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Abstract
Depletion of groundwater aquifers across the globe has become a significant concern, as
groundwater is an important and often unsustainable source of irrigation water. Simultaneously, the
field of water resource management has seen a lively debate over the concepts and metrics used to
assess the downstream re-use of agricultural runoff, with most studies focusing on surface water
balances. Here, we bring these two lines of research together, recognizing that depletion of aquifers
leads to large amounts of groundwater entering surface water storages and flows by way of
agricultural runoff. While it is clear that groundwater users will be impacted by reductions in
groundwater availability, there is a major gap in our understanding of potential impacts downstream
of groundwater pumping locations. We find that the volume of unsustainable groundwater that is
re-used for irrigation following runoff from agricultural systems is nearly as large as the volume
initially extracted from reservoirs for irrigation. Basins in which the volume of irrigation water re-
used is equal to or greater than the volume of water initially used (which is possible due to multiple
re-use of the same water) contain 33 million hectares of irrigated land and are home to 1.3 billion
people. Some studies have called for increasing irrigation efficiency as a solution to water shortages.
We find that with 100% irrigation efficiency, global demand for unsustainable groundwater is
reduced by 52%, but not eliminated. In many basins, increased irrigation efficiency leads to
significantly decreased river low flows; increasing irrigation efficiency to 70% globally decreases total
surface water supplies by ∽600 km3 yr�1. These findings illustrate that estimates of aquifer depletion
alone underestimate the importance of unsustainable groundwater to sustaining surface water
systems and irrigated agriculture.
1. Introduction

Groundwater is critical to global food production,
supplying nearly half of all water used in irrigated
agriculture [1, 2]; surface water (e.g. rivers and
reservoirs) supplies the rest. Both satellite- and
model-based estimates of global groundwater depletion
show that aquifers in important agricultural regions—
including parts of India, China, and theU.S., theworld’s
largest food producing nations—are losing mass [1,
3–7], and cannot continue providing current levels
of groundwater supplies indefinitely. Unsustainable
groundwater provides as much as ∽20% of global
irrigation water supplies [4, 6], and in both China and
© 2017 IOP Publishing Ltd
India this water is directly responsible for approximately
one quarter of crop production [8, 9]. Groundwater
pumping increases surface water storage volumes and
river fluxes over several major agricultural aquifer
regions, including the High Plains aquifer in North
America, theNorthChinaPlain, andparts ofnorth-west
India [2]. These increases in surface water storage are
due to inefficiencies in water extraction, transport, and
use, all of which can lead to additional runoff.

Here, we use the definition of unsustainable
groundwater (UGW) most commonly utilized by
macro-scale hydrology modeling [5, 6, 10] and remote
sensing [3] analyses: the average annual groundwater
extracted in excess of average annual recharge. While
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Figure 1. The unsustainable groundwater re-use cascade. Each time unsustainable groundwater (UGW) is extracted for irrigation, a
portion of the extracted water becomes groundwater recharge and/or runoff due to irrigation inefficiencies. Any UGW that becomes
groundwater recharge can be re-extracted locally, initiating a local cycle. UGW that becomes runoff (surface or sub-surface through
groundwater recharge) enters the river system and travels downstreamwhere it can be re-extracted, initiating a downstream cascade of
local cycles.
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this definition does not account for potentially
complex surface water-groundwater interactions [1],
it serves as a large-scale indicator of groundwater
depletion [4–6, 10].

The efficiency of irrigation water use is typically
quantified using the classical irrigation efficiency
concept [11, 12]. Classical irrigation efficiency is
defined as the ratio of beneficial crop water use to
gross irrigation water extracted from water sources.
This ratio is always<1 due to inevitable water losses to
‘non-beneficial’ (i.e. non-crop) evapotranspiration,
conveyance losses (e.g. leaky canals), or on-field losses
due to runoff and percolation. While classical
irrigation efficiency may be sufficient for assessing
field-scale water use efficiency, it is now recognized as
insufficient at larger scales [13–15], leading multiple
studies to highlight the need to understand return
flows from irrigated areas [13–18], and the develop-
ment of over a dozen different metrics to quantify
irrigation water re-use at field- to basin-scales [13].
Alternative metrics to classical irrigation efficiency
include the basin closure concept, which assesses water
use efficiency at a whole-basin scale by comparing basin
inflows to outflows [19], the water re-use index, which
quantifies surface water re-use for irrigation, industrial,
and domestic water use, along a river transect [14], and
the net efficiency concept, which aims to assess what
proportion of agricultural runoff is suitable for re-use
[15]. See ref. 13 for a thorough review of the topic.

