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Abstract
Plastics production is responsible for 1% and 3% of U.S. greenhouse gas (GHG) emissions and
primary energy use, respectively. Replacing conventional plastics with bio-based plastics (made
from renewable feedstocks) is frequently proposed as a way to mitigate these impacts.
Comparatively little research has considered the potential for green energy to reduce emissions in
this industry. This paper compares two strategies for reducing greenhouse gas emissions from
U.S. plastics production: using renewable energy or switching to renewable feedstocks. Renewable
energy pathways assume all process energy comes from wind power and renewable natural gas
derived from landfill gas. Renewable feedstock pathways assume that all commodity
thermoplastics will be replaced with polylactic acid (PLA) and bioethylene-based plastics, made
using either corn or switchgrass, and powered using either conventional or renewable energy.
Corn-based biopolymers produced with conventional energy are the dominant near-term
biopolymer option, and can reduce industry-wide GHG emissions by 25%, or 16 million tonnes
CO2e/year (mean value). In contrast, switching to renewable energy cuts GHG emissions by
50%–75% (a mean industry-wide reduction of 38 million tonnes CO2e/year). Both strategies
increase industry costs—by up to $85/tonne plastic (mean result) for renewable energy, and up
to $3000 tonne�1 plastic for renewable feedstocks. Overall, switching to renewable energy
achieves greater emission reductions, with less uncertainty and lower costs than switching to
corn-based biopolymers. In the long run, producing bio-based plastics from advanced feedstocks
(e.g. switchgrass) and/or with renewable energy can further reduce emissions, to approximately
0 CO2e/year (mean value).
1. Introduction

Over the last six decades, global plastics production
has grown from a nascent enterprise to a 300 million
tonne (Mt)/year global industry in 2013 [1]. North
American plastic production accounts for approxi-
mately 20% of that global total and is expected to
exhibit strong growth for the immediate future [2, 3].
In North America, seven families of ‘commodity
thermoplastic’ polymers account for approximately
70% of plastics production [4, 5]. These include
polypropylene (PP), polystyrene (PS), polyvinyl
© 2017 IOP Publishing Ltd
chloride (PVC), polyethylene terephthalate (PET),
and polyethylenes (PE). The latter family includes
high-density polyethylene (HDPE), low-density poly-
ethylene (LDPE), and linear low-density polyethylene
(LLDPE). Applying previously reported emissions
factors suggests these plastics are responsible for
approximately 70 million tonnes of CO2e emission per
year [6] and nearly 3 quadrillion Btu of primary energy
use [7]. This corresponds to slightly greater than 1% of
total U.S. GHG emissions [8] and nearly 3% of total
U.S. energy consumption [9]. In response, there has
been a growing interest, globally, in switching to
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bio-based plastics as a form of greenhouse gas (GHG)
mitigation [10–14]; supplementary data (SD)
section S.1.1 (available at stacks.iop.org/ERL/12/
034024/mmedia) provides additional background on
bioplastic drivers.

Three of the most important families of bio-based
polymers include polylactic acid (PLA), polyhydrox-
ybutyrate (PHB, a representative of the polyhydrox-
yalkanoate (PHA) family) and bioethylene based
plastics (e.g. bio-PET, bio-PE, bio-PVC, etc.). Replac-
ing fossil-ethylene with bioethylene is an example of
direct feedstock substitution as this requires no change
in the final product. In contrast, PHAs and PLA are
chemically distinct from existing fossil-derived ther-
moplastics, but may perform the same functions.
PHAs can frequently replace PE, PP, and PS [15–21],
and may also substitute for PET and PVC in some
applications [13]. PLA most often substitutes for PS
and PET [16, 22–27], but can also replace PE, PP, and
PVC in some applications [13, 24, 28]. These are
examples of functional feedstock substitution. Previous
work (e.g. [6]) demonstrated that some of these bio-
based plastics have lower emissions than their fossil
counterparts. It remains unclear, however, if adoption
of such products is the best way to reduce GHG
emissions in the plastics sector.

As an alternative or possibly complementary
strategy, this paper analyses the potential role of
renewable energy in reducing GHG emissions in the
U.S. plastics sector. In particular, this paper compares
the GHG emissions resulting from two broad emission
reduction strategies: 1) feedstock substitution—
switching from fossil-based to bio-based plastics, or
2) energy substitution—switching from conventional
(fossil) fuels to renewable energy sources in the
production of conventional fossil-based plastics.

