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Abstract
Access to seasonal climate forecasts can benefit farmers by allowing them to make more informed
decisions about their farming practices. However, it is unclear whether farmers realize these benefits
when crop choices available to farmers have different and variable costs and returns; multiple
countries have programs that incentivize production of certain crops while other crops are subject to
market fluctuations. We hypothesize that the benefits of forecasts on farmer livelihoods will be
moderated by the combined impact of differing crop economics and changing climate. Drawing
upon methods and insights from both physical and social sciences, we develop a model of farmer
decision-making to evaluate this hypothesis. The model dynamics are explored using empirical data
from Sri Lanka; primary sources include survey and interview information as well as game-based
experiments conducted with farmers in the field. Our simulations show that a farmer using seasonal
forecasts has more diversified crop selections, which drive increases in average agricultural income.
Increases in income are particularly notable under a drier climate scenario, when a farmer using
seasonal forecasts is more likely to plant onions, a crop with higher possible returns. Our results
indicate that, when water resources are scarce (i.e. drier climate scenario), farmer incomes could
become stratified, potentially compounding existing disparities in farmers’ financial and technical
abilities to use forecasts to inform their crop selections. This analysis highlights that while programs
that promote production of certain crops may ensure food security in the short-term, the long-term
implications of these dynamics need careful evaluation.
1. Introduction

Although farmers have historically adapted to
seasonal fluctuations in weather, they now face
unprecedented shifts in climate patterns (Morton
2007, Senaratne and Scarborough 2011). Increasing
temperatures as well as shifting rainfall patterns are
expected to negatively impact global agricultural
output (Funk and Brown 2009, Quiggin et al 2010,
Lobell et al 2011, Gourdji et al 2013). Farmers in
© 2017 IOP Publishing Ltd
sub-Saharan Africa and South Asia are expected to be
particularly impacted by climate change because
these regions already have high temperatures and less
adaptive capacity (Schmidhuber and Tubiello 2007,
Skoufias et al 2011, IPCC 2014).

Fortunately, strategies that help farmers adapt to
climate change can benefit both farming productivity
and revenue (Falco et al 2012).Although infrastructure-
driven strategies (such as building new reservoirs) often
drive policy conversations, soft adaptation techniques
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(such as seasonal forecasts) can also buffer farmers from
climate risks (Sovacool 2011). Access to weather
information is often positively correlated to changes
in farming practices (Wood et al 2014), with seasonal
forecasts, in particular, having considerable potential to
improve livelihoods in regions with high inter-annual
rainfall variability (Roncoli 2006, Ash et al 2007,
Ziervogel and Opere 2010, Hansen et al 2011). Such
forecasts can be used by farmers, for example, to inform
their crop diversification strategies by helping them
decide which crops to plant (Crane et al 2010).

Both field and modeling approaches have been
used to evaluate the impact of forecasts on agricultural
communities (Bharwani et al 2005, Patt et al 2005,
Ziervogel et al 2005, Roncoli 2006, Ash et al 2007,
Everingham et al 2008, Crane et al 2010, Hansen et al
2011, Balaji and Craufurd 2014, Roudier et al 2014,
Wood et al 2014, Choi et al 2015, Vervoort et al 2016).
Although field studies capture real-world responses to
forecasts, their findings can be limited when longitu-
dinal data are absent (Patt et al 2005, Ash et al 2007,
Hansen et al 2011). Thus, empirically-grounded
agricultural system models play a critical role in the
assessment of forecast benefits since they allow for long-
term assessment and can take into account the
probabilistic realizations of the forecast (Ash et al 2007).

