008). In addition to their conservation
value, these countries also represent ideal candidates
to test our methodology because each is dominated by
a different forest disturbance dynamic, ranging from
large tracts of forest cleared in Brazil for industrial
agriculture to small patches of forest cleared in DRC to
dynamic forest landscapes in Indonesia interspersed
with tree plantations managed for industrial oil palm
and wood pulp. We focus our analysis at the national
scale for these three countries, but also demonstrate
the utility of a scalable approach by generating results
for a single province as well as a single protected area
within DRC.

2.3. Input data and pre-processing
A summary of the processing steps used in our analysis
is shown in figure 2. Input data consisted of forest
extent and annual forest loss data produced by the
University of Maryland and Google (Hansen et al 2013
and updates available at globalforestwatch.org). These
are delivered as raster data at 30 m spatial resolution.
Forest loss in the original data product that occurred
outside the forest extent mask applied (>25% tree
canopy density) was not considered in the analysis.

Before running statistical analysis, we transformed
the data into a netCDF (Network Common Data
Form) data cube structure by aggregating forest loss
points in each country into space-time ‘bins’ with a
spatial resolution of 2.5 km (figure 2). The value of
each bin was assigned as the count (number) of forest
loss incidents in the bin for a given year. The netCDF
structure stores space as latitude and longitude
coordinates and time (i.e. the year the loss was
observed) as another dimension. By assigning a count
of loss points to each bin for all locations containing
forest in the year 2000, the trend in point counts over
time could be evaluated. Unlike Brazil and DRC, data
for Indonesia were not processed as a country. Rather,
we processed Kalimantan and Sumatra (the two
Indonesian islands with highest forest cover) inde-
pendently (i.e. data points on each island did not affect
analysis results for the other island) and other island
groups were excluded from the analysis. The decision
to aggregate data into 2.5 km bins was made after
empirically testing bin sizes ranging from 1 km to
4

50 km; the final selection of 2.5 km preserved a varied
frequency distribution of forest loss counts across bins
and also preserved a useful interpretation of results
that visually tracked known ground features such as
lakes, rivers and non-forested areas. Small adjustments
to bin size did not significantly impact final results.

Parallel processing and data management were
conducted using a combination of several open-source
software platforms, including Spark and Hadoop. The
Esri ArcGIS Emerging Hot Spot Analysis geoprocess-
ing tool was used for statistical analysis and ESRI
software was used for map symbolization. All
processing was done in an Amazon Web Services
cloud computing environment.

2.4. Statistical analysis
The Emerging Hot Spot Analysis tool evaluates
spatiotemporal patterns in forest loss in each country
using a combination of two statistical measures: (1)
the Getis-Ord Gi� statistic (Ord and Getis 1995) to
identify the location and degree of spatial clustering of
forest loss, and (2) theMann-Kendall trend test (Mann
1945, Kendall and Gibbons 1990) to evaluate temporal
trends across the time series.

First, the Getis-Ord Gi� statistic measures the
intensity of clustering of high or low values (i.e. counts
of forest loss) in a bin relative to its neighboring bins in
the data cube. The sum for a bin and its neighbors is
compared proportionally to the sum of all bins. When
a bin’s sum is different than expected, and that
difference is too large to be the result of random
chance, a statistically significant Z score is the result.
The Getis-Ord Gi� statistic generates Z scores
(standard deviations) and P values (statistical proba-
bilities) for each bin that indicate whether forest loss in
a given bin is statistically clustered compared to loss in
neighboring bins, as well as loss across the entire
analysis domain. A Z score above 1.96 or below�1.96
means that there is a statistically significant hot spot or
a statistically significant cold spot of forest loss at a
significance level of P<0.05. The larger a bin’s Z-score,
the more intense the clustering of values (hot spot).
Due to the cube structure of the data, neighboring bins
exist both in time and in space. The Queens Case
Contiguity method was used to define neighborhood
size in space and temporal neighbors were defined
using one prior time-step interval (1 year).



Table 1. Classification scheme for portraying different categories
of statistically significant hot spots, each representing a different
temporal state.

Hot spot

category name

Definition

New A location that is a statistically significant hot

spot only for the years 2013 and/or 2014, i.e.

the last time steps of the time series.