All plastics require process related electricity and
heat (on-site fuels) at various stages throughout their
life-cycles. Substituting renewable energy sources (e.g.
wind power, bio-gas, etc.) for grid electricity and direct
fossil fuel combustion can reduce emissions without
changing the fundamental processes employed to
produce conventional plastics. A major advantage of
process energy substitution (or direct feedstock
substitution) is that the product remains unchanged.
Resin manufacturers may green their electricity use
implicitly by purchasing renewable electricity certif-
icates [29] or explicitly through power purchase
agreements and/or with on-site renewable electricity
generation. Process heat and fuel requirements can be
met with alternative fuels such as renewable natural
gas (RNG) [30] or via electrification coupled with
renewable electricity (See SD section S.3.1). Likewise,
resin manufacturers can achieve direct feedstock
substitution either by changing suppliers of specific
input materials, or by on-site production of renewable
bulk chemicals. In contrast, functional feedstock
substitution requires downstream customers (e.g.
consumer product manufacturers) to develop prod-
2

ucts that rely on bio-based plastics, to be sourced
directly from bio-based resin manufacturers.

To date, only a handful of studies have addressed
the use of renewable energy in the production of bio-
based plastics (e.g. refs [17, 31, 32]) and none have
compared this to renewable energy use in fossil
polymer production. This work adapts the stochastic
life cycle assessment model described in Posen et al
(2016) [6] to examine the GHG emissions from a
range of scenarios for the production of both
conventional and bio-based plastics. Following Posen
et al (2016) [6], this work considers production of bio-
based plastics using either corn grain or switchgrass as
a feedstock.
2. Methods
2.1. Goal, scope and life cycle model overview
This paper develops a set of feedstock and energy
substitution scenarios for the plastics industry. The
main life cycle assessment (LCA) model developed for
this paper includes five main plastic production
pathways. These are the baseline scenario—
conventional fossil-based plastics (‘Fossil’), an energy
substitution scenario—fossilbased plastics produced
with low carbon energy (‘Fossil þ LC’), and three
feedstock substitution scenarios—corn-based bio-
plastics produced with conventional energy (‘Corn’),
corn-based bioplastics produced with low carbon
energy (‘Corn þ LC’) and switchgrass-based plastics
(‘SW’). The key goal for this study is to establish
whether energy or feedstock substitution yields greater
GHG benefits in the U.S. plastics industry. The
underlying functional unit is the set of services
provided by the entire U.S. national production of
commodity thermoplastics. The reference flow for the
baseline and energy substitution scenarios is the
current production of commodity thermoplastics
(table 1). The reference flow for the feedstock
substitution scenarios is an equal mass of bio-based
plastics (table 1), as follows.

Feedstock substitution scenarios assume that all
commodity thermoplastics (with a partial exception
for polypropylene) will either be produced using
bioethylene, or replaced with an equal mass of
polylactic acid (PLA), as summarized in table 1. In
particular, the LCA model assumes that bioethylene
will replace all ethylene in polyethylene (HDPE, LDPE,
LLDPE) and PVC; PLA will replace all PET and PS.
Further, PLA will replace PP, but only in the subset of
pathways where PLA has lower mean GHG emissions
than PP. This is an optimistic, bounding case, since a)
it is unlikely that PLA can substitute for all
applications of PS, PET and PP, and b) it assumes
PLA can substitute for fossil plastics on a 1:1 mass
basis despite some evidence that PLA products may
require a higher mass of plastic [26, 33]. Since PHB is
more expensive and has higher GHG emissions than
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Table 1. Summary information for fossil plastics considered in this study.

Annual North American

production volume (Mt)
a

Conventional

emissions factor

(kg CO2e/kg

plastic)

Emissions factor with

low carbon energy
g

(kg CO2e/kg plastic)

Alternative plastic for feedstock

substitution scenarios

High Density
Polyethylene (HDPE)

8.6
b,d 1.5 (1.0, 2.0)f 0.59 (0.19, 1.0)h bio-HDPE

Low Density
Polyethylene (LDPE)

3.2
b,d 1.8 (1.3, 2.3)f 0.66 (0.23, 1.1)h bio-LDPE

Linear Low Density
Polyethylene (LLDPE)

