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Abstract
We quantify the importance of early action to tackle urban sprawl. We focus on the long-term
nature of infrastructure decisions, specifically local roadways, which can lock in greenhouse gas
emissions for decades to come. The location and interconnectedness of local roadways form a near-
permanent backbone for the future layout of land parcels, buildings, and transportation options.

We provide new estimates of the environmental impact of low-connectivity roads,
characterized by cul-de-sacs and T-intersections, which we dub street-network sprawl. We find an
elasticity of vehicle ownership with respect to street connectivity of –0.15—larger than suggested
by previous research. We then apply this estimate to quantify the long-term emissions
implications of alternative scenarios for street-network sprawl. On current trends alone, we
project vehicle travel and emissions to fall by ∼3.2% over the 2015–2050 period, compared to a
scenario where sprawl plateaus at its 1994 peak. Concerted policy efforts to increase street
connectivity could more than triple these reductions to ∼8.8% by 2050. Longer-term reductions
over the 2050–2100 period are more speculative, but could be more than 50% greater than those
achieved by 2050. The longer the timescale over which mitigation efforts are considered, the
more important it becomes to address the physical form of the built environment.
1. Introduction

‘Street-network sprawl’ is the characteristic of urban
sprawl defined strictly by properties of the location
and interconnectedness of roads [1]. Street-network
sprawl is characterised by low connectivity in road
networks, which is associated with car-oriented
transport as well as segregated land-uses and low-
density residential development [10]. After decades of
steadily declining road connectivity, recent trends in
the USA show a major turnaround toward less sprawl.
Since the mid-1990s, new urban road construction has
become increasingly grid-like, with quantitative
measures of connectivity recently returning to values
typical of 1960s neighborhoods [1].

A turnaround in street-network sprawl is significant
inpartdue to its importance for vehicle travel and for the
associated emissions. In the USA in 2011, gasoline
consumption for personal vehicle use accounted for
21% of CO2 emissions from fossil fuel combustion [33,
p 10]. A large body of empirical evidence links sprawl
© 2017 IOP Publishing Ltd
with greater vehicle travel, energy consumption, and
greenhouse gas emissions [10, 30]. These studies
highlight the role of the street network itself—among
other related dimensions of urban form such as density,
commercial and residential mix, and public transit—as
a particularly strong determinant of car ownership and
travel behavior [16, 24, 29].

While major energy investments such as coal-fired
power plants have capital turnover time scales on the
order of a few decades, and some other infrastructure
such as large dams may last for half a century,
the locations chosen for roads have proven to be
essentially permanent decisions among modern
civilizations, outlasting buildings and large techno-
logical, economic, and social shifts. For this reason,
our focus on metrics and policies related explicitly to
road networks is particularly relevant to multi-decade
and long-term climate policy. Over shorter time scales,
initiatives related to more malleable infrastructure
such as the energy efficiency of vehicles and buildings
may appear more important.

mailto:adammb@ucsc.edu
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In this paper, we quantify the shift that has already
happened in street-network sprawl and estimate its
significance for greenhouse gas emissions through its
effect on vehicle usage. We find a larger impact of
street-network sprawl on travel behavior than previous
studies suggest. We subsequently present our main
contribution, which builds on travel behavior studies
and historical estimates of road connectivity to project
future scenarios of greenhouse gas emissions. We
consider what the turnaround in street-network
sprawl implies for the future if the same trend
continues, and also what a more aggressive shift could
accomplish, for instance through concerted policy
explicitly targeting the connectivity of roads built in
new developments. We project a larger greenhouse gas
mitigation effect than expected from other proposed
transportation-sector policies.

After further elaborating on the importance of
original decisions about road layout in section 1.1,
sections 1.2 and 1.3 explain our measures of
connectivity and how they are quantitatively related
to vehicle emissions. Section 2.1 describes our
methods for generating improved estimates of this
relationship, based on nationwide road network data
in the US. Section 2.2 discusses our methods for
quantifying emissions impacts in terms of three
possible scenarios for future trends in road network
construction. Our results are presented in section 3,
and section 4 concludes.

1.1. The significance and persistence of road
networks
Across US urban regions, car ownership rates and per
capita annual distances driven on roads vary
considerably. As mentioned above, a range of studies
investigates and quantifies the link between physical
urban form and car use (see [10, 29] for meta-
analyses). In places where the roads are dominated by
cul-de-sacs and three-way intersections, rather than a
more grid-like arrangement, more cars are needed and
those cars are driven more, even after controlling for
other aspects of urban form such as distance to transit,
distance to downtown, and population density.

