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Abstract
Future freshwater supply, human water demand, and people’s exposure to water stress are subject
to multiple sources of uncertainty, including unknown future pathways of fossil fuel and water
consumption, and ‘irreducible’ uncertainty arising from internal climate system variability. Such
internal variability can conceal forced hydroclimatic changes on multi-decadal timescales and
near-continental spatial-scales. Using three projections of population growth, a large ensemble
from a single Earth system model, and assuming stationary per capita water consumption, we
quantify the likelihoods of future population exposure to increased hydroclimatic deficits, which
we define as the average duration and magnitude by which evapotranspiration exceeds
precipitation in a basin. We calculate that by 2060, ∽31%–35% of the global population will be
exposed to >50% probability of hydroclimatic deficit increases that exceed existing hydrological
storage, with up to 9% of people exposed to >90% probability. However, internal variability,
which is an irreducible uncertainty in climate model predictions that is under-sampled in water
resource projections, creates substantial uncertainty in predicted exposure: ∽86%–91% of people
will reside where irreducible uncertainty spans the potential for both increases and decreases in
sub-annual water deficits. In one population scenario, changes in exposure to large hydroclimate
deficits vary from �3% to þ6% of global population, a range arising entirely from internal
variability. The uncertainty in risk arising from irreducible uncertainty in the precise pattern of
hydroclimatic change, which is typically conflated with other uncertainties in projections, is
critical for climate risk management that seeks to optimize adaptations that are robust to the full
set of potential real-world outcomes.
1. Introduction

Freshwater availability is a fundamental requirement
for well-being. Because net availability is influenced by
both supply and demand, factors like climate and
geography, institutional norms and regulations, and
urbanization and poverty all play important roles in
© 2017 IOP Publishing Ltd
determining regional and local water availability [1, 2].
Estimation of present and future water availability has
received considerable attention [3–12]. Despite these
important efforts, key uncertainties remain [7, 13–16].

Uncertainty in climate projections of anthropo-
genic warming from ensembles of climate models have
three canonical sources: (1) scenario uncertainty,
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which arises from uncertainty about future green-
house gas emissions trajectories; (2) model or
structural uncertainty, which arises from different
model choices and how those influence the climate
response to forcing; and (3) internal climate system
variability, which is the characteristic and natural
inter-annual- to centennial-scale variations internal to
the climate system [17, 18]. A number of studies
attempt to sample such uncertainties by leveraging
multi-scenario and multi-model ensembles like those
from the Coupled Model Intercomparison Project
(CMIP) [7–12, 15, 19]. As the principal source of
climate projections used by the IPCC, CMIP is key to
informing policy discussions on adaptation and
mitigation, including assessment of future water
resources that leverage CMIP output (e.g. refs. [8,
11, 12, 19]).

Despite important advances, partitioning the
sources of uncertainty in multi-model ensembles of
climate projections such as CMIP nevertheless
remains a fundamental challenge because, to date,
model uncertainty and representations of internal
climate variability have been conflated within the
multi-model ensemble [14, 20–22]. Furthermore,
separating uncertainty associated with internal vari-
ability frommodel uncertainty is critical for real-world
decision-making, as internal variability will ultimately
determine the range of outcomes that could occur for a
given forced response. Internal variability can thus
confound expectations of anthropogenically-forced
climate impacts (and therefore their optimal
responses), potentially rendering adaptation decisions
maladaptive over the short- and medium-terms.

While ‘robust adaptation decision-making’ seeks
to guard against such possibilities, the strategy must
optimize decisions against the range of possible real-
world outcomes [23], such as those arising from
internal variability, rather than those arising from
model choices, which have no real-world analogue.
Analyses of large single-model ensemble experiments
reveal that simulated internal variability is sufficient to
amplify, mask, or even reverse forced trends in
atmospheric circulation, temperature, and precipita-
tion over large spatial and temporal scales [14, 22].
The expression of internal variability in large single-
model ensembles—a design heretofore unavailable in
CMIP [20–22] and thus in many water resource
projections forced by CMIP output—is sometimes
called ‘irreducible uncertainty’, because the climate
trajectories predicted by the different realizations are
equally plausible, and independent of uncertainty
arising frommodel structures or forcing pathways [14,
24]. It is therefore crucial to isolate robust estimates of
internal climate variability in distributions of model-
estimated future hydroclimatic impacts, which is
currently infeasible with more computationally-
intense hydrological and water resource models.