6.6
b,d 1.5 (1.0, 2.0)f 0.65 (0.24, 1.1)h bio-LLDPE

Polypropylene (PP) 7.8
b,e 1.5 (1.1, 2.0)f 0.85 (0.5, 1.2)h PP/PLAi

Polyethylene (PET) 2.8
c,e 2.4 (2.2, 2.7)f 1.0 (0.83, 1.3)h PLA

Polystyrene (PS)h 2.0
b,e 3.1 (2.8, 3.5)f 1.6 (1.3, 2.1)h PLA

Polyvinyl Chloride (PVC) 6.7
b,d 2.2 (1.9, 2.5)f 0.63 (0.36, 0.92)h bio-PVC

a These production volumes jointly represent the reference flow of the fossil plastics (left-most column) in the baseline and energy

substitution scenarios, and the reference flow of alternative plastics (right-most column) in the feedstock substitution scenarios.
b Year 2015 data; source: [5].
c Year 2012 data; source: [4].
d Includes the U.S., and Canada.
e Includes the U.S., Canada and Mexico.
f Mean and 95% confidence interval (CI) for each plastic; source: [6].
g Wind and RNG.
h Mean and 95% CI for each plastic; new estimate, based on model from [6].
i PLA only replaces PP in the advanced feedstock substitution scenarios (corn with low carbon energy or switchgrass), since switching

to PLA would not reduce emissions in the conventional (corn) pathway.
j PS is modelled as general purpose polystyrene (GPPS). Results for high-impact polystyrene (HIPS) are very similar.
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other bioplastics, it was not included in the main
feedstock substitution scenarios; for completeness,
PHB is included whenever results are presented for
individual plastics (section 3.2 and SD sections
S.3.5–S.3.7). The base-case feedstock substitution
scenarioassumes that all bio-basedplastics areproduced
from corn grain, which is currently the dominant
feedstock for bio-based products in theU.S. In addition,
the model considers two advanced bio-based scenarios:
corn-based plastics produced using low carbon energy,
i.e. combining feedstock and energy substitution, and
plasticsmade from switchgrass—an illustrative second-
generation cellulosic feedstock.

In all cases, the LCA model accounts for cradle-to-
gate emissions from resin production, and emissions
from end of life, but not product manufacture or use.
Figures 1 and 2 summarize the unit processes included
in the system boundary. The base model assumes that
landfilled PLA and bioethylene plastics act as carbon
sinks; as an alternate scenario, the model assumes that
PLA is composted, releasing much of its stored carbon
as carbon dioxide. Themodel assumes all fossil plastics
are landfilled.

In the energy substitution scenario, low-carbon
energy provides all process heat and electricity
throughout the supply chain for the production of
conventional plastics. The baseline low carbon (LC)
energy scenarios in this paper assume RNG [30] made
from landfill gas (LFG) will provide all heat require-
ments, while wind power will provide all grid
electricity requirements. In all cases, renewable energy
scenarios apply only to unit processes within the
3

chemical industry, and do not extend to natural gas
production and processing, crude oil production and
refining, or agricultural operations. The grey box in
figures 1 and 2 show the scope of the energy
substitution scenarios within the fossil plastic and
corn bio-plastic supply chains respectively. Renewable
energy does not displace combustion of waste
products (i.e. internal off-gas) produced during steam
cracking or benzene production.

The primary impact metric in this paper is the 100
year global warming potential (GWP), modelled using
normally distributed equivalence factors (in kg CO2e)
based on the Intergovernmental Panel on Climate
Change (IPCC) fifth assessment report (AR5) [34, 35].
Mean global warming potentials for CH4 and N2O are
36 and 298, respectively. Both values include climate
carbon feedbacks, and the value for CH4 further
includes warming from methane oxidation to CO2.
Posen et al (2016) [6] provides a detailed description
of the underlying LCA model. The present paper uses
PLA case 1, based on data from Groot and Boren
(2010) [25], since the data used for the other cases in
Posen et al (2016) [6] have insufficient detail to model
the adoption of renewable energy in the production
processes. Results for the baseline model (no
renewable energy) would be similar (within ∼10%)
if using PLA data from Vink et al (2010 or 2015) [36,
37]. The LCA model for fossil polymers relies on the
system expansion scenario (for hydrogen co-product)
from Posen et al (2016) [6]. Similarly, this paper uses
the system expansion scenario for corn-coproducts.
For switchgrass pathways, this paper uses the scenarios
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Figure 1. Manufacturing processes for commodity thermoplastic polymers: polyethylene terephthalate (PET), polyethylene (PE),
polypropylene (PP), polyvinyl chloride (PVC), and polystyrene (PS). Circles represent feedstocks, rectangles production/
manufacturing, and hexagons the final manufacture stage. Pink processes are common to multiple polymers, while other colours are
unique to each polymer family. Renewable energy scenarios are applied only to processes within the grey background region. End of
life emissions (landfilling) are not shown in the figure, but are included in the model. Adapted with permission from Posen et al (2016)
[6]. Copyright (2016) American Chemical Society.
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from Posen et al (2016) [6] that include co-generation
of steam and electricity from unfermented residues. As
a conservative assumption, and to isolate the
comparison between feedstock and energy substitu-
tion, this paper does not apply any credit for surplus
energy from switchgrass pathways (i.e. the bioplastic
facility recovers only enough energy to power its
internal processes and is not equipped to generate/
export surplus electricity/steam; electricity and/or
steam export is not always possible on the ground). SD
section S.3.3 presents an alternate scenario that
includes these credits. For switchgrass ethylene, this
analysis assumes the more favourable ‘mid-term’ yield
scenario described in Posen et al (2016) [6].