Despite an ongoing debate over the usefulness of
classical versus alternative irrigation efficiency metrics
[13, 20], groundwater has largely been left out of the
discussion. Most alternative metrics either cannot
separate unsustainable groundwater (UGW) from
analyses of sustainable groundwater and surface water
supplies, or explicitly assume that no UGW is used
[e.g. 14]. Some alternativemetrics include groundwater
as an input to the basin system [13, 21], but do not
2

separate sustainable from unsustainable sources.
Classical irrigation efficiency is a misleading indicator
of water use efficiency in basins that rely on UGW for
irrigation [21, 22], because a fraction of the unused
portion of extracted UGW can return to both surface
water and groundwater pools. Estimates of global
average classical irrigation efficiency range from 37%
to 50% [11, 12], indicating that significant amounts
of extracted groundwater become runoff and
recharge. Runoff and recharge due to inefficient
irrigation can then be re-extracted and used either
within the local region (through groundwater
recharge) or downstream (through rivers), leading
to a ‘cascade’ of re-use cycles [13] (figure 1).

Groundwater extractions can alter surface water
storage volumes and river flows [2, 23]; groundwater is
also known to contribute to ecologically important
river low flows [4, 24]. This implies that as aquifers are
depleted, a reduction in groundwater pumping will
impact surface water storage and flows. Groundwater
pumping may also be reduced if efforts are made
to increase classical irrigation efficiency [25, 26]; while
net water savings may be achieved this way, it is
important to assess the impact of such changes on
river flows, especially in light of low flows required to
sustain riverine ecosystem services [e.g. 24].

We introduce both the UGW irrigation re-use
index R, as well as the first estimate of the minimum
amount of global unsustainable groundwater required
to sustain the current agriculture system (i.e. UGW
demand in a 100% irrigation efficiency scenario). We
also quantify how UGWuse and re-use contributes to
ecologically important low flows in river systems. The
unsustainable groundwater re-use index R quantifies
how many times extracted UGW is re-used within a
river basin due to irrigation inefficiencies. This index
allows UGW re-use to be quantified independently
from surface water re-use. Theminimumunsustainable
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groundwater dependence is the quantity of UGW
extraction required to meet irrigation water require-
ments under a classical 100% irrigation efficiency
scenario. Such a scenario is hypothetical, but themetric
is useful because it quantifies the lower bound of the
current agriculture system’s reliance on unsustainable
water sources. Quantifying UGW contribution to river
low-flows shows the current reliance of riverine
ecosystems on the human activity of UGW pumping.
r i
2. Methods

We calculate gross irrigation water requirements,
UGWextraction, and the amount of UGW that enters
river systems and groundwater recharge using the
global gridded Water Balance Model (WBM) [10, 27]
(further model details are in supplemental methods
available at stacks.iop.org/ERL/12/034017/mmedia).
WBM is a process-based, daily time step model that
simulates vertical water exchange between the land
surface and atmosphere, and horizontal water
transport through runoff and stream networks; it
includes representations of hydrologic infrastructure,
land use/land cover types, and irrigation. The model
simulates these water flows on a daily time step; results
shown here are annual aggregates. See references [10]
and [27] for full model documentation. UGW that
enters streams by way of runoff and baseflow is tracked
downstream through a river network, and can be
extracted from the (well-mixed) rivers, large reser-
voirs, and groundwater recharge pools to meet
irrigation water requirements. In all WBM simula-
tions, UGW is extracted and applied only to irrigated
cropland. Return flows from cropland are assumed to
directly enter rivers and groundwater recharge. Use
and re-use of UGW is tracked through model storages
and flows, including soil moisture, evapotranspiration
(but not subsequent precipitation), reservoir storage,
groundwater storage, baseflow, and river discharge. All
results reported here are 30-year mean annual values,
and one standard deviation of interannual variability
of this climatology is given based on contemporary
distribution of irrigated crops and weather variability
from 4 different climate input datasets (model details
in supplemental materials and methods). Land use,
including irrigated areas, remain constant through
all simulations, as these simulations are meant to
represent the current agricultural system.