Given the complex and simultaneous interactions
among biophysical, social, economic, and perceptual
factors in farming communities, a coupled natural and
human systems framework is critical to developing a
comprehensive understanding of the effectiveness of
adaptation strategies (Liu et al 2007, Nay et al 2014).
Accordingly, agricultural system models include
complex dynamics to account for the various factors
that shape farmers’ immediate environments and
subsequent decisions (Graeub et al 2016, Jain et al
2015). Although market dynamics are often incorpo-
rated into modeling studies (e.g. Acosta-Michlik and
Espaldon 2008), the combined impact of forecast use
and different crop economics (i.e. costs and return
dynamics of subsidized vs. market-driven crops) on
farmer livelihoods has not received much attention.
Bharwani et al (2005) show that garden farmers in the
Limpopo province of South Africa who plant
butternut squash, a more expensive crop with a
perceived guaranteed return, would have much higher
income in a drier climate scenario. However, it is
unclear, how the crop economics would have affected
Limpopo farmers’ incomes in a wetter climate
scenario. Various countries around the world,
including India, Qatar, and the United States have
policies that incentivize production of certain crops
(Fader et al 2013). Since subsidies and company
contracts can greatly change the economics of crops
and subsequent farmer decisions, the interplay
between the physical and economic environments
needs to be explicitly evaluated to develop a
comprehensive understanding of seasonal forecast
benefits and limitations.
2

Thus, the primary objective of this study is to
assess the impacts of seasonal forecast use on crop
diversification in a system with varying crop econom-
ics (i.e. costs and returns). The specific questions we
aim to answer for our study area are:
1.
 Could incorporating forecasts into planting deci-
sions generate higher net agricultural income for
a farmer?
2.
 How do varying crop economics moderate the
effect of different climate conditions on changes
in net agricultural income?

The dry zone of Sri Lanka, a region with a large
agricultural sector and high inter-annual rainfall
variability (Gunda et al 2016), serves as an ideal case
study for this analysis for two reasons: 1) varying crop
economics and 2) forecasts availability. The three main
crops in the region (rice, soybean, and onion) have
notably different crop economics: rice production is
heavily subsidized and has a guaranteed market return
while onions are subject to the dynamics of market
supply and demand; soybean returns are partially
buffered by futures contracts, whereby farmers enter
agreements with businesses to buy the crop at a fixed
price irrespective of subsequent market fluctuations.
Furthermore, the Meteorological Department of Sri
Lanka develops ternary seasonal forecasts (i.e.
probabilities that rainfall will be dry, normal, and
wet) and shares this information with other govern-
ment agencies (Warnasooriya 2016). Therefore,
although available, seasonal forecasts are not currently
directly shared with farmers.

To evaluate the objectives, this study draws upon
diverse research expertise and incorporates methods
and insights from several fields, including hydrology,
social psychology, geography, and behavioral econom-
ics to develop an integrative model on a system
dynamics platform. We use both quantitative and
qualitative data to inform and develop our empirical-
ly-based model, including games in the field to
develop decision rules regarding how farmers translate
seasonal climate forecast information to farming
decisions; when games are designed to emulate the
local environment, farmers’ hypothetical choices can
approximate real-life behaviors and thus, provide
considerable insight (Kühberger et al 2002, Kang et al
2011). Our simulation results suggest that by using
seasonal forecasts, farmers’ average agricultural
income generally increases, albeit with greater variance
in income than baseline farmers. Although further
work is needed to understand the impact of social
interactions on farmers’ crop selection decisions, our
analysis indicates that the current economic structure
will aid livelihood improvement of a forecast-using
farmer under a drier climate scenario and reduce
income disparity under a wetter climate scenario. Our
work extends the ongoing assessment of seasonal
climate forecast benefits for farmer livelihoods both
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conceptually and methodologically by: 1) explicitly
incorporating the impacts of crop economics on
farmer livelihoods in a changing climate and 2) using
games to derive forecast interpretation decision rules.
2. Methods
2.1. Site description
Our study region is System MH, where approximately
56% of the working population is involved in
agriculture (Department of Census and Statistics
2012). SystemMH, located in the Galenbindunuwewa
district, is one of the irrigation systems managed by
the Mahaweli Authority of Sri Lanka (figure 1). The
MH region is chronically water-stressed, in part due to
its location in the dry zone, which receives approxi-
mately 70% of its annual rainfall during the wet season
(from Dec-Feb; locally referred to as ‘maha’) and
relatively little rainfall during the dry season (from
3