At the same time, however, hydrological and water
resource models more credibly represent physical
2

processes that influence the spatiotemporal patterns
of water availability within basins and with greater
fidelity than coarse Earth system models. The scientific
and applied water resources community, including
operational water supply forecasters and hydroelectric
utilities, have long studied the historical behavior of
modes of climate variability to understand and improve
predictions of runoff variations [25–30]. Suchwork has
the benefit of ensuring reservoir operations (and thus
costs) are optimized given the climate state (e.g. [31]). It
remains, however, that the influence of internal
variability on water resources is largely characterized
based on the short instrumental interval in a stationary
climate. Internal climate variations that influence water
availability occur on multidecadal and even centennial
timescales, and such variability is poorly constrained by
the instrumental record [32–34]. Furthermore, there are
myriad sources of influential hydroclimatic variability
that do not have well-characterized spatiotemporal
structures and internal variability itself may be
nonstationary in an anthropogenically-forced climate
[35, 36]. The influence of such poorly-constrained
multidecadal variability and the behavior of internal
variability in a forced regime on water resources has
received comparatively little attention and is the focus of
this work.

Because our purpose here is to leverage a robust
estimate of internal variability unavailable in hydro-
logical or water resource models experiments, we use a
framework that characterizes a basin’s mean hydro-
climatic state using climatological precipitation and
evapotranspiration from a single model in a single
forcing pathway, with and without people’s water
consumption—what we term net and natural hydro-
climatic deficits, respectively (figure 1, methods).
Additional structural and scenario uncertainties
would emerge if we chose to use multiple climate
models and radiative forcing scenarios, statistically- or
dynamically-downscaled the climate model output
[18], or used such output to force an offline water
resources or hydrological model (e.g. refs. [7, 11, 12]).
Finally, complex future water resource scenarios
combined with such multi-model, multi-radiative
forcing scenario output would articulate additional
layers of uncertainties [8, 19, 37].

We seek to leverage the strengths and internal
consistency of the Earth system model in representing
climatological fluxes of precipitation and evapotrans-
piration, while avoiding additional uncertainties from
downscaling or nested hydrological models and
scenarios to represent basin-scale hydrology. Further-
more, we seek to quantify the uncertainty arising only
from a robust estimate of internal variability and then
contextualize that uncertainty within water resource
scenario uncertainty arising from population growth
trajectories. The perspective we take, therefore, is a
long-term hydroclimatic one.

As such, we quantify the basin-scale uncertainty in
hydroclimatic mean state changes arising from two
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Figure 1. Observed natural and net hydroclimatic deficits. (a), (b), 12 month cumulative climatologies of precipitation (P),
evapotranspiration (ET) from 1948–2010, and human blue water consumption (H), and their differences, P-ET and P-ET-H for the
Colorado River basin, for the starting months of January [a] and August [b] in mm. The light red region in [a] shows Colorado’s P-ET
deficit for the period beginning in January. There is no deficit in [b], highlighting that deficits are sensitive to starting month
(Methods). (c), PDFs of magnitude (top, as a % of annual P) and duration (bottom, # months per year) of Colorado’s deficits for all 12
starting months without (P-ET< 0, orange) and with (P-ET-H< 0, red) people’s consumption (H). The vertical dashed lines are the
mean of the distributions and represent the ‘natural’ (orange) and ‘net’ (red) deficits plotted in (d-g). H shifts Colorado to greater
mean deficits (grey bars). Average magnitude of natural deficits (P-ET< 0) (d) and net deficits (P-ET-H< 0) (e) (as a % of basin-scale
total annual precipitation) calculated as the mean of each basin’s distribution of (f), (g), Average duration of natural (f) and net deficits
(g) (as the number of months per any 12 month period).
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sources: [1] irreducible uncertainty from Earth system
model representations of multidecadal internal cli-
mate variability; and [2] three different population
growth scenarios and their effect on water consump-
tion. In doing so we explicitly account for how internal
climate variability and population trajectories alone
can influence the direction and magnitude of multi-
decadal trends in future long-term hydroclimatic
mean states within basins, and thus future population
exposures to increased or decreased hydroclimatic
deficits.