Key additions to the LCAmodel, developed for the
present study, involve the use of renewable energy
(wind, RNG, and/or direct combustion of biomass),
discussed in the following section.

2.2. Emissions from renewable fuels and electricity
Wind power is one of the most promising and fastest
growing sources of renewable generation in the U.S.
and worldwide [38], and so is the primary low-carbon
electricity source for this case-study. Dolan and Heath
(2012) [39] report harmonized estimates of the life
cycle GHG emissions from wind power (in g CO2e/
kWh) for 126 estimates representing 49 different
studies. We fit a continuous distribution to these
4

126 point estimates, giving each of the 49 studies the
same weight, and equally weighting the different
estimates within a given study (e.g. if a study produces
6 different estimates, each of these receives 1/6 the
weight of data points from studies that produce only a
single estimate). This procedure avoids giving undue
weight to studies that produce multiple estimates,
since any biases in the method applied are likely to
affect each of the estimates within a single paper. The
result is a log-logistic distribution with a mean of 12 g
CO2e/kWh and a 90% confidence interval ranging
from 5–26 g CO2e/kWh.

For process heat, the low carbon energy pathways
assume the use of RNG produced from LFG, which
would be transported using existing natural gas
transmission infrastructure. RNG is chemically and
functionally equivalent to conventional natural gas,
and can be produced by isolating methane from the
mixture of methane, carbon dioxide, and other
contaminants that result from the decay of organic
material in landfills. Because its use is easily integrated
into existing production processes, RNG is the
baseline renewable fuel for on-site heat production
in corn and fossil-based pathways in this study.

The model for emissions from the production of
RNG relies on Argonne National Laboratory’s
Greenhouse Gases, Regulated Emissions, and Energy
Use in Transportation (GREET) 2016 model [40] and
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its supporting documentation [41]. Mintz et al 2010
[41] report the RNG processing efficiency, defined as
the ratio of the energy in the final product to the input
gas and electricity, to range from 91%–97% with a
default value of 94.4%. The LCA model developed for
this paper uses these values as the parameters of a
triangular distribution. Furthermore, it assumes that
generation of electricity used to process raw landfill gas
(LFG) into RNG relies on the combustion of raw LFG
in a reciprocating engine, with an electricity generating
efficiency of 30% [40]. The LCA model calculates
emissions from the reciprocating engine using default
emissions factors in GREET [40]. Additionally,
GREET assumes a 2% fugitive emission rate for the
input CH4, at the landfill site. For the present model,
as in GREET, all LFG used as feedstock for RNG, or for
energy in the reciprocating engine, receives a credit for
avoiding the emissions that would result from just
flaring the gas, as is common practice in U.S. landfills
[41]. The LCA model then adds emissions from
natural gas transmission, fit approximately to the
parameters provided in Tong et al (2015) [42]. Finally,
5

the model treats combustion of RNG the same way as
the combustion of conventional natural gas [43].
Combustion emissions are mostly offset by the credit
for avoided flaring. As a result, net emissions
correspond predominantly to the emissions from
natural gas transmission and from the 2% natural gas
leakage during RNG upgrading. The final distribution
for the life cycle emissions of RNG closely resembles a
normal distribution (mean: 18, stdev: 4.6 g CO2e/MJ
RNG LHV), with most of the spread stemming from
the uncertainty in CH4 GWP.