May-Sept; locally referred to as ‘yala’) (Brewer et al
1992, Gunda et al 2016). The Huruluwewa reservoir
was constructed and later connected to Sri Lanka’s
major irrigation system to buffer the MH region from
the high seasonal rainfall variability (Rathnayake
2016). However, decreasing rainfall coupled with
minimal inflows from the Mahaweli system has meant
that Huruluwewa is often rain-fed and under-capacity
during the dry season (Hewavisenthi 1992, Mahaweli
Authority of Sri Lanka 2004–2013, Abeynayaka et al
2007, Eriyagama and Smakhtin 2010, Gunda et al
2016, Rathnayake 2016).

When water is sufficient during the dry season (for
e.g. in 2015), farmers in MH predominantly grow rice
(65% of area) followed by soybean (14%) and some
onion (1%) for revenue; the remaining production
area is either devoted to vegetables for household
consumption (2.4%), maize (<1%), other crops
(<1%), or left fallow (16%) (Berundharshani and
Munasinghe 2015). Growing rice is generally preferred
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over other food crops like soybean or onion because
rice is the staple food of the country (Brewer et al 1992,
Weerakoon et al 2011); soybeans are typically sold for
use as animal feed and onions are a cash crop. The
water requirements for soybeans are comparable to
those of rice but soybeans are more tolerant of
drought; in a drier climate, however, onions do much
better (Brouwer and Heibloem 1986). Generally, there
is sufficient water in the Huruluwewa reservoir to grow
onions more often than rice or soybean (figure S1).
However, the input and hired labor cost of growing
onions is much greater, up to five times the cost
for rice and soybean (Department of Agriculture
2010–2011). The cost of planting rice is the lowest of
the three crops due to various government support
programs, such as heavily subsidized fertilizer specifi-
cally for rice (Davis et al 2016). An additional factor
discouraging onion production is the volatility of
returns associated with the crop relative to that of rice
and soybean: the prices for onion are subject to market
fluctuations while the returns for rice and soybean are
relatively fixed, due to government price ceilings and
futures contracts respectively (field notes). Farmers
typically plant only one crop per field during the season
given that the crops require different land preparation
andmanagement efforts. At the start of the season, if the
reservoir levels are visibly low, farmers typically leave
their fields fallow. Most of the farmers receive
information about water availability from their farmer
organization representatives, who meet with the
Irrigation Engineer, Department of Agriculture, and
other government officers (field notes).
4

2.2. Model development & data sources
The modeling effort is centered on a simplified
representation of an individual farmer living in System
MH. Interactions between individuals (i.e. social
components) and extreme weather events were outside
the scope of the model. The model is built on a system
dynamics platform (specifically Powersim Studio
10 Expert) with a seasonal time step for a period of
64 dry seasons, which occur once per year. The system
dynamics platform was selected because it provides a
visual framework that allows for easier integration of
the diverse variables in the study. The model is
publically available and can be accessed via the
openabm platform: www.openabm.org.

The three main components of the model
structure are hydrological, economic, and behavioral
(figure 2). The objective of the model is to evaluate the
impact of seasonal forecasts on a farmer’s net
agricultural income when their crop choices have
different and variable costs and returns. Net agricul-
tural income is defined as the difference between the
costs and revenues associated with the crop the farmer
plants on their field. In the model, net agricultural
income is a function of the crops planted, actual
seasonal weather, and market returns. Three climate
scenarios are simulated in the model: 1) climate
consistent with historical conditions, 2) drier climate,
and 3) a wetter climate. Each season, the forecast is
sampled from the specified climate scenario and the
actual weather is subsequently sampled (moderated by
the forecast skill) from the forecast. To understand the
impact of the seasonal forecasts, the farmer’s behavior

http://www.openabm.org


Table 1. Summary of the variables and related data sources for the various model components.