To quantify irreducible uncertainty from internal
variability we use 30 members of the initial-condition
ensemble (‘LENS’) of the NCAR Community Earth
System Model (CESM) [22] run in the high RCP8.5
business-as-usual forcing pathway [38] (methods, figure
S1 available at stacks.iop.org/ERL/12/044007/mmedia).
The ensemble range comprises CESM’s estimate of
irreducible uncertainty arising from persistent atmo-
spheric circulationanomalies thatpropagate through the
coupled climate system [22], such as jet stream place-
ments. To quantify population scenario uncertainty,
3

we combine a single scenario of per capita water use
that is driven by three new Shared Socioeconomic
Pathways (SSPs) of population growth [39]. Our
analysis represents the first time these sources of
information have been combined to constrain the
influence of multi-decadal internal variability on
population exposure to future hydroclimate deficits.
2. Data & methods
2.1. Natural and net hydroclimatic deficits
The basin-scale moisture balance includes the total
‘natural’ supply (P) and total demand (ET), as well as
the water consumed by agricultural, domestic, and
industrial uses (human-induced evapotranspiration
or ‘blue water consumption’ (3), denoted H) (figures
1(a) and (b)). When cumulative water demand (ET
or ET þ H) exceeds supply (P), there is basin-scale
net water loss (a deficit), and people and ecosystems
draw water from stored sources (e.g. soil moisture,
natural and managed reservoirs, snowpack, glaciers,

http://stacks.iop.org/ERL/12/044007/mmedia
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groundwater, or inter-basin transfers). Changes in
the duration and/or severity of these deficits could
arise from changes in the environment and/or
changes in human demand. Climatological precipi-
tation minus evapotranspiration (P-ET) is thus a
critical quantity determining the long-term surface
moisture balance [40–42].

To quantify hydroclimatic mean states within
basins, we calculate two metrics of natural and net
hydroclimatic deficits to answer the following: how
many months of any 12 month period does a basin
have demand exceeding supply and what is the
magnitude of that exceedance? In the present-day
climate, such deficits encapsulate the managed and
unmanaged strategies that ecosystems and people have
to ensure water availability during times of deficit.

We define the hydroclimatic deficitmagnitude and
duration (or E[D]b,magnitude or E[D]b,duration) as the
average (expected) magnitude (in mm) and length (in
months) by which cumulative demand exceeds
cumulative supply in the basin (figures 1(c) and
(d)). We calculate the hydroclimatic deficit magnitude
and duration for each basin for two types of demand
(figure 1), without human consumption (H) (called
‘natural’ deficits, P-ET) and with H (called ‘net’
deficits, P-ET-H) to highlight the human consumptive
contribution to hydroclimatic deficit duration and
magnitudes. In figures 1(a) and (b), the P-ET (natural
deficit) and P-ET-H (net deficit) curves represent the
difference between monthly-accumulating climato-
logical supply (P) and monthly-accumulating clima-
tological demand (ET or ET+H), for two different
starting months, January and August. It is clear that
the cumulative P-ET or P-ET-H curve can evolve
differently based on the starting month (and thus the
magnitude and duration of deficits), as illustrated for
the Colorado basin in figures 1(a) and (b). We
therefore average deficits across all starting months
(January through December) to estimate a distribu-
tion of each basin’s magnitude and duration of deficit
over any 12-month period by assuming basin water
balance is 0 at the beginning of each 12-month interval
(figures 1(c) and (d)). Formally, the hydroclimatic
deficit magnitude, E[D]b,magnitude, is defined as:

E½D�b;magnitude ¼
1

12

X12

k¼1

Xyi

xi
f ðDÞb;i;

where f(D)b,i is the natural (P-ET) or net (P-ET-H)
curve for basin b in starting month i, where
{i ∣i ∈Z, 1� i� 12}, and xi and yi are the beginning
and end of the deficit (where f(D)b,i < 0 and > 0,
respectively) for the curve. We then express the
E[D]b,magnitude as a percentage of basin-scale annual
precipitation (%). We define the deficit duration
similarly. It is the average number months for which
the P-ET or P-ET-H curve is negative overall starting
months i:

E½D�b;duration ¼
1 X12 X12 ½f ðDÞb;i < 0�:

12 k¼1 i¼1

4

We show the E[D]b,magnitude (figure 1(c)) and the
E[D]b,duration (figure 1(d)) for both natural (the
vertical orange dotted line representing the mean of
the P-ET<0 distribution) and net deficits (the vertical
red dotted line representing the mean of the P-ET-
H<0 distribution) for the Colorado basin. The
distance between the orange and red dotted lines in
figure 1(c) and (d) illustrates the increased deficit
magnitude and duration from human water con-
sumption in the Colorado basin. Such an accounting
provides a stable climatological method to annualize
monthly-scale cumulative P-ET and control for
hydrological heterogeneities across basins, such as
differential water years and seasonal cycles.