Finally, SD section S.3.1 includes results for an
alternate renewable energy scenario in which switch-
grass combustion provides the on-site fuel require-
ments, instead of RNG. SD section S.2.1 provides
model details for this scenario, based on refs [44–48].

2.3. Cost estimates
Prices of commodity thermoplastics change rapidly
with time, and are not generally available in the public
domain; this section describes scoping estimates
for the cost of the emission reduction strategies
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considered in this paper. Switching to PLA and PHB
requires a change in upstream plastic suppliers. Thus,
this paper uses market prices to estimate the cost of
switching to these plastics. Sin et al (2013) [49]
published 2009 average prices (in Euro/kg) for a range
of polymers, including PLA, PHB, and most
conventional commodity thermoplastics. The estimate
converts these prices to U.S. dollars using the 2009
average exchange rate (0.75 Euro/USD) [50], and then
inflates them to 2015 values (a net increase of 11%)
[51]. The resulting prices (in 2015 USD/kg) are: $2.80
(PLA), $5.90 (PHB), $1.80 (HDPE), $1.60 (PP), $2.10
(PS), $1.50 (PVC), $2.20 (PET). The cost estimate
treats the average price of LDPE is the same as HDPE.
Taking the difference between the price of each
biopolymer and each commodity thermoplastic gives
the additional cost incurred by end users from
replacing fossil polymers with PLA or PHB.

Bioethylene can be integrated directly into existing
plastic supply chains. Assuming competitive markets,
the estimate uses the difference in production cost
between bioethylene and the current price of fossil
ethylene; the result is multiplied by total quantity of
ethylene required per tonne of each conventional
plastic. The International Renewable Energy Agency
(IRENA) estimated the cost range for producing
bioethylene from U.S. corn in 2009 USD/tonne
ethylene (min: $1700, mean: $2060, max: $2730)
[52]. Subtracting $55 tonne�1 ethanol (∼$95 tonne�1

ethylene) for corn co-products [52], and inflating the
results to 2015 values provides the final min, mean and
max for the cost estimates used here. These parameters
are fit to a triangular distribution (min: $1780, mode:
$2180, max: $2930) 2015 USD/tonne bioethylene. The
estimated spot price of fossil ethylene is a uniform
distribution from 35–65 cents/lb ($770–$1430/tonne),
loosely fit to recent market data (from September 2014
to July 2015) [53].

The cost of converting to low carbon energy relies
on estimates of the levelized costs for producing RNG
and wind power, which the present analysis compares
to current prices for fuel and (wholesale) electricity.
This again, assumes perfect competition (i.e. no mark-
ups). The American Gas Foundation (AGF) estimate
the cost of producing RNG from LFG on a state by
state basis [54]. Using their more conservative ‘non-
aggressive’ scenario, the cost estimation model fits a
distribution to the state-by-state estimates AGF
provided. The result is a shifted exponential distribu-
tion with mean $2.1 (before shifting), and a minimum
value of $5.2/mmBtu. Adjusting this value for inflation
(6%) from 2011 (the year of publication) to 2015 [51]
provides the final distribution for RNG prices. Recent
prices for fossil fuels come from the U.S. Energy
Information Administration (EIA) via their excel data
add-in tool [55]. The cost estimation model fits
distributions for industrial sector prices for natural gas
and residual fuel oil using monthly data and
projections from the Short Term Energy Outlook
6

(January 2013–December 2015). Quarterly historical
coal prices for industrial users provide the basis for a
uniform distribution representing coal prices (January
2013–April 2014). Finally, the estimate treats diesel
and distillate as the same, with prices modelled as a
triangular distribution fit to historical monthly retail
prices, as sold by refiners from January 2013May 2015.