Model

component

Variable Source Notes

Hydrology Climate scenarios Gunda et al (2016) Historical climate is defined as 40% dry −40% normal −20%

wet (additional details in the ‘Climate scenarios’ subsection in

appendix A)

Forecast skill Warnasooriya (2016) The actual weather observed accurately reflects the seasonal

forecast 70% of the time (additional details in the ‘Actual

weather’ subsection in appendix A)

Economic Crop costs and returns Department of Agriculture

(2010–2011)

Crop costs (including both labor and materials) and returns

are derived from agricultural statistics of the region; onions

are approximately 5 times the cost of rice and soybeans and

also have a more variable return (additional details in the

‘Market return’ subsection in appendix A)

Behavioral Interpretation of

seasonal forecast

Game Farmers generally preferred to plant soybean except when the

probability of wet or dry weather is high, in which case

farmers opted to plant rice or onions respectively (additional

details in the ‘Crop decisions’ subsection in appendix A)

Perceived effectiveness

(e.g. weather forecast)

ADAPT-SL survey As farmer’s predictability of rainfall decreased, they were less

likely to plant non-rice food crops (additional details in the

‘Trust heuristics’ subsection in appendix A)

Trust heuristics Multiple sources Farmer’s trust, which is based on previous experiences,

influences behavior in the future (additional details in the

‘Trust heuristics’ subsection in appendix A)

Education Game and ADAPT-SL

survey

Survey data shows that farmers who are less educated were less

likely to state that they could predict rainfall. Results from the

game indicate that less educated farmers planted more rice

even at low probabilities of wet season whereas more educated

farmers moved more quickly towards planting rice as the

probability of a wet season increased (additional details in the

‘Education’ subsection in appendix A)

Other Crop yields Brouwer and Heibloem

(1986)

Soybeans and rice have higher yields in wet climate while

onions perform better in a dry climate (additional details in

the ‘Crop yield’ subsection in appendix A)

Environ. Res. Lett. 12 (2017) 034001
when using seasonal forecasts (‘Adaptive: Forecasts’) is
compared to: 1) a farmer who only uses climate
conditions (i.e. the climate condition from which the
forecast was sampled) to select crops (‘Baseline:
Climate’) and 2) a farmer who consistently plants rice
every season regardless of the weather (‘Baseline: Rice
Alone’).

The model variables and assumptions, including
how the various empirical data sources were consulted
to define model variables and dynamics, are described
in detail in appendix A (available at stacks.iop.org/
ERL/12/034001/mmedia). A summary of the primary
variables is provided in table 1 and variables that were
excluded from analysis are listed in table S1. Brief
descriptions about the primary sources consulted for
the model are provided below:
�
 Game: Since games can provide insight into
decision processes (Kühberger et al 2002, Castillo
et al 2011, Kang et al 2011, Nay et al 2014), we
designed a contextualized, dynamic game to investi-
gate how farmers in the field respond to and
interpret weather forecasts within their specific
environment. Specifically, the farmers were provided
with a randomly selected seasonal forecast (figure 3)
and asked to select which crops (if any) they would
5

plant for the season. Once the farmers’ crop choices
were recorded and associated costs paid to the
banker, the wheel was spun to determine the actual
weather and subsequent returns for the crops
planted were paid to the farmers. The wheel was
then reset for the next season. The farmers then
planted crops given the new forecast and their
current income. This process was repeated for a
few rounds. The game was played with 49 farmers
in System MH in January 2016, in 4 groups of
12–13 players per group. All of the crop selections
made by the farmers were analyzed relative to
the weather forecasts and other variables (e.g.
education) to understand how farmers inter-
preted the probabilistic nature of the forecasts
(additional details about the decision heuristics
are provided in appendix A). A description of
the game method (including instructions) is
provided in appendix B.
�
 Surveys: The primary survey consulted (hereafter
referred to as ‘ADAPT-SL Survey’) was conducted
for over 800 randomly selected dry zone rice
farmers as part of the larger project in which this
study is embedded (https://my.vanderbilt.edu/sri
lankaproject/); the ADAPT-SL Survey captures