We note that the deficits do not need to be in
consecutive months—the calculation is simply the
average magnitude and duration by which total
demand exceeds total supply in any 12 month period.
We define ‘severe’ deficits as those that exceed either
50% of annual basin scale precipitation in magnitude
(i.e. more than half of annual basin supply) or 6
months of the year in duration (i.e., more than half the
year in deficit). Note that because this deficit metric is
a climatological characterization of basin supply and
demand, even modest changes in its magnitude or
duration would likely necessitate management
responses.

This measure of hydroclimatic deficits is an
approximate index of runoff availability. It must be
noted however that our measure assumes negligible
changes in storage, a simplification that would bias
water resource estimates for basins with large grid cell
fractions of lake cover, aquifer systems, or ice fields.
Furthermore, P-ET does not allow us to assess
potentially critical changes sub-seasonal watershed
hydrology. Nevertheless, P-ET is a meaningful first-
order measure of hydroclimatic mean states that is
routinely used in large-scale global climate model-
based studies of water resources [41, 42].

2.2. Observational and reanalysis data
Hydrological basin demarcations come from a
modified version of the Simulated Topological
Network (STN-30p), which represents the spatial
extent of river drainage basins globally at 0.5°
resolution [43] (see supplemental). We aggregate all
gridded data to the area-weighted basin scale.

We use version 2.0 of the Global Land Data
Assimilation System (GLDAS-2) as our baseline
climatology (1948–2010) of P (the sum of variables
Rainfsfc and Snowfsfc) and ET (variable Evapsfc).
GLDAS-2 uses meteorological assimilation and
hydrological simulation to create a 0.25° reanalysis
of observed land-surface processes for 1948–2010 [44]
that closes the annual basin-scale water budget (figure
S1(d)). For additional human-induced evapotranspi-
ration (H), we rely on the blue water footprint
(BWFP), a gridded, 5-arc-minute-resolution (∽10 �
10 km2 at the equator), monthly climatology of
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people’s consumptive demand of surface and subsur-
face water estimated from 1996–2005 [3].

This method avoids the double counting of ET in
adding BWFP to naturally-occurring ET estimated
from GLDAS. GLDAS uses the NOAH land surface
model, which employs the Penman-Monteith equa-
tion to estimate actual ET. It does not take into
account human irrigation, which is the principal
source of human water demand globally. NOAH uses
the land cover classification with a single crop type and
a single evapotranspiration parameter [45]. Therefore,
GLDAS only includes the productive human-use of
naturally occurring ET (or what is termed the green
water footprint), such as for rain-fed agriculture.
The GLDAS and BWFP thus represent distinct sources
of ET.

2.3. Climate model data
We analyze projections of P and ET from the
Community Earth System Model Large Ensemble
project (CESM LENS) [22], which simulates the
coupled atmosphere-ocean-land-sea-ice system from
1920–2080 at a 1° resolution (displaced pole grid,
gx1v6), using the RCP8.5 forcing pathway [46]. The
experimental design uses a single model to simulate
climate 30 times in a single forcing pathway, withminor
perturbations in atmospheric conditions prescribed at
initialization in the year 1920. These runs are initialized
from identical ocean, land and sea-ice states drawn from
asingleCMIP5-type1850–2100simulation(which itself
is initialized from a post-equilibrium 1500-year
preindustrial control simulation). The range of climate
states represented in the ensemble provides CESM’s
estimate of irreducible uncertainty induced by uncer-
tainty in the atmospheric initial conditions andhow that
influences persistent circulation patterns, and thus
mean hydroclimate [14, 21].

We use prognostic P and ET to calculate natural
and net deficits for each basin in each of the 30 CESM
LENS realizations, which explicitly accounts for
changes in P or ET, and thus land water balance,
arising from simulated precipitation phase changes,
snowmelt timing, and other complicating surface
hydrology features. For P, we use the sum of convective
and large-scale precipitation (PRECC þ PRECL, m
s�1), and for ET we use the sum of terrestrial and
canopy evaporation, and vegetative transpiration
(QSOIL þ QVEGE þ QVEGT, m s�1). For each
realization, we calculate linear trends estimated on
monthly and annual area-weighted basin-scale output
from 2011–2080 Using the full 2011–2080 series (70 yr
of data), we fit autocorrelation-corrected generalized
least squares (GLS) trends to each month and each
ensemble member based on the autocorrelation
structure of the residuals, following ref. [21]. We
express each month’s basin-scale trends as a relative
change (% per 50 yr) from each ensemble member’s
1948–2010 baseline mean. Following ref. [47], we
multiply each basin’s CESM trends by the monthly
5

GLDAS baseline mean to get 30 estimates of absolute
change relative to the GLDAS baseline mean and add
these absolute changes to the GLDAS mean, providing
30 estimates of climatological monthly P and ET by
2060. Signal-to-noise ratio is calculated by comparing
the magnitude of the mean of 30 individual trends
(signal) to the standard deviation of those trends
(noise), with the ensemble signal considered to be
robust if the signal-to-noise (S/N) ratio exceeds
one [21].