There are theoretical grounds to believe that this
association is driven by features of the built
environment, and the connectivity of the street
network in particular, rather than the other way
around. A gridded street network with high connec-
tivity reduces the ratio of network distance to
Euclidean distance, which reduces walking distances
and tends to be more attractive to pedestrians. It is also
difficult for public transportation to penetrate regions
of urban sprawl characterized by low-connectivity
roads both because their low population density
makes mass transit inefficient, and because walking
routes to potential transit stops are long and indirect.
In turn, limited pedestrian access means that regions
of street-network sprawl are unable to densify or to
accommodate a system of distributed, close-by
2

commercial services, even in the face of migration
or changing costs.

Moreover, households in low-connectivity, car-
oriented neighborhoods tend to need large dwellings
because many of the services provided collectively
outside the home in dense developments must instead
be provided separately by domestic capital in each
household [21]. Thus, developments with low-connec-
tivity road networks are less likely to develop local
restaurants, shops, laundromats, public swimming
pools, gyms, and so on, whichmight otherwise facilitate
a shift to denser residential dwellings. In summary, areas
with low-connectivity road networks have a limited
ability toadapt in the faceof changing fuel prices, carbon
taxes, or even amenities in nearby developments.

Above all, the relationship between street-network
sprawl and other outcomes of urban form is underlain
by the permanence of the street network. This
persistence comes in part from the difficulty of
coordinating across many landowners, once adjacent
land has been subdivided, and the high cost of re-
aggregating or appropriating private land. Thus, while
buildings can be replaced, and other commercial and
public infrastructure can respond to changing needs,
tastes, and prices, residential roads tend to remain
where they were first placed. The rebuilding of roads in
their original locations following complete devastation
in London (1666) and San Francisco (1906) were
dramatic demonstrations of the persistence of road
and property boundaries [13, p 227].

Because the responsiveness of building design and
commercial and public infrastructure to any future
changes in social and economic context is constrained
by the road network properties once they are cemented,
the road network itself may be seen as a cause of longer-
term outcomes. Recent patterns and future trends of
road network connectivity in new construction are
thereforemost significant for long-term (multi-decade)
transport efficiency and GHG emissions, although they
may have strong implications also for other more
immediate and long-run outcomes including cardio-
vascular health [17]. As the Intergovernmental Panel on
Climate Change notes, the long-lived nature of the built
environment tends to lock in energy consumption and
emissions once urbanization occurs [30].

1.2. Measuring street-network sprawl
We recently built a high spatial resolution time series
of road network connectivity for the USA over the past
century [1], which conceptualizes and quantifies
street-network sprawl by classifying every street
intersection, or node, into one of three types,
according to its network-theoretic degree. Dead ends
are considered an intersection of degree 1, three-way
intersections are assigned degree 3, and we treat all
intersections with four or more connected road
segments as degree 4 (denoted 4þ).

Figure 1 shows this classification applied to two
sample neighborhoods. We refer primarily to two
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Figure 1. Nodal degrees evaluated for a highly connected (gridded) neighborhood and one characterized by dead ends. The
Washington Square neighborhood, close to downtown Mobile, Alabama, has a mean nodal degree of 4.0, while the Claremont
neighborhood about 10 miles away has a mean nodal degree of 2.15. Image source: Google Earth.

Table 1. Previous studies of elasticity of vehicle distance traveled with respect to street connectivity metrics. Adapted from table 2 in
Salon et al [29] and table 3 in Ewing and Cervero [10].

Study Elasticity Nodal measure Connectivity metric

Boarnet et al (2004)
0.19 density Total intersection density near home

�0.06 density 4-way intersection density near home

Bento et al (2003, 2005) �0.07 density Road density (lane-miles per square mile)

Chapman and Frank (2004) �0.08 density Intersection density near home

Ewing and Cervero (2010)
�0.12 density Intersection or street density (6 studies, none controlling for self-selection)

�0.12 degree Percent 4-way intersections (3 studies, 1 controlling for self-selection)

Fan and Khattak (2008) �0.26 degree Percent of road ends that are intersections rather than dead ends

Cervero and Kockelman (1997)

No effect degree 4-Way intersections HH VMT, all purposes

�0.59 degree 4-Way intersections HH VMT, non-work

0.18 degree Quadrilateral blocks HH VMT, all purposes

0.46 degree Quadrilateral blocks HH VMT, non-work
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aggregate measures useful for describing geographic
regions; these are the mean nodal degree, D , which is
the average degree of nodes in a geographic unit, and
the fraction D 4þ of nodes with degree 4þ. The highest
connectivity developments are gridded street net-
works, typical of the early 20th century US construc-
tion that now constitutes urban cores. These
neighborhoods have D ≈ 4, while at the other extreme
the archetypal suburban sprawl consists mostly of
degree 1 and 3 nodes.