For the levelized cost of wind energy, the cost
analysis uses a triangular distribution (min: 35,
mode: 66, max: 110 $/MWh), based on data from
the Department of Energy’s Open Energy platform
[56]. For grid electricity, the cost estimationmodel uses
the 2014 U.S. wholesale price of electricity, fitted to the
weighted average price across all dates and regions, as
provided by EIA [57]. The resulting best-fit for U.S.
wholesale electricity (in $/MWh) is a log-logistic
distribution (mean: 48, 95% confidence interval: 27 to
88). The difference between the levelized cost of wind
energy, and the U.S. wholesale price of electricity
indicates the additional cost incurred by switching to
wind power. SD table S.3 includes a summary of key
parameters used for cost estimation.
3. Results
3.1. Energy substitution and feedstock substitution:
scale and ghg emissions
Table 1 summarizes production volumes and emis-
sions factors for fossil polymer scenarios, along with
the identities of alternative bio-based plastics used for
feedstock substitution scenarios. Based on data
availability, production volumes include Canada
and/or Mexico. This does not affect comparative
results between pathways, and likely has only a minor
influence on scaled emissions relative to a U.S.-only
scenario, as discussed in SD section S.3.2. Full energy
substitution across the plastics industry would require
approximately 12 billion kWh of wind power (∼6% of
U.S. wind power generation in 2014 [58]), and 650
billion MJ of RNG or other suitable renewable fuel. It
is worth noting that this value exceeds the approxi-
mately 200–400 billion MJ of domestic RNG potential
from LFG, but is well within the 1000–2500 billion MJ
of RNG potential from all sources [54]. Although
emissions will differ for other sources of RNG, the
present paper provides a representative low carbon
energy scenario. Additional analysis also shows that
similar or greater GHG reductions can be achieved by
supplanting RNG with wind power through increased
electrification, or via the combustion of energy crops
like switchgrass (SD section S.3.1). Simply to note the
scale of this alternative, full feedstock substitution (i.e.
fully transitioning to bio-based polymers) would
require approximately 110–120 Mt of dry corn or
130–140 Mt of dry switchgrass. This quantity of corn
requires approximately 30–45 million acres and is
equivalent to 40% of the 2015 U.S. corn harvest [59].
The estimated quantity of switchgrass would require



Table 2. Mean and 95% CI emissions factors for bio-based plastics considered in this study (kg CO2e/kg plastic).

Corn bioplastics
b

(kg CO2e/kg plastic)

Corn bioplastics

with low carbon energy
c

(kg CO2e/kg plastic)

Switchgrass bioplastics
d

(kg CO2e/kg plastic)

PLA
a

1.9 (1.4, 2.3) 0.09 (�0.21, 0.46) 0.25 (�0.27, 0.92)

bio-PVC 1.9 (1.5, 2.4) 1.3 (0.91, 1.69) 1.3 (0.81, 2.1)

bio-HDPE 0.89 (0.11, 1.8) �0.55 (�1.2, 0.29) �0.38 (�1.5, 1.3)

bio-LDPE 1.1 (0.35, 2.1) �0.32 (�1, 0.54) �0.14 (�1.2, 1.5)

bio-LLDPE 0.89 (0.1, 1.8) �0.57 (�1.2, 0.28) �0.39 (�1.5, 1.3)

a Based on case 1 from [6]; Table shows emissions assuming that PLA is landfilled and acts as a carbon sink. Composting PLA

releases an additional 1.6 kg CO2e/kg plastic.
b Treating co-products by system expansion; from [6]
c Treating co-products by system expansion; plastic production powered by wind and RNG; new estimates, based on model from [6].
d Assumes non-fermented residues are used to generate steam and electricity for process use only. To isolate this case as a feedstock

substitution scenario, no credit is applied for surplus energy generation beyond process requirements. Bioethylene-based plastics

assume mid-term yield scenario from [6].
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Figure 3. Life cycle GHG emissions from aggregate North American production of a) conventional fossil-based commodity
thermoplastics (‘Fossil’), b) fossil plastics using low carbon energy sources (wind and RNG) across the chemical industry supply chain
(‘Fossil þ LC’), c) corn-based plastics (‘corn’), d) corn-based plastics using wind and RNG (‘Corn þ LC’), or e) switchgrass-based
plastics (‘SW’). Feedstock substitution scenarios assume all conventional plastics are replaced with alternative plastics as per table 1;
these scenarios show results for both landfilled (‘LF’) and composted (‘C’) PLA. Upstream emissions refer to oil and gas extraction and
refining/processing for fossil routes, or land use change and biomass production for bio-based routes. Error bars represent an
approximate 95% confidence interval for total emissions, based on Monte Carlo simulation. All results assume current production
volumes (production volumes from 2012–2015).
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approximately 15–70 million acres of land, with a
mean of 30 million acres; this is equivalent to 5%–15%
of current agricultural land in the U.S [60].
Switchgrass yields are prospective and thus highly
uncertain, which explains the large range for
switchgrass land requirements.