Sporadic A location that is an on-again then off-again

hot spot. Less than 12 of the 14 years have

been statistically significant hot spots.

Intensifying A location that has been a statistically

significant hot spot for more than 12 of the

14 years (>90%), including the final time step

(2014). In addition, the intensity of clustering

of high counts in each time step is increasing.

Persistent A location that has been a statistically

significant hot spot for more than 12 of the

14 years (>90%), with no discernible trend

indicating an increase or decrease in the

intensity of clustering over time.

Diminishing A location that has been a statistically

significant hot spot for more than 12 of the

14 years (>90%). In addition, the intensity of

clustering of high counts in each time step is

decreasing, or the most recent year (2014) is

not hot.
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Second, the Emerging Hot Spot Analysis tool uses
the Mann-Kendall statistic (Mann 1945, Kendall and
Gibbons 1990) to test whether a statistically significant
temporal trend exists through each bin’s 14-year time
series of Z-scores resulting from the Getis-Ord Gi�

statistic. The most commonmethod for examining the
existence of a trend is simple linear regression, a
parametric statistical technique that requires indepen-
dent random samples drawn from normally distrib-
uted populations (Taylor and Taylor 1977). However,
these requirements may or may not be met in wall-to-
wall geospatial data sets (vs. a statistically drawn
sample (Schlagel and Newton 1996). Under these
conditions, the use of a non-parametric statistical test
is more appropriate. The Mann-Kendall test, an
application of Kendall’s rank order correlation test to
time series data (Bradley 1968), is a nonparametric test
for zero slope of the linear regression of time-ordered
data versus time (Gilbert 1987).

In this case, each bin with data represented its own
independent time series. To evaluate temporal trends
for each bin, each time step was compared to the one
after it. If the Z-score in the second time step was larger
than the first time step, the result was þ1 (increasing
trend). If the Z-score in the second time step was
smaller than the first time step, the result was �1
(decreasing trend). Each pair of time steps was
compared over the 14-year series, generating the
Mann-Kendall statistic with associated trend Z-score
and p-value for each bin. The expected sum is zero,
indicating no trend in the values over time. Based on
the variance for the values in the bin time series and
the number of time periods, the observed sum is
compared to the expected sum (zero) to determine if
the difference is statistically significant or not
(P <0.05). The cluster and trend results from the
Getis Ord Gi� and Mann-Kendall statistics are then
used to categorize each bin.

2.5. Output maps
By default, the Emerging Hot Spot Analysis tool
categorizes each bin into one of seventeen distinct
categories that cover a range of scenarios: one category
of non-significance along with eight hot spot and eight
cold spot categories, each reflecting a different
configuration of spatiotemporal significance (ESRI
2016). However, introducing too much nuance in
output maps has the potential to detract attention
away from the most relevant results for forest
conservation. Thus we chose not to display cold spots
and other areas with non-significant trends, and
aggregated hot spots into five categories, each
representing a different temporal state: new, sporadic,
intensifying, persistent, and diminishing (table 1).
Resulting hot spot maps for each country were
evaluated against other extant data including intact
forest landscapes (Potapov et al 2008), locations of tree
plantations (Petersen et al 2016), primary forests
(Margono et al 2014, Potapov et al 2012), and
5

protected areas (World Conservation Union and
UNEP-World Conservation Monitoring Centre
2007) to better understand the how each hot spot
category related to the loss of different types of forest
in each country.
3. Results
3.1. Brazil
Between 2000 and 2014, Brazil lost an average of
2.7 Mha yr�1 of forest (figure 3(a)), although overall
rates of loss declined over this time period. The
diminishing hot spot category is prominent within
the Amazonian states of Rondônia and Mato Grosso,
indicating the deceleration of the clustering of loss
there. Meanwhile, the historical ‘arc of deforestation’
is expanding west through the state of Acre and
advancing inwards toward more intact portions of the
Amazon (figure 3(b)). A new and significant cluster
of forest loss appears in the state of Roraima, where
new settlements are expanding from an existing road
network (figure 3(c)). Loss has also shifted towards
the cerrado biome (Beuchle et al 2015), as evidenced
by the large areas of new and intensifying hot spots
there (figure 3(d)). The overlap of the two predomi-
nant hot spot clusters with locations of tree
plantations in the southern part of the country in
the Mata Atlantica biome likely reflect plantation
harvest cycles of the pine and eucalyptus plantations
that are prevalent in the states of Parana, Rio Grande
do Sul, and Santa Catarina (figure 3(e)).