2.4. Population data and projections
We use present-day gridded population estimates
(2015) from the Center for International Earth
Science Information Network [48]. To project future
BWFP from population changes, we use the global
spatially-explicit future population estimates from
ref. [39] that presents decadal average populations
based on the Shared Socioeconomic Pathways (SSPs)
narratives. We use the three population projections
(SSP2, SSP3, and SSP5, respectively) that could be
consistent with RCP8.5 [49], the emissions pathway
with which the CESM LENS was forced. Using
present-day BWFP and populations, we estimate
basin-scale per capita water demand and project three
estimates of basin-scale monthly water demand using
the future population estimates for each SSP,
assuming stationary per capita consumption (supple-
mental). We then calculate deficits as outlined above.
We also examine the sensitivity of these projections
by calculating the range of future net deficits
assuming no change in consumption or population.
For figures 2(e), and S3 and tables S1 and S2, we
include a threshold for net deficit increases that must
exceed present-day artificial storage reservoir capacity
within the basin from the Global Reservoir and Dam
(GRanD) Database [50]. We aggregate the variable
CAP_MCM to the basin scale and normalize that
value to the basin area.

We provide statistical tests of significant change at
the global and basin scale. In table 1 we present the
global tests of significant change for all variables across
all scenarios. We use three non-parametric tests of
significant change using an a-level of 0.05 (Pr(>|f|)<
a, where f is the test statistic: (1) the Welch’s t-test, (2)
the Mann-Whitney, and (3) the bootstrapped
Kolmogorov–Smirnov (KS) test. At the basin scale,
statistical significance is calculated using the standard
one-sample Student’s t-score given a preselected
a-level: Pr(>|t|) < a, using a = 0.05. ‘Probability’
quantification is the percent of the ensemble agreeing
on a consistent direction of change above a threshold
of magnitude [51, 52].
3. Present-day natural and net deficits

Based on a 1948–2010 climatology from the GLDAS-2
surface reanalysis, 415 of the 676 basins we examine
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(e), Percent of the 30 ensemble members exhibiting an increase in the magnitude of net deficits at 2060. We apply a threshold for
inclusion for each run in each basin: the absolute magnitude of net deficit change must be greater than present-day water storage
infrastructure in the GRanD database (methods). Solid basins in [e] show significant ensemble mean change (p< 0.05) while hatched
basins indicate ensemble mean changes that are insignificant based on a one-sample Student’s t-test. See supplemental for the
probability of duration increases and other SSPs.

Environ. Res. Lett. 12 (2017) 044007
show at least one month of natural deficit on average,
and 278 basins have natural deficit magnitudes equal
to at least 10% of their annual precipitation (figures 1
(d) and (f)). On average, the moist tropics and low-ET
high-latitudes spend little to none of the year in
natural deficit, compared with nearly a quarter of the
year for monsoon regions, and nearly half the year
(with magnitudes >25%) for global drylands.

The seasonal interactions among P, ET, and H
fundamentally change the basin-scale supply and
demand characteristics (table 1, figures 1(c)–(g) and
S2). At the global scale the impact of human present-
day water consumption, H, is to double the observed
basin-mean natural deficit magnitude of ∽11%, while
increasing the global-mean duration by 15%, both
statistically-significant changes (table 1, figure S2). For
many basins, the effect of human water consumption
is even more pronounced: present-day human
consumption within the Colorado basin increases
naturally-occurring deficits by ∽30% in magnitude
and three-quarters of a month in duration (the grey
6

bars in figure 1(c) and (d)). In the Indus basin, deficit
duration increases by ∽4.5 times and deficit magni-
tude by ∽11 times (figures 1(f) and (g)). Likewise,
irrigation demand on the North China Plain (along
the sub-basins of the Yellow River) doubles both the
magnitude and duration of natural deficits (figures 1
(d)–(g)). In the agriculturally-intensive San Joaquin
basin in western North America, human water
consumption more than doubles deficit magnitudes,
intensifying an already arid regime (figures 1(d)
and (e)).
4. Future natural and net deficits