1.3. Existing estimates of car use elasticity
Most of the empirical studies included in recent meta-
analyses [10, 29] measure street-network connectivity
using D 4þ or a related measure, nodal density (i.e.
intersection density), with one study using the fraction
of deadends. Ewing and Cervero [10] provide a useful
benchmark, calculating a weighted average per capita
vehicle distance traveled elasticity of�0.12 with respect
toD 4þ, and an identical elasticity with respect to nodal
density. Table 1 lists existing estimates of the elasticities
of vehicle use with respect to road network connectivity
from the two meta-analyses mentioned above.
3

The theoretical link between street-network
connectivity and travel behavior is well-established,
and supported by the empirical studies discussed
above. However, most empirical work on the link
between urban form and street-network design
focuses on certain measures, particularly nodal density
(nodes km�2) or the almost-equivalent measure of
block size, that do not strictly measure connectivity.
While there is likely a close relationship between nodal
degree and nodal density, the latter measure is strongly
mediated by the scale of the analysis (larger areas will
include more parks and other undeveloped spaces),
and does not distinguish between a cul-de-sac or a 4þ

node. Nodal density also conflates two conceptually
separate aspects of urban form, population density
and street-network connectivity. Therefore, our
analysis focuses on nodal degree as our preferred
measure of street-network sprawl.

Moreover, existing studies may not fully identify
the causal relationship running from the street
network to car ownership and use. For example, an
ordinary least squares regression, even if controlling
for variables such as income, may suffer from an
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endogeneity bias if it does not account for an
unmeasured (and possibly unmeasurable) variable
that affects both street-network connectivity and car
use independently. As an example, a coordinated
public policy or pro-environmental political attitudes
might promote connected streets, while simultaneously
but independently encouraging alternatives to the
private car. Therefore, in order to overcome the
endogeneity bias, our preferred estimates use an
instrumental variables approach [36] which, under
assumptions explained below, allows us to evaluate the
strength of a unidirectional causal component of the
overall relationship between street connectivity and car
use. The justification andmethods for the instrumental
variable estimates are considered in detail in section
2.1.2. Before that, we discuss our overall approach and
choice of dependent variable.
2. Methods and data

Our approach to estimating vehicle emissions based
on scenarios of future road-network connectivity can
be separated into two steps, diagrammed in figure 2.
First, we describe in section 2.1 links 3 and 4 between
road network connectivity and car use. Second, in
section 2.2 we develop several scenarios of future
trajectories for road network properties in the US (link
1) based on our previous work, and we use existing
projections for housing growth in order to estimate
future car use, and from it, vehicle emissions (link 5).

2.1. The road network → car use relationship
The link between road-network connectivity and car
use is the most abstract of those shown in figure 2, and
requires new econometric identification and estima-
tion to corroborate and improve on the existing
estimates cited in table 1. Our method focuses on
variation at the scale of census block groups and uses
the number of vehicles per household as a proxy for
vehicle travel. We use a 2013 cross-section of nodal
degree values covering all urban block groups in the
USA4, along with census data on car ownership.
4 The dataset is based on the US Census Bureau TIGER/Line street
network, and makes adjustments such as merging adjacent nodes
that are functionally part of the same intersection. For full details,
see the supporting information in Barrington-Leigh and Millard-
Ball [1].

4

2.1.1. Vehicles per household as a measure of vehicle
travel
Ideally, we would directly estimate the elasticity of
vehicle distance traveled with respect to differences or
changes in road network connectivity. This relation-
ship across US states is shown in the top row of figure 3
for total urban annual per capita vehicle distance
traveled. The distribution of state values suggests that
states with higher-connectivity roads, as measured by
D (left) and D 4þ (right), exhibit lower vehicle travel
per capita5. However, these data [34] are available only
at the state level, and include commercial and freight
vehicles in addition to household travel.

Because we are interested in the local-scale impact
of street connectivity, our estimates use block group
level data. Comprehensive data on household urban
vehicle travel are not available for such small
geographic areas. Instead, our candidate proxies for
vehicle travel are household vehicle ownership and
commute mode share, both available from the
American Community Survey. We consider the vehicle
ownership variable to be the most natural proxy for
household urban vehicle travel, not least because most
household vehicle use is for trips other than
commuting. Thus, of the measures available from
the American Community Survey, the total number of
cars chosen by households has a better theoretical link
with overall car use than the measures which focus
only on commuting.

Empirically, both vehicle ownership and commute
mode share are highly correlated with vehicle travel.
Using data from the National Household Travel Survey
[12], we find that the log of vehicle miles traveled has a
correlation of 0.28 with the share of commutes by
driving, and 0.35 with the number of vehicles per
household (and 0.42 with the same variable in log
form). These correlations are at the household level,
using the provided survey weights. Below it will be
important only to assume that the relationship
between the number of vehicles per household and
mean distance traveled is roughly linear. Figure 4
shows that this is, as a correlational claim, an excellent
5 On average, households in states with higher-connectivity roads
are also less likely to commute alone by car; see the supplementary
information.
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assumption. The great majority of households have
fewer than five vehicles, and for these households, the
number of vehicles is nearly perfectly correlated with
the mean vehicle distance traveled. While there are
undoubtedly a host of factors which codetermine
vehicle ownership and vehicle travel, we hereafter
focus our causal identification on the link between
urban form and vehicle ownership, and based on
figure 4, assume similar fractional changes in vehicle
ownership.