http://stacks.iop.org/ERL/12/034001/mmedia
http://stacks.iop.org/ERL/12/034001/mmedia
http://https://my.vanderbilt.edu/srilankaproject/
http://https://my.vanderbilt.edu/srilankaproject/
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various information including farmer demo-
graphics and attitudes towards adaptation practi-
ces. The second survey consulted was a household
survey (hereafter referred to as ‘System MH
Survey’) conducted during the 2015 dry season to
characterize farming behaviors in the study area
(Berundharshani and Munasinghe 2015).
�
 Interviews: Data from 200 farmer interviews
(140 of which were all conducted in and near
System MH in late 2015) as well as interviews
with officials (representing both governmental
and non-governmental agencies) working on areas
of irrigation, agriculture, and climate provided
information about the context in which farmers
make decisions.

Given the presence of stochastic variables in the
model, each climate condition was simulated 1 000
times and the results were aggregated to capture general
trends. Model outputs from Powersim were written to
Microsoft Excel and processed in R. Given the stylized
6

nature of our modeling effort, we focus on pattern-
oriented modeling for verification and validation
(Grimm et al 2005). In addition to ensuring accurate
formulation by reviewing output tables (Rykiel 1996),
we evaluated our model to ensure that it reproduced
predicted patterns (Ahmad and Simonovic 2000).
Sensitivity analyses were conducted to understand the
impacts of variable assumptions onmodel output. Each
of the variable values explored in the sensitivity analysis
(summarized in table S2)was simulated 1 000 times and
aggregated prior to comparisons.
3. Results

Model simulations for the three climate conditions
show that, generally, the adaptive farmer has a higher
average net agricultural income than either of the
baseline farmers, especially under the drier climate
scenario (figure 4). However, the adaptive farmer’s
income has the largest coefficient of variation of the
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three farmers in each of the climate scenarios
(table S3). The adaptive farmer has greater trust in
the weather forecast over time especially in the drier
climate scenario (figure S2) while the farmer using
general climate information has marginally greater
trust in the market over time (figure S3); the rice-alone
farmer’s trust in the market does not change over time
since rice is not subject to market fluctuations
(figure S3). The adaptive farmer chooses all four crop
options over the course of the simulation while the
farmer using general climate information chooses
between rice and soybeans (figure 5).

When education levels are varied, results show that
the less educated, adaptive farmer has lower average
net agricultural income than the more educated,
adaptive farmer in the historical and drier climate
scenarios (figure 6). In the wetter climate scenario,
however, there is no difference in net agricultural
7

income between the two farmers. Generally, the less
educated, adaptive farmer has lower trust in the
forecast and market than the more educated, adaptive
farmer (figures S4 and S5). The more educated,
adaptive farmer generally plants more soybeans across
the climate scenarios as well as more onions in the
drier climate scenario (figure 7).

All of the results above were simulated with a
forecast skill of 70%, the current accuracy of
Meteorological Department of Sri Lanka’s forecasts.
A sensitivity analysis of forecast skill shows that as
forecast skill increases, the adaptive farmer’s net
agricultural income and trust in the forecast both
generally increase as well (figure 8). Changing the
initial trust level of forecasts or threshold at which
trust in the forecast is lost does not affect the adaptive
farmer’s net agricultural income (figures S6 and S7).
Changing the initial trust level of market or the
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threshold at which farmer loses trust in the market,
however, both have a significant impact on the farmer’s
net agricultural income (figures S8 and S9). As the
adaptive farmer’s expected return for the market
approaches the maximum return values, the farmer’s
net agricultural income decreases (figure S10).
4. Discussion

Our empirically-grounded simulation reproduces
multiple patterns that are expected in the real system,
thereby increasing the confidence with which we can
interpret the model results. Notably, we would expect a
farmer’s cumulative net agricultural income to
increase over time; farmers would pursue another
livelihood if they were chronically losing money on
their farming operations. We would also expect the
farmer who only plants rice to have a lower coefficient
8

of variation in their net agricultural income than a
farmer who depends on market-dependent crops.
Both of these patterns are verified by our model
outputs (figure 4). Our current field data lack the
resolution necessary to capture differences in net
agricultural income as a function of education, so
additional data collection is needed to assess the model
results presented in figure 6.