Using LENS, we project basin-scale changes inmonthly
and annual P and ETover the coming decades (figures 2
(a)–(d) and S1). These natural deficit projections are
coupled with estimates of population-based H to
calculate net deficit magnitudes and durations for three
SSP future population scenarios (figures 2(e) and S3,



Table 1. Global-mean basin deficits in the present and future climates. For all SSPs, we test the difference in the distribution of the
676 basins for the magnitude and duration of natural and net deficits and their differences, as well as basin-average precipitation,
evapotranspiration, population, and demand, reporting the value of the global mean difference in the present and future periods (see
empirical distribution functions in figure S2). We present three tests of significant differences, the two-tailed Welch’s T-test (significant
difference in means at p < 0.05 are denoted ‘

�
’), the two-tailed Mann-Whitney test (significant difference in distribution centers at

p < 0.05 are denoted ‘†’), and the bootstrapped two-tailed Kolmogorov-Smirnov test (significant difference in distributions at
p < 0.05 are denoted ‘§’). Bolded values indicate significance in at least two of the three significance tests.

Variable Present

1948–2010

Future 2060 Difference significance

(Present v. 2060)

1. Natural deficit magnitude [%] 11.2 39.9 28.7�†§

2. Net deficit magnitude [%] 22.0 SSP2

67.1

SSP3

75.6

SSP5

61.8

SSP2
45.1�†§

SSP3
53.6�†§

SSP5
39.8�†§

3. Difference significance, (2) v. (1) [pp] 10.7� SSP2

27.2

SSP3

35.7

SSP5

21.9

4. Natural deficit duration [mos.] 2 2.5 0.5�†§

5. Net deficit duration [mos.] 2.3 SSP2

2.8

SSP3

2.8

SSP5

2.8

SSP2
0.5�†§

SSP3
0.5�†§

SSP5
0.5�†§

6. Difference significance, (5) v. (4) [mos.] 0.3� SSP2

0.3�
SSP3
0.3�§

SSP5

0.3�

7. Precipitation [mm/mo.] 74.5 79.2 4.7

8. Evapotranspiration [mm/mo.] 42.2 46.0 3.8�†§

9. Population [M] 9.8 SSP2

13.2

SSP3

14.9

SSP5

12.0

SSP2

3.4§
SSP3
5.1�§

SSP5

2.2§

10. Demand [mm/mo.] 0.75 SSP2

1.14

SSP3

1.28

SSP5

1.05

SSP2
0.39�§

SSP3
0.53�§

SSP5
0.3�§
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methods).We calculate the ‘probability’ as the percent of
the ensemble showing a consistent direction and
minimum threshold of change [51, 52]. The threshold
we employ here is a conservative one: net deficit
magnitudes increases that exceed present-day artificial
reservoir storage capacity within the basin, based on the
GRanD database [50]. At the global scale, the increased
magnitude and duration of net deficits is driven by
increases in both basin-scale mean evapotranspiration
andhumanwaterdemand across all three SSPs (table 1).

The risks of increased net deficits are large (figure
2, S3, tables S1, S2). Examining the likelihoods of
increases in net deficit magnitude that exceed present-
day reservoir storage capacity, we find that approxi-
mately a quarter of basins globally (∽31%–35% of
future population) have >50% probability of in-
creased net deficit magnitudes, while 17% of people
will be exposed to>75% probability, and up to 10% of
people will be exposed to >90% probability (figures 2
(e) and S3, table S1). The possibility for decreased net
deficits across the ensemble is also large: populous
basins in East Asia and Central Africa, for example,
show likely (>66% [52]) decreases in net deficit
magnitudes (figures 2(e), S3), attributable to increases
in P that exceed increases in ET (figure 2(a)).
Furthermore, up to 13% of people are projected to
live in the 10% of basins in which the probability of
increases in net deficits is nearly equal to the
probability of decreases.