The lower panels in figure 3 show distributions of
mean degree D and D 4þ at the scale of block groups,
plotted against the average number of vehicles per
household, taken from the 2007–2011 American
Community Survey. There is a clear linear relationship
between higher connectivity streets and fewer vehicles
per household. The supplementary information con-
tains further tables (A2 and A3) stacks.iop.org/ERL/12/
044008/mmedia listing the means, standard deviations,
and bivariate correlations for our key variables.

2.1.2. Causal identification strategy
The relationships shown in figure 3 are descriptive
only, because they reflect numerous sources of
variation, for instance at the state or county levels
where demographics, other policies and geographi-
cal features may vary somewhat independently of the
average local road connectivity. Moreover, we wish
to isolate the causal pathway (link 3 in figure 2) from
other factors which might simultaneously affect
both car ownership and the street network. To do
this, we use two statistical techniques in our
estimates. The first is to control for arbitrary
(unmeasured) fixed effects at the scale of counties or
states. The second, simultaneous, improvement on
previous work is to estimate an instrumental
variables model, in which a first-stage projection
captures an exogenous component of the variation
in road network connectivity.
6

In order to capture this variation, we employ
topography as an ‘instrument’ for street-network
sprawl. This allows us to estimate the underlying effect
of street networks on car ownership at the local scale.
The instrumental variables (IV) approach, which
avoids the endogeneity biases with ordinary least
squares regression discussed above, depends on two
main assumptions.

The first assumption is the existence of a
relationship between topography and street-network
sprawl. Steeper or uneven terrain is somewhat less
easily paved with a gridded road network than flat
terrain, although other influences remain and the
relationship is by no means deterministic, as the
gridded hills in San Francisco testify.

We calculate slope using gridded elevation data at
1/3⅓ arc second (∼10 m) resolution from the National
Elevation Dataset [35]. We report two measures:
average slope within a geographic unit such as a
county, and the fraction of grid cells with slope >10°.
Figure 5 shows the simple bivariate relationships
between these two measures of terrain slope and our
two measures of road network connectivity. Nonpara-
metric estimates are shown for each of three spatial
scales—block groups, counties, and states—as are
scatter plots for the larger two scales. The trends are
robustly negative. When we estimate linear models of
these same relationships, and account for street-
network connectivity using both measures of terrain
steepness at once, we find that all of the explanatory
power comes from the second measure, the fraction of
grid cells with slope >10°.

In particular, we find at the block group scale that
9% and 6%, respectively, of the variation in nodal
degree D and fraction of 4þ intersections D 4þ can be
accounted for by this measure of slope. Given that
street-network sprawl is also strongly influenced by
socio-economic and other variables such as local
development policies and regulations at the time of

https://stacks.iop.org/ERL/12/044008/mmedia
https://stacks.iop.org/ERL/12/044008/mmedia
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planning and construction, 6% to 9% is a remarkably
high share of the variation6. In fact, even after
controlling for state or county level fixed effects, our
slope measure accounts for a further 4% to 5% of
variation in our two measures of street-network
connectivity.

The second assumption is that topography is
exogenous and has a one-way influence on travel that
operates only through the channel of urban form7.
Invariably in any instrumental variables estimate, this
second assumption is hard to empirically verify, but
the diagnostic tests reported below support our
contention of exogeneity.

2.1.3. Instrumental variables estimation of elasticities
We proceed by first predicting the explanatory variable
(e.g. fraction of 4þ nodes) as a function of the
fraction of grid cells with mean slope >10° and a
complete set of fixed effects that control for
unmeasured properties of counties or states. Formally,
this projection of the endogenous variable onto the
instrument and geographic indicators is shown in the
first-stage equation (1), below. These predicted values
of the explanatory variable are then used along with
the state or county indicators, but without the measure
of slope, in the second-stage equation (2) that
estimates car ownership [2, 36]. Formally,