2.1. Irrigation
Crop maps of both irrigated and rainfed land, along
with crop type and season length are from the
MIRCA2000 database [28]. National statistics on the
ratio of surface water (from rivers and reservoirs) to
groundwater (groundwater recharge and UGW)
supplies used for irrigation at a country level [11] are
used to determine source of irrigation water with-
drawals in the Water Balance Model (WBM). WBM’s
3

grid-cell level irrigation water extractions occur in
three stages: (1) surface water and renewable ground-
water (i.e. groundwater recharge) are extracted in the
FAOSTAT-based ratio of surface- to groundwater [11] if
possible; (2) if (1) does not fully meet all demand, then
remaining irrigationwaterdemand is fulfilled using any
remaining surface water or renewable groundwater, if
possible; and (3) if irrigation water demand is still not
met after (2), then UGW is extracted to fulfill the
remaining demand. All other methods for irrigation
water demand and application are based on reference
[34], as described in reference [10] and appendix A
of reference [27]. See supplemental methods for
validation of UGWextractions and total groundwater
extractions.

The inefficient portion of all irrigation water
extractions (the difference between gross and net
irrigation water volumes) is split into three portions.
First, it can evaporate tomeet local evaporative demand:

E ¼ ðPETi � AETiÞ � IrrAreaFraci ð1Þ

where PETi is the potential evapotranspiration volume
for grid cell i, AETi is the actual evapotranspiration for
entire grid cell i (calculated after applying irrigation
water to soils within the irrigated area), and
IrrAreaFraci is the fraction of grid cell i that is
irrigated. After evaporation occurs, the remaining
inefficient portion of irrigation water extractions is
divided equally between surface runoff and ground-
water recharge. Changing this distribution of return
flows has little impact (1%–8%) in total UGW re-use,
although it alters the relative proportion of UGWr

through surface water versus groundwater. See
supplemental methods for a sensitivity analysis of
this parameterization of return flows.

2.2. Tracking UGW
WBM tracks UGW, as well as non-UGWwater sources
(precipitation and snowmelt) of water through all
model stocks and flows. At each daily time step, the
proportion of each stock is updated based on inflows
and outflows of water, and that water’s proportional
composition of water sources. We assume all stocks are
well mixed. In this way, a unit of water retains its
identity as UGW even as it passes through surface
water flows (the atmospheric portion of the hydrologic
cycle is not modeled). We define UGW extracted
directly from groundwater as UGWi, and UGW
extracted from surface water flows and groundwater
recharge pools as UGWr.

2.3. Unsustainable groundwater re-use metric, R
Basins that re-use UGWaremore dependent upon this
unsustainable source of water than estimates of aquifer
depletion alone imply. We define a dimensionless
UGW re-use factor, R, as:

R ¼ UGW =UGW ð2Þ

http://stacks.iop.org/ERL/00/000000/mmedia
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2.4. Assessing ecological low-flows
Freshwater ecosystems depend upon a range of river
characteristics, including low-flows, high-flows, and
water quality [24]. Groundwater is known to support
ecologically important low-flows [4]; here, we assess
the role of UGW in maintaining these low flows.
Following refs. 4 and 24, we use Q90 as a measure of
ecologically important low-flows, where Q90 is the
monthly mean river discharge exceeded 90% of the
time over a 30 year model simulation period. To
quantify how increasing irrigation efficiency and
reductions in UGW availability will alter low flows,
we developed three model simulations, referred to
here as Baseline (Base), 70% Global Irrigation
Efficiency (GIE70), and No UGW (NoUGW). The
Base simulation tracks UGW under current (c. year
2000) conditions, as described above. In GIE70,
irrigation efficiency is increased to 70% (current
global maximum irrigation efficiency [11]) in all
model grid cells with irrigation. In NoUGW, irrigation
efficiency remains at current levels, but no UGWi is
extracted, and total irrigation demand is not met if
gross demand is greater than sustainable water
supplies. The GIE70 simulation represents a scenario
in which high irrigation efficiency is achieved globally,
and the NoUGW simulation represents a scenario in
which aquifer depletion or policy prohibits UGW
pumping.