To examine the implications of irreducible climate
uncertainty on future population exposure to hydro-
climate deficits, we calculate the distribution of
7

population exposed to different levels of severe net
deficits by 2060 (figures 3 (a) and (b)). Consider the
exposure range for net deficit magnitudes of >50%
(first bin, figure 3(a)): if there were no population
change (and no attendant demand changes), the
ensemble predicts 60% probability that more people
will be exposed, but the irreducible range of global
population exposure is �3% to 7%. Across the SSPs,
the ensemble projects a median decrease of 1.5% of
global population exposed, with up to an additional
6% of people exposed, as in SSP3 (figure 3(a), first
bin). Further, depending on the individual SSP, the
range of irreducible uncertainty in exposure can span
up to ∽9% of global population as in SSP3 (figure 3
(a)). As progressively more severe deficits are
considered, however, the irreducible uncertainty
diminishes, and the ensemble predicts additional
people exposed to net deficit magnitudes and
durations relative to today (figures 3(a) and (b)).
5. Discussion & conclusions

Within each SSP, the range in predicted population
exposure is entirely an expression of persistent
multidecadal variability in P and ET (figures S4,
S5). Complicating the picture of ‘robust change’ in
hydroclimate is the potential for P and ET to have
statistically-significant basin-scale trends in either
direction, far from the ensemble mean response
(figure S5). Moreover, variability in LENS hydro-
climatic trends can span a majority of the inter-model
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Figure 3. (a), (b), Irreducible uncertainty in changes of population exposure to net deficits of differing magnitudes [a] and durations
[b] by 2060. For 3 SSPs congruent with RCP8.5, (SSP2, orange, SSP3, red, SSP5, purple) we show the ensemble range in the change in
the number of people (in % of global population in each scenario) exposed to more than the net deficit value in each bin (>X) as a box
plot (25th, 50th, and 75th percentiles, with outlying ensemble members shown as red dots). The blue box plots in [a] and [b] shows the
effect of climate change only on population exposure (i.e. the change in population exposure if there were no population human
consumption changes). Colored numbers across the top of each panel indicates the percent of the ensemble projecting increased
population exposure for each scenario in that bin. (c)–(e), Basin-total population changes (logged) by 2060 for SSP2 [c], SSP3 [d],
SSP5 [e] from the CIESIN 2015 estimates. Blue values indicate decreases, red, increases. Note the irregular spacing of the color bar for
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variability in CMIP5 trends, particularly for populous
mid-latitude basins [47], suggesting that some of what
is considered model uncertainty is actually internal
variability. A robust evaluation of this hypothesis
requires larger ensemble simulations with each CMIP
model, which is currently unavailable. Thus the LENS
provides the most complete estimate of hydroclimatic
variability in a transient simulation available, with its
distribution representing the most meaningful analog
to date for the potential range of real-world
8

uncertainty around any climate and/or water-use
scenario.

In contrast to the uncertainty within SSPs, which is
climate-driven, the uncertainty across SSPs is a
function of where future populations will aggregate
or diminish (figures 3(c)–(e)). While the uncertainty
across the SSPs in predicted exposure can be sizable in
absolute terms (particularly in comparison to the
scenario of no population change, which is largely
driven by population decreases in East Asia across the
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SSPs (figures 3(c)–(e)), there is considerably more
agreement across SSP projections than within them
(figures 3(a) and (b)).

The uncertainty in future net deficits thus appears
more driven by uncertainty in future hydroclimatic
change than the uncertainty in future population-only
driven demand (table 1 and figures 2, S2). This
conclusion is emphasized by two results: First, there is
the large directional uncertainty in natural deficits,
which by definition, neglect human demand: 78% of
basins (presently home to 83% of people) exhibit both
increases and decreases in magnitude across the
ensemble, while 76% (presently home to ∽80% of
people) exhibit both increases and decreases in
duration (figure S4). Second, across the three
population scenarios, the relative population exposed
to increased net deficit magnitudes or durations shows
little variation, consistent with other studies of
population exposure to climate extremes [53] (figures
3(a) and (b) and tables S1, S2). Uncertainty in future
human water demand from population changes alone
is therefore largely insufficient to generate directional
uncertainty in future net deficits, though it may
amplify or diminish uncertainty arising from climate
variability. Changes in per capita water consumption
profiles, which we explicitly do not examine here,
would likely reduce the number of basin subject to
irreducible directional uncertainty in future net
deficits. Identification of this would require a large
ensemble of water resource model simulations with
multiple scenarios of future human water consump-
tion.