X0 ¼ u⋅Zþ d⋅X1 þ e ð1Þ
A ¼ b0X̂ 0 þ b1⋅X1 þ m ð2Þ

where X0 is the local measure of street connectivity for
a given block group; X̂ 0 is its predicted value from
equation (1); Z is a vector of slope variables (but we use
only one in our preferred specification); A is the
dependent variable measuring automobility (vehicles
per household); X1 is a vector of other covariates (state
or county fixed effects); m and e are error terms with
mean zero; u is a coefficient that indicates the strength
of our first-stage estimates; and b0 is an estimated
coefficient that indicates the causal impact of street
connectivity on vehicle ownership. Since Z and A enter
in log form, b0 can be interpreted as the elasticity. In
an ordinary least squares (OLS) approach, X0 is used
directly in equation (2) without need for equation (1).
6 Although we do not make use of state-level estimates in what
follows, we also tested the state-level findings shown in table 2 for
sensitivity to outliers. Using the robust regression model in Stata, in
which influential observations are progressively down-weighted, did
not change the point estimates.
7 Ideally, for the instrumental variables interpretation to hold, the
influence of terrain on road network properties would occur only
through the extra difficulty of conforming a gridded or highly
connected network on uneven or steep ground. By contrast, indirect
causal effects such as the selection of a different demographic, with
different preferences for housing style or transport modes, towards
steeper terrain would invalidate this approach. For our instru-
mented estimates, we assume that these alternate pathways are weak.
We apply both uninstrumented (ordinary least squares) models as
well as instrumented (two stage least squares) models in order to
compare estimates.

7

The indicators in X1 control for all unobserved
heterogeneity across states or across all ∼2400
counties. Using a complete set of geographic controls
at the county and state scales is appropriate because
policy environments relevant to urban form and
transportation are most likely to vary at these scales. In
addition, an individual’s daily travel is likely to be
within a county or across only one county line, but to
span a distance similar to the scale of an urban county.

Estimates of our IV model were carried out using
the generalized method of moments (GMM) imple-
mented in ivreg2 in Stata [2], with the slope > 10°
measure as an instrument. Our estimates of standard
errors are robust to heteroskedasticity and allow for
clustering at the county level.

2.2. Projections for vehicle travel and emissions
Armed with our own elasticity values, which as we will
see are consistent with previous estimates, we are next
able to project the impacts of three alternative
scenarios for street-network sprawl on vehicle travel
and emissions.

2.2.1. Trends and scenarios
Vehicle travel increased steadily through the 20th
Century (green and blue lines, figure 6), in line with
rising incomes, expansion of roadway infrastructure,
and urban development trends such as lower densities
and less connected streets. This growth, however,
leveled off shortly after the turn of the century. Much
research suggests that demand for travel may have
saturated, at least in per-capita terms, with changes in
mobility and residential preferences among young
people, new information and communications tech-
nologies, and diminishing marginal returns to
mobility cited as some potential explanations for
‘peak travel’ [15, 19, 20].

Growth in vehicle travel through most of the last
century was accompanied by an increase in street-
network sprawl (i.e. declining D), until a turnaround
occurred in the mid-1990s for newly constructed
streets (thin purple line in figure 6). Because new
streets in a particular year account for a small fraction
of the total, the stock of all streets (thick purple line)
was slower to respond, but also reached a turning
point in 2012 [1].

The extent to which changes in street-network
sprawl are responsible for past travel growth and for
the ‘peak travel’ phenomenon is unclear, and many
different factors likely contributed. However, a
continued trend of declining sprawl will almost
certainly affect travel behavior, given the well-
established relationships discussed above. The Energy
Information Administration (EIA) projects that steady
growth in vehicle travel will resume, while CO2

emissions from gasoline will fall as a result of improved
fuel economy (figure 6, dashed lines). While recent
EIA analysis acknowledges shifts in travel behavior,
such as travel growth beginning to decouple from
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economic growth [7], its projections do not yet
explicitly model the impact of changing urban form.
Here, we analyze the magnitude of the impact of
different trends in street-network sprawl on vehicle
travel and emissions under three scenarios for the
future connectivity of the street network.

Each scenario is defined in terms of the fraction of
4þ nodes d 4þ

t in newly constructed streets in each
year t = 1995, 1996, . . . , 2100 (figure 7, dashed
lines)8. Scenario 1: 1994 plateau illustrates what
would have happened in the absence of the recent
turnaround in street-network sprawl. Under this
scenario, d 4þ remains at the low of ∼0.14 achieved in
1994. Scenario 2: continued trend represents an
extrapolation of the recent decline in street-
network sprawl into the future. d 4þ follows
8 We measure connectivity as the fraction of 4þ degree nodes,
rather than nodal degree, in order to match estimates of elasticities
in the literature.

8

its observed trajectory from 1995–2012, and con-
tinues to grow at the same annual average rate
(∼1.6%) until it reaches a ceiling of 0.65, which
approximates the connectivity of large New Urbanist
developments such as Stapleton inDenver, Colorado [1].
Formally, d 4þ

t ¼ min 1:016 d 4þ
t�1; 0:65

� �
for t >

2012. Scenario 3: connectivity policy illustrates a
more rapid increase in street-network connectivity,
such as might be produced by widespread anti-sprawl
policies. For example, Virginia enacted statewide
standards in 2009 that strongly discourage cul-de-
sacs, and many similar policies exist at the city or
county level [1, 14]. Under Scenario 3, d 4þ follows
Scenario 2 (the observed trajectory or continued
trend) from 1995–2015. The annual average rate of
change then increases to ∼12.8%, so that the ceiling
of 0.65 is reached ten years later in 2025. This would
mean that the majority of intersections in new
developments would be 4þ.
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2.2.2. Estimating travel and emissions impacts
While the scenarios are defined in terms of the
connectivity of new streets, it is the connectivity of the
entire stock of streets that affects travel behavior. Thus,
the impact of the trends in d 4þ will depend on how
they affect the fraction of 4þ degree nodes in the stock,
denoted D 4þ, which in turn depends on the assumed
rate of urban growth.