Consistent with empirical findings of Patt et al
(2005) and Balaji and Craufurd (2014), our simulation
indicates that the adaptation practice of using seasonal
forecasts could improve economic outcomes. In other
words, our model results show that by using forecast
information, the adaptive farmer has higher average
net agricultural income than a farmer who only plants
rice or a farmer who selects crops based only on
average climate information. The difference in income
is primarily driven by the diverse portfolio (i.e.
includes all four options) of crops planted by the
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adaptive farmer over the 64 seasons in the simulation,
specifically the prevalence of onions under the drier
climate scenario. The modeling does not take into
account, however, how an influx of onions from
neighboring farming areas into the market could
systematically drive down the returns for the crop.
Crop diversification has been recognized as a
significant factor in increasing resilience of agricultural
systems (Mijatović et al 2013). However, structural
constraints (such as subsidy programs) are a
contributing factor in farmers’ lack of interest in this
adaptation strategy (Lin 2011).

When water resources are plentiful, on the other
hand, similar income profiles emerge from differing
mixes of crop choices. In particular, the adaptive
farmer with greater than grade 9 education plants
more soybeans than onions or rice but has the same
average income as the adaptive farmer with less than
grade 9 education. These dynamics highlight that the
impact of the current crop economics of the crops on
farmer livelihoods varies depending on the climate
scenario, with the drier climate scenario benefiting
farmers who are willing to take more risks (i.e.
9

planting onions, a crop dependent on market
dynamics) while the wetter climate scenario reduces
income disparity between the farmers. Our results
indicate that when resources are scarce (i.e. drier
climate scenario), varying decisions (i.e. use of forecast
vs just planting rice) could increase income disparities
between groups. This is consistent with Fum and
Holder (2010)’s findings that disparities in natural
resources can exacerbate income inequality. The
accumulation of wealth by some farmers can have a
compounding effect, making these farmers more able
to invest in new technologies, which increase
production and income, and could further buffer
them from environmental changes (Reardon and
Taylor 1996, Reardon et al 2000).

In addition to higher average incomes, the
adaptive farmer (regardless of education levels) has
higher income variability than the baseline farmers, a
pattern generally observed across farmers using
forecasts (Ash et al 2007). Farmers who lack the
financial capital to buffer them from the income
variability might be more reluctant to diversify away
from rice, a crop with stable returns; a general
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reluctance to diversify has been noted by many field
studies including Thiruchelvam (2005). An analysis of
ADAPT-SL survey data shows that high economic
status was positively associated with planting non-rice
food crops during the dry season (Burchfield and
Gilligan 2016), further indicating that crop diversifi-
cation is not an equally accessible adaptation strategy.
In our modeling effort, we assume that farmers have
the necessary capacity to obtain loans as needed (i.e.
their crop selections are not constrained by their actual
bank accounts). This is in large part due to the
presence of a debt economy in Sri Lanka. In future
iterations, the model could be extended to explore the
impact of economic as well as other constraints such as
imperfect access to forecasts or markets and biophysi-
cal limitations on farmer livelihoods (Peng et al 2004,
Hansen et al 2011, Dilling and Lemos 2011, Esham
and Garforth 2013, Berundharshani and Munasinghe
2015, Jones et al 2015, Roncoli 2006).