It is important to note that we do not explicitly
quantify whether populations sustainably manage
their deficits, nor the social responses that could offset
future deficits. Furthermore, because our estimates are
made at basin scales and represent hydroclimatic mean
states based on long climatologies, such mean changes
potentially belie water stresses at finer spatial and
temporal scales, such as changes in seasonality,
extremes, and the like. However, because our measures
of net hydroclimatic deficits characterize long-term
water availability, the risks of change we identify in
them underscore the importance adaptive and flexible
water management and storage for future human
water demand. Depending on the characteristics of the
basin, storage can come from soil moisture, ground-
water aquifers, snowpack, glaciers, built infrastructure
or inter-basin transfers. These managed and unman-
aged systems play a critical role in fulfilling
environmental and human requirements during
months of hydroclimatic deficit [54]. Our results
suggest that, for many places, these systems will need
to be adjusted in order to fulfill water demands in the
future. These adjustments are likely to require
reconciliation between the social, political, cultural,
institutional, and infrastructural realities of each basin.
Our results also highlight the need for a greater
representation of multidecadal internal climate vari-
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ability in finer-scale water resource projections, which
is critical to ensure water managers are prepared for
the broadest set of possible real-world outcomes
consistent with the same global forcing. This aim is a
focus of future research.

Furthermore, we consider projections of future
water consumption based only on population
(stationary per capita water consumption). We choose
a middle-of-the-road profile of unchanging per capita
water demand, as we expect poor countries to increase
their water intensities, and wealthy countries to
plateau or decrease [55]. There is a rich literature
on the challenge of modeling future per capita water
demand [19, 55]. Given our focus here on the
uncertainty arising from climate variability, future
work could explore alternate per capita water demand
assumptions, which would modify the risks we
identify here.

Dependent on the social, political, and economic
features of a basin, population change may not be the
most important predictor for future basin-scale water
consumption. For example, in the developing world,
per capita energy and water demands are likely to
increase alongside increasing living standards, sug-
gesting that our estimate is conservative for those
basins. However, complicating such an interpretation
are the dynamics of how mass urbanization may shift
agricultural activities (the largest source of water
demand) to other basins. In contrast to the developing
world, California’s per capita water consumption has
decreased slightly over recent decades despite popula-
tion growth due to water efficiency measures. Such
unknowns would greatly influence the risks we present
for some basins, as would any set of future water
policies. In the present study, we aim to identify
irreducible uncertainty conditional on business-as-
usual, rather than introduce inscrutable uncertainties
from complicated water use scenarios. Both the signal
and noise associated with hydroclimate change
outpace the signal and noise from population-based
projections of water consumption.

The hydroclimatic response to global warming
implies that the most likely global-scale outcome in the
RCP8.5 forcing pathway is one of increasing popula-
tion exposure to sub-annual hydroclimatic deficits
requiring management responses (figures 2(e), 3, S3).
Internal variability nevertheless exerts a large influence
on future hydroclimate, and therefore on future
population exposure (figure 3). Depending on the SSP,
between 78%–80% of people are projected to live in
basins where the ensemble does not robustly agree on
the direction of change, and the majority of basins face
possible increased or decreased net deficits as a
consequence of internal climate variability interacting
with anthropogenically-forced change.

Quantifying the uncertainty arising from internal
variability is critical for identifying the distribution of
potential real-world outcomes on which to base
climate impact analyses. The model physics in the
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CESM influences the irreducible uncertainty in the
LENS. To the extent that CESM captures real-world
climate processes, our analysis of the single-model
‘irreducible uncertainty’ provides one such estimate.
Ideally, there would be initial condition ensembles
completed for each CMIP, and or hydrological or
water resource model, as the uncertainty range within
each model will be impacted by different modeling
choices that create model biases in P and ET (e.g.
parameterization of processes associated with clouds,
convection, soil moisture, and vegetation). Further-
more, future versions of land surface components to
Earth system models will likely be better positioned to
simulate sub-basin and sub-annual surface hydrology
with greater fidelity, allowing for large ensemble
analysis of endogenous surface hydrological fields.

Despite the additional uncertainty characteriza-
tions mentioned above, the range of hydroclimatic
variability identified in our results is fundamental for
decision-making, as it influences the set of potential
real-world outcomes around a climate trajectory, and
thus the set of adaptive responses that must be
considered. We have demonstrated that while pro-
jected probabilities point to increasing hydroclimatic
deficits, irreducible uncertainty makes many outcomes
possible under the same forcing scenario. Identifying
the scope of this uncertainty is therefore a critical
means for informing adaptive management practices
and robust adaptation [23] in integrated water
resources management [54]. The irreducible range
of outcomes we have identified also has important
implications for water storage in and on the land
surface, as well as for social, political, cultural, and
economic approaches to providing water during times
of natural deficit. Recent hydroclimatic disasters
suggest that existing infrastructure, governance, and
management practices may not be optimally adapted
to present climate variability, meaning that irreducible
uncertainty as we have characterized in this study must
be factored into climate risk management practices
both in the present and the future [56].
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