We use growth in the housing stock to estimate the
growth of the street-network stock. We assume that
the growth rate of nodes, gN, is linearly proportional
to the annual growth rate gH of the housing stock, so
that gN = ngH, where n (dimensionless) denotes the
nodes-to-housing growth ratio. We derive gH from
the housing growth forecasts in Zeng et al [37], with
the starting value adjusted to match the 2013
retrospective revision from the US Census Bureau.
Alternative projections for housing growth provide
similar estimates (figure 8).

We extrapolate the trends beyond 2050 by
assuming a constant rate of new units added (∼1.25
million yr�1), based on the 2040–2050 average. The
same procedure is used to separately extrapolate each
bound of the uncertainty envelope. These data points
give us a central estimate for gH of 1.1% in 2014,
declining to 0.5% by 2100. Importantly, the housing
growth figures refer to net new units rather than total
new construction; the latter is ∼42% greater than the
former according to [22].

We estimate the nodes-to-housing growth ratio n

at ∼1.4 using our historical street-network data, which
we describe in full in [1]. A value of n of greater than
one indicates that the street network grows at a faster
rate than the net housing stock. This could be partly
driven by more rapid growth in non-residential
9

development, and partly by the replacement of
housing units in a different geographic location
(e.g. abandoned housing in Detroit or New Orleans
being replaced by units in Phoenix). The relationship
between n and sprawl is unclear a priori. Less sprawl
might lead to a lower value of n if new housing units
take the form of tall apartment buildings, or a higher
value of n if less sprawl is accompanied by smaller
blocks. Therefore, we assume that n is constant rather
than a function of the level of sprawl.

Given estimates for gH and n, we proceed to
estimate the impact of trends in d 4þ, the fraction of 4þ

nodes in new construction, on the fraction D 4þ in the
stock. The growth rate in the stock N of nodes, i.e. the
number of intersections, evolves as:

Nt ¼ Nt�1 1þ gNð Þ ¼ Nt�1 1þ ngHð Þ ð3Þ
The connectivity of the stock (shown in figure 7,

solid lines) then evolves as:

D 4þ
t ¼ Nt�1D

4þ
t�1 þ d4þt vgHNt�1

Nt�1ð1� vgHÞ

¼ D4þ
t�1 þ d4þt vgH

ð1þ vgHÞ
ð4Þ

Finally, we use our projections of D 4þ to estimate
changes in vehicle travel, energy use and CO2

emissions, using two estimates for the elasticity of
vehicle travel with respect to D 4þ. Assuming that fleet
fuel efficiency and fuel carbon content are not
affected by D 4þ, the elasticity of vehicle travel will be
identical to those for household vehicle energy
consumption and CO2 emissions. The analysis in
section 2 provides the first elasticity estimate, �0.15.
The second estimate, �0.12, is taken from the meta-
analysis in Ewing and Cervero [10]. Based on an
elasticity e∈ �0:15;�0:12f g, the one-year fractional
change in vehicle distance and hence emissions dE is
as follows:

dEt ≡
DEt

Et�1
≈ e

D4þ
t � D4þ

t�1

D4þ
t�1

ð5Þ

As with any application of elasticities, equation (5)
is only valid for small changes in D 4þ. Under the
assumption of constant elasticity (see section 5.2), the
accumulated changes in emissions from the 2015
baseline can be calculated as:

dEt ¼ Et � E2015

E2015
¼ D4þ

t

D4þ
2015

� �e
� 1 ð6Þ

The two elasticity estimates combined with the
three housing growth estimates (the central projection
and bounds in figure 8) generate six values for each
scenario. Our central estimate uses the central estimate
for housing growth combined with our preferred
elasticity (�0.15). The shaded envelope represents the
highest and lowest of the six values.