2.5. A lower bound on unsustainable groundwater
dependence
River systems are a network of connected runoff,
discharge, water extractions, and return flows. There-
fore, a systems-analysis approach is required to assess
how increasing irrigation efficiencywill alter the balance
of total irrigation water demand, and supply from
sustainable versus unsustainable sources. To quantify
the effect of increasing irrigation efficiencies, we
simulated a series of incremental increases in the
national minimum irrigation efficiency: 34% (current
minimum national irrigation efficiency; 11), 40%,
50%, . . . , 100%. With each increase, the irrigation
efficiencies of all model grid cells that are below the new
minimumthresholdwere raised to that threshold.These
simulations represent hypothetical changes; we do not
propose pathways or timelines for implementing these
changes, but rather use these simulations to quantify the
potential lower bound for global UGWi demand. At
100%efficiency,UGWrgoes to zero, andgross irrigation
water demand is equal to net irrigation water demand.
The 100% irrigation efficiency scenario identifies the
minimum global UGWi dependence, i.e. the minimum
potential volume of UGWi that is required to meet
current irrigation water requirements.

2.6. Model uncertainty and validation
We assess the primary sources of uncertainty in this
analysis, which are: 1) climate input data sets, 2) rice
paddy percolation rates, 3) irrigation return flow
4

distribution between surface runoff and groundwater
recharge, and 4) within-basin hydro-infrastructure
uncertainty. See supplemental materials and methods
S1 for details of the uncertainty analysis. We find the
first three sources of uncertainty are small, altering
simulated UGW demands in the Base scenario by
<10% each. Uncertainty due to within-basin hydro-
infrastructure (e.g. canals), however, is larger. Altering
the modeled representation of canal infrastructure
results in simulated UGWdemands of 232 (±23) km3

yr�1 to 663 (±55) km3 yr�1 in the Base simulation.
This range closely matches the range of uncertainty in
aquifer depletion estimated by [6].

Simulated irrigation water demands—total, from
surface water, and from groundwater—are compared
to FAO-reported country-level statistics on irrigation
water use. Considering countries for which there are
comparable values for each category, the Pearson
Correlation Coefficient (R2) of WBM-simulations
compared to FAO data is 0.93 for irrigation water
withdrawals, 0.91 for groundwater withdrawals, and
0.75 for surface water withdrawals. We also find that
WBM simulates global and basin-level UGW volumes
that are generally similar to previous model studies
[4], though with notable discrepancies for some
basins. See supplemental materials and methods S2 for
further model validation details.
3. Results
3.1. A global budget of unsustainable groundwater
We use the following definitions:
�
 UGWi = initial UGW withdrawals from aquifers
�
 UGWr = UGW that is re-used by extraction from
rivers, reservoirs, and groundwater recharge.

We find that global UGWi withdrawn for irrigation
is 378 (±49) km3 yr�1, or ∽12% of gross irrigation
(3 244 (±240) km3 yr�1). By tracking re-use of this
water through rivers and groundwater recharge, we
find that UGWr is 357 (±62) km3 yr�1, which is
7%–15% of gross irrigation. TheWater BalanceModel
tracked UGWi through the surface components of the
hydrologic cycle, and identified the portion that enters
the atmosphere as crop ET and non-beneficial
evaporation, and discharges to the ocean and to
internal (endorheic) basins (figure 2). Note that the
total re-use volume (UGWr, 357 (±62) km3 yr�1)
represents both the efficient and inefficient water
volumes, so a significant portion of these extractions
return to rivers and groundwater recharge pools
numerous times (figure 1) through the simulation (i.e.
both local cycles and downstream cycles of re-use
occur) (figure 2, circular arrows).

Accounting for both UGWi and UGWr, we find
that overall UGW (UGWi and UGWr) contributes 238
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marked with an asterisk (�) are return flows from the inefficient portion of UGWr irrigation water use; numbers marked with a plus (þ)
are the efficient re-use of UGWr irrigation extracted from river and groundwater recharge pools. The total amount of UGWi and UGWr

contribution to crop evapotranspiration is 238 (±35) km3 yr�1, or 63% of UGWi; 145 (±18) km
3 yr�1 is from the efficient portion of

extracted UGWi; the remainder is from the efficient portion of UGWr re-used through rivers and groundwater recharge.
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(±35) km3 yr�1 to crop evapotranspiration (ET)
(figure 2). This crop ET volume is due to 145 (±18)
km3 yr�1 of direct use of the efficient portion of
UGWi, and an additional 42 (±9) km