Figure 3. (a) Forest loss in Brazil, 2000–2014; (b) hot spot map of forest loss identifies spatiotemporal trends in the raw data shown in
(a)–(c) new and sporadic hot spots appear where new settlements are expanding from an existing road network in the state of
Roraima; (d) new and intensifying hot spots are prevalent across the cerrado biome; (e) hot spot clusters in the Mata Atlantica biome
occur near plantations of wood fiber and timber. Neighborhood distance: 71.3 km.
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3.2. Indonesia
Indonesia lost an average of 1.3 Mha yr�1 of forest
between 2000 and 2014 (figure 4(a)), 39% of which
occurred within Indonesia’s primary forests (Margono
et al 2014). Vast areas of new hot spots are present in
Sumatra and Kalimantan (figure 4(b)) (Stibig et al
2013). Unlike Brazil, both Kalimantan and Sumatra
lack diminishing hot spots. Persistent hot spots appear
in Riau province in Sumatra and in West Ketawaringin
regency in Central Kalimantan, and both show leading
fronts of intensified loss clustering (figure 4(b)). In
Riau province, an intensifying hot spot pushes
through Tesso Nilo National Park and new hot spots
overlap with one of the last remaining expanses of
intact primary forest in the region (figure 4(c)).
Sebangau National Park, the protected peat swamp
forest west of Palankaraya in Central Kalimantan, is
sandwiched between several new hot spots recently
cleared for oil palm plantations (figure 4(d)), and new
hot spots are encroaching into the northern end of the
park. New hot spots also cover much of West
Kalimantan province, where plantation forestry and
oil palm expansion are prevalent (figure 4(e)) (Stibig
et al 2013). Hot spot results for Indonesia are
6

complicated by the presence of large areas of
plantations across both Sumatra and Kalimantan,
because harvest cycles within plantations boundaries
are observed as forest loss. However, since oil palm is
cut and regrown on 25–30 year cycles and the palm oil
industry here is relatively nascent, the majority of the
identified hot spots likely reflect natural forest loss to
establish the plantations, rather than harvest cycles
occurring within already existing plantations.

3.3. Democratic republic of the Congo
From 2000 to 2014 DRC lost an average of 0.57 Mha
yr�1, and the rate of forest loss between 2011 and 2014
increased by a factor of 2.5 (figure 5(a)). Like
Kalimantan and Sumatra in Indonesia, DRC contains
vast areas of new hotspots, many of which are situated
along the country’s road network (figure 5(b)). Unlike
Indonesia, however, many more of these new hot spots
intersect with intact primary forests. New hot spots
also extend within the boundaries of protected areas
such as the Sankuru Nature Reserve, the world’s largest
continuous protected area for great apes (figure 5(c)).
New and intensifying hot spots of loss radiate out from
the city of Beni in the eastern province of North Kivu,



Figure 4. (a) Forest loss in Kalimantan and Sumatra, Indonesia, 2000–2014; (b) emerging hot spot map of forest loss identifies
spatiotemporal trends in the raw data shown in (a); (c) forest loss hot spot in an Intact Forest Landscape (IFL) in Riau; (d) new hot
spots within the northern portion of the Sebangau Nature Reserve caused by encroaching oil palm plantations; (e) new hot spots in
primary forests inWest Kalimantan, also due to encroaching oil palm and recently cleared plantations. Neighborhood distance: 39 km
(Sumatra) and 31.2 km (Kalimantan).
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where longstanding civil unrest has led to a wave of
human migration (figure 5(d)). Intensifying hot spots
are also apparent near city centers such as Kisangani,
where mining as well as fuelwood collection and
shifting agriculture practiced by local communities is
common (figure 5(e)). The presence of intensifying
hot spots in these locations suggests the acceleration of
forest loss clustering there, potentially as a result of
forest conversion to new agricultural land as part of an
expanding rural complex to accommodate DRC’s
7

rapidly growing population (Mayaux et al 2013,
Molinario et al 2015).