Table 2. First stage estimates of street network connectivity.
Ordinary least squares estimates of the relationship between
street network connectivity and topographic slope. The first row
shows raw coefficients on our measure of slope, while the second
row shows the equivalent standardized b coefficients from the
same estimate. Standard errors are shown in parentheses. The
two measures of connectivity are the 2013 mean nodal degree of
intersections and the fraction D4þ of intersections with degree
four or more. Each model is estimated at the geographic scale of
block groups (using only those with >50 intersections) and
accommodates correlation in errors clustered at the scale of
counties.

log (fourway) log (degree)

(1) (2) (3) (4)

fraction >10° �.89† �.99† �.18† �.20†

(.034) (.036) (.006) (.008)

b coef �.25† �.23† �.30† �.27†

(.010) (.008) (.010) (.011)

f.e./demean state county state county
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We assume that the level of sprawl does not affect
the fuel efficiency of vehicles nor the carbon content of
fuels, and thus dE is the same as the fractional change
in private vehicle travel. This assumption is also used
in [32]. Because we ultimately compare fractional
changes across scenarios, this does not imply constant
fuel economy or carbon content over the 2015–2100
period, but rather that any changes over time are
identical across our three scenarios. Vehicles are likely
to become more efficient and shift to electricity and
other fuels over this time frame, and autonomous
vehicles may become widespread. These changes will
affect the absolute emissions impacts, but provided
that the factors are independent, we provide valid
estimates of the proportional emissions impacts of
trends in street-network sprawl.
Nclusters 2374 2374 2374 2374

F 51.1 775 47.7 617

R2(adj) .141 .051 .170 .071

obs. 72 680 72 680 72 860 72 860

Significance: 0.1%† 1%� 5%x 10%þ
3. Results and analysis

In 3.1 below we present the instrumental variables
estimate of the elasticity of vehicle ownership,
including our first-stage estimates predicting connec-
tivity as the fraction of 4þ degree nodes or their mean
degree. Section 3.2 then presents our main results
from applying the elasticity for D 4þ to future
projections of new road construction.

3.1. Elasticity of vehicle ownership
Table 2 shows our first stage estimates, which predict
street-network connectivity from topographic steep-
ness. The first row shows that as a block group
becomes 10% steeper9, the predicted fraction of 4þ

intersections D 4þ decreases by 9%, and predicted
mean nodal degree D decreases by about 2%. The ‘b
coef ’ row shows the same coefficients expressed in
standardized form. These show that a one standard
deviation in our steepness variable accounts for
between 25% and 30% of a standard deviation in
our measures of connectivity. Using these estimates,
the component of variation in D 4þ predicted by
topography is used in the second-stage regression to
identify the effect on vehicle ownership.

Our findings for the unitless elasticities b0 are
shown in table 3. In odd-numbered columns, we show
ordinary least squares estimates using the overall
variation in street network connectivity to account for
differences in transportation outcomes. Even-num-
bered columns present our favored IVestimates which
focus on the exogenously-influenced component of
the street-network connectivity.

In accordance with the strength of the relation-
ships shown in table 2, our first-stage estimates pass
standard tests of weak- and under-identification of the
instruments. These estimates are characterized by the
following: high statistical confidence in all cases;
9 Recall that we measure steepness as the fraction of ∼10 m� ∼10 m
grid cells within a block group that are steeper than 10°. Thus, a 10%
increase in steepness means that an additional 10% of the land area
exceeds this 10° threshold.
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general consistency across OLS and IV estimates;
somewhat larger elasticities from IV models as
compared with OLS; and a close agreement of the
D 4þ-elasticity of vehicles per household with the
meta-analysis elasticity reported by Ewing and
Cervero [10]. We use the elasticity of –0.15 highlighted
in a box in table 3 in order to make projections about
the future growth of vehicle travel and emissions. This
value means, for instance, that on average a fractional
change of þ10% in the value of D 4þ leads to a
fractional decrease of 1.5% in the number of vehicles
owned by households. Of course, there are many other
determinants of car ownership beyond urban form,
not least fuel prices, and income, age and other
socioeconomic factors. Our aim here is not to
comprehensively explain variation in car ownership,
but rather to isolate the causal impact of a change in
street-network sprawl.

In section 5.2 of the supplementary information,
we detail some further checks on these results, and we
find them robust to inclusion of other controls and to
the allowance for spatial spillovers and spatially
correlated errors (estimated using [6]). We also find
similar elasticities across a range of values ofD 4þ

—i.e.
for neighbourhoods with both relatively low and
relatively high connectivity.
3.2. Emissions scenarios
We now use our elasticity estimate from section 3.1 to
project the emissions impacts of scenarios for street-
network connectivity, in line with the method
discussed in section 2.2. We report projected
cumulative changes compared with the 2015 baseline
year. The impact of declining street-network sprawl on
vehicle travel and emissions takes time to accrue, given
that new construction influences the stock of streets
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Table 3. Estimates of road network connectivity elasticity of vehicle ownership. Coefficients and (in parentheses) their standard errors
are calculated using 2013 data for all US urban block groups with >50 intersections, and outside of Washington, DC. State or county
fixed effects are included as indicated. Data from Washington, DC are dropped in order to be able to cluster standard errors at the
county level. Odd-numbered columns are from OLS models, while even-numbered columns are IV estimates, in which only the
component of road connectivity accounted for by terrain topography is used to explain variation in transportation outcomes. In order
to estimate elasticities, the log of the independent and dependent variables are used in a linear model. The boxed value of �.15 is the
value referenced in our later projections.