Our games in the field show that, while farmers’
understanding of the probabilistic forecasts has
generally been mixed (with some arguing farmers
are unable to understand them and some showing
otherwise (Patt and Gwata 2002, Hansen et al 2004,
Roncoli 2006, Lemos and Dilling 2007, Suarez and Tall
2010, Unganai et al 2013)), farmers in System MH are
responsive to forecasts, particularly to the probabilities
of wet and dry seasons. Changes in the probability of a
normal season did not seem to greatly influence
farmers’ crop selection, a pattern observed in other
countries (Grothmann and Patt 2005). Additionally,
farmers’ responses to forecasts were moderated by
education, which was incorporated into our assess-
ment, and coordination among farmers, which was
outside the scope of this analysis. The impact of social
interactions on attitudes towards use of climate
observation is not insignificant (Thomas et al 2007,
Acosta-Michlik and Espaldon 2008, Balbi and
Giupponi 2009, Crane et al 2010, Marshall et al
2011, Berger and Troost 2014, Muita et al 2016), and
could positively influence farmers’ adaptation (Esham
and Garforth 2013, Truelove et al 2015). Extending
our single-agent model to incorporate multiple
autonomous agents could enable us to actively explore
the impacts of heterogeneity and coordination on
farmer livelihoods, thereby improving our under-
standing of who might use forecast information (Jain
et al 2015, Vogel et al 2015). Additional field work is
needed to characterize the heterogeneity of farmers
(e.g. differences in risk tolerances, prior experiences
with extreme weather events such as floods, and
perceptions of climate change) and determine the
relative importance of social information vs a farmer’s
own experiences in influencing their adaptation
behavior (Berger 2001, Hansen et al 2004, Sabater
and Sierra 2005, Withange et al 2009, Karali et al 2014,
Pérez et al 2016).

Consistent with findings from other studies (e.g.
Ziervogel et al 2005), our sensitivity analysis confirms
10
the importance of forecast skill on farmer outcomes; as
the forecast skill increases, not only does the farmers’
trust in the forecast increase but the increased accuracy
results in higher agricultural income. For a fixed
forecast skill, however, changing the farmer’s initial
trust levels or trust threshold for the forecast has
minimal impact on the farmer’s net income. Market-
related variables such as the market trust threshold and
the ratio of actual to maximum return, on the other
hand, have large impacts on net income; as the farmer
became more tolerant of risks with the market, the
farmer was more likely to plant onions, the more
profitable option. Therefore, providing farmers with
more information about market conditions (currently
lacking in Sri Lanka) could have a notable impact on
farmers’ financial outcomes. Acosta-Michlik and
Espaldon (2008) recognize that both production
and market support are needed adaptations in a
changing climate.

Although increased rainfall variability is the
dominant climate change impact expected in Sri
Lanka, farmers in the dry zone have observed a shift in
the local climate: droughts have been getting worse, an
observation that is consistent with analysis of
meteorological data (Seo et al 2005, Esham and
Garforth 2013, Truelove et al 2015, Gunda et al 2016).
Since accurate perception of weather patterns has been
shown to be a significant predictor of adaptation, it is
not surprising that Sri Lankans have begun adapting
by managing their farming practices or diversifying
their income, with changing crops being the most
popular on-farm adaptation strategy (Esham and
Garforth 2013, Piya et al 2013, Truelove et al 2015).
Although farmers have reported that adaptation
strategies have improved crop productivity, lack of
information on climate change has been a notable
obstacle to their adaptation (Esham and Garforth
2013). Therefore, information access issues need to be
also considered in adaptation assessments.

Overall, our research adds to the growing literature
that providing forecasts to farmers has considerable
potential for helping farmers adapt to the changing
climate. Our results highlight the importance of
understanding and incorporating the impact of
varying crop economics on farmer decisions in
adaptation assessments. Additional data and research
is needed to continue to characterize farmer behavior
and to understand leverage points for enhancing
adaptive capacity. This additional work is especially
critical since our results indicate that when water
resources are scarce (i.e. drier climate scenario), farmer
incomes could become significantly stratified, poten-
tially compounding existing disparities in farmer’s
financial and technical abilities touse forecasts to inform
their crop selections. System MH is just one of many
regions that promote the production of certain crops
through subsidies. While such programs could ensure
food security in the short-term, the long-term
implications of these dynamics have received limited
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attention. Our modeling approach, which is publically
available via openabm, could be easily modified to look
at the specific dynamics of varying crop economics in
other regions of the world (for e.g. in the Limpopo
province of South Africa).
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