4. Discussion

Here we demonstrate the usefulness of Emerging Hot
Spot Analysis as an approach for evaluating statistically
significant clusters of forest loss. Unlike traditional
predictive modeling approaches, our method and
workflow can be implemented quickly and requires no



Figure 5. (a) Forest loss in Democratic Republic of Congo, 2000–2014; (b) emerging hot spot map of forest loss identifies
spatiotemporal trends in the raw data shown in (a); (c) new forest loss hot spot in Sankuru Nature Reserve; (d) persistent and
intensifying hot spots of forest loss near the city of Beni, an area of longstanding civil unrest; (e) new and intensifying hot spots of
forest loss around the city of Kisangani. Neighborhood distance: 45.3 km.
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information on the underlying drivers of loss, yet
results can provide insight about potential future
trajectories and locations of forest change.

We apply this method at the national scale for
three tropical forested countries over 14 years, but the
approach is scalable to any spatial or temporal domain
with more than ∼10 time steps. For very local
applications, this type of analysis may not offer much
advantage over viewing the data in its native resolution
(in this case, 30 m). Emerging Hot Spot Analysis
becomes much more valuable for evaluating phenom-
ena occurring over broader scales than can be directly
observed, and where limited time and resources may
necessitate the prioritization of monitoring and
enforcement efforts to target specific fronts of new
or accelerated loss. Decision makers tasked with
vetting proposed forest protection policies or com-
modity supply chain sourcing decisions through
multiple stakeholder groups may benefit from the
support of maps that are easy to interpret, yet
grounded in robust statistical analysis. National and
subnational governments seeking to obtain and
receive results-based payments for REDDþ activities
under the UNFCCC may also find the emerging hot
8

spot framework useful for informing their national
strategies and action plans.

The fixed scale of an emerging hot spot analysis is a
critical concept to understand for proper interpreta-
tion of results, because emerging hot spot maps are
dependent upon the extent of the analysis domain
under consideration. For example, figure 6 shows how
emerging hot spot maps differ slightly depending on
the three different analysis domains defined in figure 1:
a single protected area, a province, and all forests of
DRC. Output maps differ in part because results for
each bin are calculated relative to different ‘global
means’, representing the average loss count across the
entire analysis domain.

Results are also sensitive to neighborhood size, or
the distance over which each point is compared to all
others. As neighborhood size increases, hot spots will
become larger and fewer; smaller neighborhood sizes
capture more localized trends. There is inevitably an
element of subjectivity in choosing an appropriate
value for neighborhood distance; Atkinson and Unwin
(2002) state that ‘subjective judgement based on a
range of density surfaces is as good a method as any’
for determining an appropriate neighborhood size. In



Figure 6. Emerging hot spot results for three different spatial domains within the Democratic Republic of Congo. (a) local (Sankuru
Nature Reserve) (neighborhood distance: 11.3 km); (b) subnational (Kasaï Oriental province, neighborhood distance 24 km); and (c)
national (neighborhood distance 45.3 km).
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practice, the scale of the analysis should influence the
neighborhood size, and specific neighborhood dis-
tances used in this analysis are provided in figures 3–6.
A range of neighborhood distances, and the impact on
resulting maps, is also shown in figure 7. Despite the
variations that emerge from the use of different
neighborhood distances, locations of emerging hot
spots are broadly consistent across maps. Using an
intermediate neighborhood distance relative to the
scale of analysis, as we do for generating results in
figures 3–6, highlights specific local hot spots while
also allowing other more general patterns to emerge.

All spatial clustering approaches, regardless of
their theoretical underpinning, statistical foundation,
or mathematical specification, have limitations in
accuracy, sensitivity, and the computational effort
required for identifying clusters. As a result, a major
challenge in practice is determining which technique(s)
9

will provide the most meaningful insights for a
particular issue or context (Grubesic et al 2014).
Contextual data layers are therefore extremely impor-
tant for interpreting results, as is knowledge about the
accuracy of the underlying data product used to
generate statistical output. Across the tropical biome,
user’s and producer’s accuracies of the forest loss data
used for this analysis are 87.0 and 83.1%, respectively
(Hansen et al 2013). Another more detailed accuracy
assessment by Tyukavina et al (2015) shows that the
original Hansen et al (2013) data product (version 1.0)
underestimates loss in Brazil by 9%, overestimates loss
in Indonesia by 9%, and underestimates loss inDRCby
65%. Lower accuracy in DRCwas due to missed loss in
landscapes dominated by smallholder rotation agri-
culture. Since original publication, the forest loss data
of Hansen et al (2013) have been updated twice, and
version 1.2 now includes loss up to the year 2014. The



Figure 7. Hot spot results for Minis Gerais, Brazil, using four different neighborhood distances: (a) 3 km; (b) 15 km; (c) 30 km;
(d) 50 km. As neighborhood distance increases, hot spots become larger and fewer; smaller neighborhood distances capture more
localized trends.