Table 2 summarizes emissions factors for bio-
based plastics. These results combined with those in
table 1 produce figure 3, which shows industry-wide
GHG emissions for different pathways. Using a 95%
confidence interval, adoption of low carbon energy
can reduce GHG emissions from plastics production
by approximately 50%–75% (mean reduction of 38Mt
7

CO2e/year). In contrast, corn-based bioplastics (in the
lower emission, ‘landfill’ scenario) may result in
anywhere from a 50% decrease to a 10% increase in
GHG emissions (mean reduction of 16 Mt CO2e).
Emission reductions achieved in the advanced
feedstock substitution pathways (i.e. those using
switchgrass or corn with low-carbon energy have
wide confidence intervals, but show substantial
probability of achieving net negative emissions in
the landfill scenario, owing to the GHG emissions
credit for carbon stored in the bio-based plastics.
Although the advanced corn pathway (Cornþ LC) has
lower emissions than the switchgrass pathway (SW) in
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most (60%) model runs, the switchgrass pathway
could be improved further by using renewable energy
when the unfermented residues are insufficient, and/
or by crediting surplus residues with exported
electricity (SD section S.3.3). SD section S.3.4 presents
numerical GHG emission results for these pathways
and their pairwise differences. SD section S.3.5 shows
more detailed results for individual plastics; section
S.3.6 shows results for select additional scenarios
related to allocation and scope of energy substitution.

Figure 4 shows a direct comparison of GHG
emissions between fossil plastics produced with low
carbon energy, and each bioplastic pathway. Each
curve represents the difference between the energy
substitution scenario and a given feedstock substitu-
tion scenario; larger (positive) values means the fossil
plastics with low carbon energy have higher emissions
than the given bioplastic pathway. In over 98% of
simulations, producing fossil plastics with low carbon
energy results in lower emissions than corn-based
bioplastics. Emissions from the corn pathway exceed
emissions from the fossil plastic energy substitution
pathway by ∼20–30 Mt CO2e (median results)
depending on the end of life scenario for PLA.
Advanced feedstock substitution likely results in
higher GHG reductions than energy substitution,
but there is more certainty in the landfill scenario
(90% of simulations and 99% of simulations,
respectively) than in the compost scenario (55%
and 75% of simulations, respectively).

These results (figure 3) demonstrate the impor-
tance of the stored carbon credit for bio-based
products (i.e. it is a large negative contributor to
the GHG emissions shown in the figure). In the
absence of this credit, all feedstock substitution
8

pathways have higher emissions than the fossil plastic
production pathways. Although the stored carbon
credit is likely accurate for bioethylene plastics, recent
evidence suggests that even when landfilled, PLA does
not always act as a carbon sink [33, 61], as previously
assumed [6, 62, 63]. Furthermore there is ongoing
debate about whether biogenic carbon should receive
an emissions credit in the first place [64]. Further-
more, land use change emissions associated with
agricultural production could also greatly surpass
those modelled here [65–67]. As a result, the feedstock
substitution pathways have a higher degree of inherent
uncertainty than presently modelled. In contrast, the
low-carbon energy fossil polymer pathways have more
steps in common with conventional production,
which contributes to fundamentally lower uncertainty
for emission differences.

3.2. Cost estimates
Table 3 presents results from the first-order cost
estimates discussed in section 2.3. The cost of
converting to low-carbon energy ranges from $10-
–$200 tonne�1 plastic, whereas the cost of switching
to bio-based polymers likely ranges from several
hundred to several thousand dollars per tonne,
depending on the plastic. The cost estimates for bio-
based polymers are based on presently available (first
generation) feedstocks. It is likely that use of a
cellulosic feedstock (like switchgrass) would be even
more cost-disadvantaged than these numbers indi-
cate. Thus, adopting low-carbon energy is currently
more economic than switching to bio-based poly-
mers, reinforcing the GHG emission results that
favour energy substitution for near-term GHG
mitigation. As industry gains experience with these



Table 3. Cost of emission reduction strategies ($ additional/tonne of plastic). Values represent additional costs incurred, above those
estimated for conventional production. Ranges, where available, span 90% of model runs.

PET PS PVC HDPE LDPE PP

Low carbon energy
(full supply chain)

10–120 20–200 30–180 15–120 20–160 10–90

Corn Bioethylene 200–600 300–1000 400–1500 900–3000 900–3000 N/A

PLA ∼600 ∼700 ∼1300 ∼1000 ∼1000 ∼1200
PHB ∼3700 ∼3900 ∼4400 ∼4200 ∼4200 ∼4300
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bio-plastics, their costs may decrease through
learning-by-doing and economies of scale.