3 yr�1 of crop ET
from the efficient portion of UGWr through
groundwater recharge and 49 (±11) km3 yr�1 of crop
ET from the efficient portion of UGWr through rivers.
In total, 63% (±9%) of UGWi extracted from aquifers
becomes crop ET. Only 97 (±8) km3 yr�1, or 26%
(±2%), of the volume extracted from aquifers leaves
river systems as discharge to the ocean and internal
(endorheic) basins (figure 2). UGWdischarge directly
to the ocean (not including internal basins) is 90 (±7)
km3 yr�1, or 0.25 (±0.02) mm Sea-Level Equivalent,
which is within the range of previous estimates
(0.02–0.8 mm) [7, 29]. An additional 43 (±13) km3

yr�1 is lost to non-beneficial evaporation from fields
and conveyance structures.

3.2. Unsustainable groundwater re-use
As defined in equation (2), R is a measure of the
degree of UGW re-use in a river basin. For R > 1, the
volume of UGWre-used in a basin exceeds the original
volume of water withdrawn: UGWr>UGWi. If R> 1,
UGWiþ UGWr effectively acts as twice as much water
(or more) than the initial extraction volume indicates
within the basin irrigation system; this is made
possible by the local and downstream cascades of
re-use (figure 1).

The largest UGWi extractions and R values both
occur in South and East Asia (figure 3). By overlapping
5

maps of irrigated areas [28] and population density
data [30] with the basin re-use factor map, we quantify
the irrigated area and population for all R > 0 values
(figure 4). Basins with R > 1.0 contain 33 million
hectares of irrigated land (11% of total) and are home
to 1.3 billion people (17% of total).

3.3. Unsustainable groundwater supports ecological
low-flows
Comparison of river low-flow levels in model
simulations Base, GIE70 and NoUGW show that
ecological low-flows can be highly dependent upon
unsustainable groundwater pumping. In the GIE70
simulation, Q90 decreases in nearly all sub-basins
(figure 5(a)). This result highlights the paradox of
irrigation efficiency: an inefficient system requires
more water extractions from all irrigation water
sources, yet it also returns more water to the renewable
sources. In sub-basins with decreased Q90, the
increased efficiency reduced the amount of UGWi,
and therefore also reduced return flows to the river
system. Increasing irrigation efficiency to 70% causes
particularly severe decreases in Q90 in the Indus (India
and Pakistan) and the Ganges (India) basins. The
impact on low flows is even stronger in the NoUGW
simulation (figure 5(b)), and is expanded to parts of
the western, southwestern, and central U.S, the Middle
East, Central Asia, northeastern China, Eurasia, and
Australia (figure 5(b)). Q90 in some sub-basins
decreases to 0 m3 s�1 (complete drying of the river
through the sub-basin), indicating that the ecologically
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important Q90 flow is entirely reliant upon UGW
pumping and re-use. For example, Q90 across the
lower 1200 km of the Indus basin decreases by up to
60% in the GIE70 simulation, and up to 100% in the
NoUGW simulation (figure 6(a)). While Q90 is
important to assess for ecological management, it is
also notable that the entire flow regime of the Indus
River is changed by increased irrigation efficiency and
reduced UGW pumping (figure 6(b)).

3.4. Global effects of increasing irrigation efficiency
Much of the debate over water re-use metrics,
measurements, and concepts stems from proposals to
increase irrigation efficiency [6, 13, 25]. Several studies
have shown that irrigation efficiency improvements can
lead to unintended increased water use due to the
perceived increase in water availability [31, 32]—
known as Jevons’ Paradox [33]—but none have
assessed the downstream impact of reducing up-
stream groundwater pumping. The GIE70 simulation
6

decreases total global surface water supplies by
∽600 km3 yr�1; however, it also decreases the gross
irrigation water demand by 1 450 km3 yr�1 (a 45%
reduction from Base), and decreases aquifer depletion
from UGW pumping by 124 km3 yr�1 (33%
reduction from Base). While the decrease in total
surface water supplies and ecologically important
low-flows may be of concern, the benefits of reducing
irrigation water demand and alleviating aquifer
depletion must also be considered.