Environ. Res. Lett. 12 (2017) 024012
latest version of the global dataset includes forest loss
data re-processed from year 2011 using a new change
detectionmodel that ismore sensitive to forest loss and
includes gap-free Landsat 8 data since 2013. These
changes resulted in improved detection of loss in DRC
and other areas where smallholder agricultural
clearing, selective logging, and short cycle plantation
clearing are prevalent. However, the years preceding
2011 have not been reprocessed in this manner. Thus
the higher sensitivity of the new change detection
model and the use of Landsat 8 data since 2013 is likely
driving some, but not all, of the prevalence of ‘new’ hot
spots in our results, particularly in DRC. The
additional loss detected in 2011–2012 for each country
as a result of retroactively applying the updated change
detection algorithm is shown in figure 8. While this
temporal inconsistency is a clear limitation of our
analysis results, future planned research includes the
10
full re-processing of the time series back to the year
2000.

The framework outlined here demonstrates the
added analytical value offered by forest monitoring
data with high temporal cadence, or resolution. While
we use a widely cited data product to demonstrate our
approach (Hansen et al 2013) in three countries with
relatively well studied forest loss narratives, any other
data with a space and a time component can be
evaluated using the same method. Because the Hansen
et al (2013) forest loss product is binary (i.e. values
represent the presence or absence of loss), counts of
forest loss within each bin were used as the aggregation
method. Depending on the specific research question,
similar analysis could be run on other binary data
products, such as active fire points (NASA FIRMS
2016) or weekly forest disturbance alerts (Hansen et al
2016). Data could also be aggregated by value rather
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than by count for continuous variables; for example,
for applications targeting locations for interventions to
reduce emissions from deforestation (REDDþ), rather
than the area of deforestation, bin values could reflect
the amount of biomass lost within a bin in a given year.
In this example, point locations and years would be the
sameas for the forest lossdataofHansen et al (2013),but
resulting hot spot maps would differ based on the
aggregation method, especially in areas where there is
substantial variation in forest biomass, such as in the
Amazon vs. cerrado biomes of Brazil (figure 9)
(Baccini et al 2012, Ometto et al 2013, Achard et al
2014). In the emerging hot spot map of biomass loss,
the quantity of biomass lost within a bin drives the
analysis, rather than the presence or absence of loss.

The maximum domain over which these types of
analyses can be run was formerly defined by the
processing power of the machine used to run the
analyses. Recent and rapid advances in cloud
11
computing and parallel processing have removed this
barrier, such that complex data analysis over both
small and large regions is possible and sensitivity of
results to different parameters can be assessed. We
have demonstrated an approach for quickly and
dynamically assessing emerging clusters of forest loss,
and the analysis can be re-run for new temporal
windows as additional time steps are added. Moving
forward, analysis of forest monitoring data using the
presented approach could help corporate sustainability
officers, environmental groups, resourcemanagers, and
governments gain rapid insights on where to focus
conservation and management interventions for cus-
tom areas and time periods of interest.

5. Conclusions

The acquisition of satellite data with decreased latency
times is providing massive streams of near real-time



Figure 9. Comparison of emerging hot spot results for Brazil when the analysis was run based on (a) point counts of forest loss; and
(b) biomass loss values associated with forest loss. Neighborhood distance: 71.3 km.

Environ. Res. Lett. 12 (2017) 024012
data to the remote sensing research community. The
key to applying these new data streams in a forest
conservation context will be to process and analyze
them quickly, turning raw data into actionable insights
that facilitate timely and well informed management
decisions. Continued innovation in both software and
cloud computing will enable the approach outlined
here to be applied in novel ways to allow greater
understanding of, and better management of, complex
environmental systems.
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