3.3. Comparing uses for biomass
The potential to use biomass as either a feedstock or
energy source also raises questions about the best use
of biomass for GHG mitigation. SD section S.3.7
presents the results of a first-order test case for uses of
switchgrass. The analysis suggests that, with some
exceptions, equal or greater mean emission reductions
can be achieved by using a given quantity of
switchgrass to produce energy instead of for bio-
based polymers. Details are available in the SD.

3.4. Projected emissions: energy substitution won’t
be enough
The results presented so far make a compelling case to
prioritize energy substitution over feedstock substitu-
tion. Over the long-run, however, it may be necessary
to find other ways to reduce emissions in the plastics
industry. Figure 5 shows projected GHG emissions
due to North American production of commodity
thermoplastics, from 2015–2050 The figure shows two
scenarios: one in which all plastics are produced using
conventional energy, and one in which all plastics are
produced using low carbon energy (wind and RNG).
The figure shows results based on the mean GHG
emissions from the model developed in this paper.
Additionally, the projection model assumes a range of
1%–3% growth in per capita plastics consumption, the
upper end of which is consistent with recent historical
growth, from 2005–2015 [68]. It also projects
population growth based on the U.S. census [69].
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As per the results presented above, switching to low
carbon energy can produce a substantial and
immediate reduction in GHG emissions. If, however,
plastics consumption continues to grow at, or even
somewhat below historical rates, GHG emissions from
the low carbon pathways would once again surpass
current emissions by 2050. Given that advanced
feedstock substitution scenarios have the potential to
reduce plastic emissions to zero or less (i.e. becoming a
net CO2 sink), it could be advantageous to develop
these pathways in the long run.
4. Discussion and conclusions

Although a comprehensive sustainability analysis is
beyond the scope of this study, there are numerous
other factors to consider in comparing feedstock and
energy substitution in the plastics industry. The
following is a limited discussion of several key
considerations:
�
 Non-GHG environmental impacts: Due to heavy
reliance on agriculture, bio-based products tend
to score poorly on other environmental metrics,
such as ozone depletion [70, 71], acidification
[23], eutrophication [23, 70–72], water use [73],
and food security [74–76].
�
 Substitutability: Energy substitution results in no
change in the final resin produced. The new,
‘greener’ polymer can substitute across the market
without any changes in downstream production
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methods or product functionality. While this is
also the case for bioethylene-based plastics, other
renewable products like PLA have more limited
potential to substitute for existing plastics.
�
 Resin Properties: While biodegradability may be
an advantage of PLA (and some other bio-
plastics), as this may reduce landfilling require-
ments, few cities have the required infrastructure
for composting [70], and many organizations
using compostable biopolymers continue to send
their waste to landfills [77]. Further, biodegrada-
tion increases the life cycle GHG emissions of
these bio-based plastics, potentially overturning
any benefits from their production [6, 78]. As a
further caveat, this study does not include emis-
sions from resin foaming or plasticizer and other
additives, which may affect the comparison be-
tween PLA and fossil plastics. To the authors’
knowledge, no prior studies have included these
emissions.
�
 Market size: the potential market for renewable
energy, and resulting potential emission reduc-
tions, is far larger than the potential market for
bio-based polymers. Thus, energy is likely a more
important target for decarbonization than feed-
stocks, especially if learning or spillover effects
[79] are expected.

The choice for near-term GHGmitigation is clear:
switching to low-carbon energy across the chemical
industry for conventional polymers achieves greater
GHG reductions (in >98% of simulations), at lower
cost, and with less uncertainty than corn-based
biopolymers (if produced with conventional energy).
This energy substitution can be achieved without any
fundamental modification to current production
methods, existing capital infrastructure in the chemi-
cal sector, or additional testing to ensure preservation
of product quality, as would be the case for switching
to bio-based plastics. In the long-run, if advanced bio-
based plastic pathways prove technically and econom-
ically feasible, feedstock substitution may substantially
reduce or even capture GHG emissions. For these
benefits to be realized, however, bio-based production
must be coupled with renewable energy—either
explicitly (as above), or through recovery of fermen-
tation residues from cellulosic production [6]. Until
such advanced bio-plastic pathways are available,
energy substitution has the greater potential for GHG
emissions reductions.
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