By modeling incremental increases in minimum
irrigation efficiency (see section 2.5 above), we find
that the mimimum global UGWi dependence is 180
(±28) km3 yr�1 (figure 7), a reduction of ∽52% from
current UGWi demand. To reduce UGWi demand
further will require additional or alternative changes to
irrigated agriculture (e.g. switching to less water
consuming crops, or varieties with increased water use
efficiency [6]). For each increased irrigation efficiency
scenario, we also quantified the total amount of UGW
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Figure 5. Percent change in sub-basin low-flows in GIE70 and NoUGW simulations. Q90 is the average monthly river discharge
exceeded 90% of the time, based on 30 years of model simulations and averaged over 4 climate input datasets. The average% change in
Q90 is the difference between monthly mean Q90 in the Base simulation and the experimental simulation. Sub-basin values are
aggregated from all grid cells within the sub-basin; changes of �5% to 5% are not shown (white); sub-basins are shown (instead of
whole basins) because large basins have significant spatial variability. (a) Average % change in monthly Q90 between the Base
simulation and the GIE70 simulation, in which all grid cells increase their irrigation efficiency to 70%. Red (blue) indicates that Q90
decreases (increases) with increased irrigation efficiency. (b) Average % change in monthly Q90 between the Base simulation and the
NoUGW simulation in which all grid cells have the same irrigation efficiency as in the Base simulation, but do not have access to UGW.
There are no positive changes in the NoUGW simulation.
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used for agriculture (UGWi þ UGWr), which is
equivalent to the water deficit that would occur under
each irrigation efficiency scenario if UGW resources
were unavailable (figure 7). At current efficiency levels,
total UGW (UGWiþ UGWr) is 748 (±107) km

3 yr�1,
approximately one quarter of global gross irrigation
water requirements. This shows that, with no increase
in irrigation efficiency, the loss of UGW resources—
either due to complete depletion of aquifers, or for
economic or regulatory reasons—would lead to a 25%
shortage of irrigation water supplies globally. Under a
100% efficiency scenario, UGWi makes up about 15%
of global gross irrigation water requirements, indicat-
ing that a loss of UGW resources under such a high
efficiency scenario would lead to a 15% shortage of
irrigation water supplies globally.
4. Discussion and conclusions

Use of unsustainable groundwater for irrigation has
been the focus of several recent global-scale analyses
[1, 4, 6], all showing aquifer depletion and the spatial
patterns of regional reliance on groundwater for
irrigated agriculture. However, there are significant
differences in how this water is used and re-used once
it has been extracted. Here, we find that the
unsustainable groundwater irrigation re-use index,
R, can be used in conjunction with estimates of
7

unsustainable groundwater extraction to reveal the
reliance of irrigated agriculture not only on unsus-
tainable groundwater, but also on re-use of this water.
Basins with high re-use factors have an outsized
reliance on this unsustainable resource, which
estimates of aquifer depletion alone do not accurately
assess. Additionally, basins with high re-use factors
have a diminished ability to reduce their reliance on
unsustainable groundwater by improving irrigation
efficiency, as greater efficiencies lead to decreased re-
use. By finding the potential minimum amount of
unsustainable groundwater required by irrigated
agriculture, we are able to quantify the volume by
which other (non irrigation efficiency) water saving
measures must reduce the reliance on UGW in order
to achieve sustainable groundwater use.

We show here that there is a direct connection
between the human activity of extracting groundwa-
ter in excess of recharge, and ecologically important
river low-flows. Without unsustainable groundwater
entering surface water systems, low-flows will
decrease across many agricultural regions. In some
sub-basins, monthly low-flows are decreased to 0 m3

s�1 under a sustainable groundwater use scenario,
indicating that riverine ecosystems are dependent
upon human extraction of an unsustainable resource.
There have been several calls for increasing irrigation
efficiency [25, 26] as a means of reducing agricultural
water demand from all sources (sustainable and
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unsustainable). We find that increasing efficiency can
reduce the demand for unsustainable groundwater
pumping by as much as 52%, which is a significant
and positive outcome. However, such a drastic
change has unintended consequences: it will also
substantially reduce major river low-flows in many
basins. By looking at the entire flow exceedance
probability profile of the Indus River, we show that
not only are low-flows affected by irrigation efficiency
changes, but also the entire hydrologic regime is
altered. Such shifts in hydrologic regime must be
considered by water managers when planning for
future increases in irrigation efficiency and main-
taining flows for ecological use, human extractions,
and hydro-infrastructure such as hydropower. These
results highlight the need for careful consideration of
both the potential benefits (e.g. reduced water
demand) and negative impacts (e.g. reduced ecologi-
cal low-flows) of changing irrigation efficiencies
when searching for solutions to water stress
challenges.
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