log (vehicles/HH)

OLS IV OLS IV OLS IV OLS IV

(1) (2) (3) (4) (5) (6) (7) (8)

log (degree) �.72† �.72† �.70† �1.03†

(.016) (.056) (.017) (.048)

log (fourway) �.12† �.15 † �.12† �.21†

(.003) (.012) (.003) (.010)

Instrumented (terrain) Y Y Y Y

f.e./demean state state county county state state county county

Nclusters 2371 2371 2371 2371 2371 2371 2371 2371

Weak ID F 710 739 849 547

F 75.5 161 1662 456 72.5 168 1696 458

R2(adj) .198 .129 .122 .040 .210 .149 .131 .101

obs. 63 360 63 360 63 360 63 360 63 480 63 480 63 480 63 480

Significance: 0.1%† 1%� 5%x 10%þ
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only incrementally. However, by 2050, a continued
trend (Scenario 2) implies a ∼3.2% reduction (range
of 1.6%–4.2%) against the 2015 baseline in household
vehicle travel and emissions compared to Scenario 1,
under which sprawl plateaus at its 1994 peak (figure 9).
A policy scenario with immediate action to promote a
gridded street network (Scenario 3) yields an even
larger reduction of ∼5.6% (3.2%–6.6%) compared to
Scenario 2, and ∼8.8% (4.8%–10.7%) compared to
Scenario 1. The ranges given in parentheses reflect
the uncertainty envelopes shown in figure 9,
which encapsulate different assumptions about
growth in the street network and the elasticity of
vehicle travel with respect to street-network sprawl, as
discussed in 2.2.210.

Beyond 2050, the uncertainty envelope widens
considerably due to compounded uncertainties in the
10 Note that these ranges cannot be computed directly from
figure 10. For example, the upper bound of the envelope in Scenario
1 does not necessarily reflect the same combination of street-
network growth and elasticity assumptions as the upper bound of
Scenario 3.
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growth of the housing stock. Added to this is
uncertainty from non-quantified factors, not least a
potential shift to automated vehicles [15]. Figure 9
plots the projections through 2100, primarily to
illustrate how differences between the scenarios
continue to widen after 2050 as post-2012 nodes
account for an increasing proportion of the stock over
time. By 2100, the continued trend of Scenario 2
produces a ∼9.5% reduction in vehicle travel
compared to Scenario 1, with a further ∼4.4%
reduction from the connectivity policy of Scenario 3.

Towards the end of the century, Scenarios 2 and 3
begin to converge as d 4þ hits its assumed ceiling of
0.65 in both scenarios in 2094. The ‘wedge’ between
the two scenarios indicates the emission savings from
immediate concerted policy action, rather than
waiting for the trends to run their course.

In the United States, light-duty vehicles are
projected to account for ∼744 Mt CO2 or ∼13% of
energy-related CO2 emissions in 2040 ([7], EIA
reference case; projections do not extend beyond 2040).
Assuming that 2050 baseline emissions are the same as
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2040, our results suggest that on current trends, CO2

emissions in2050wouldbe∼24MtCO2yr
�1 lower than

Scenario 1, under which street-network sprawl con-
tinues unabated. Under the connectivity policy
(Scenario 3), they would be ∼65 Mt CO2 yr

�1 lower
than Scenario 1.We do not account for other influences
on vehicle travel such as population growth, demo-
graphic changes, fuel prices and incomes, and so the
scenarios should be interpreted relative to each other
rather than in absolute terms. Our scenarios are
counterfactuals, rather than a comprehensive integra-
tated assessment exercise.

Our estimates are likely to be at the lower end of
probable impacts of street-network sprawl on vehicle
travel and CO2 for several reasons. First, we do not
account for non-transportation emissions savings.
Dimensions of urban form that are correlated with
street-network sprawl, such as density, reduce energy
and materials consumption in other sectors—for
example, because of smaller housing units and a shift
towards shared commercial provision of services, from
car ownership to fitness centers11. Second, assump-
tions on the rate of growth of the stock of nodes
determine how quickly changes in the connectivity of
new nodes affect the connectivity of the stock; our
assumptions of ∼0.5%–1.1% annual growth are based
on housing market projections, but are below the
historic growth rate of ∼1.6% over the 1994–2012
period. Third, we do not consider spillovers through
which the characteristics of new streets affect travel by
residents on existing streets.
4. Conclusions

Transportation policies to reduce greenhouse gas
emissions have traditionally focused on vehicle
technology and fuels, such as electric vehicles and
fuel economy. However, technology- and fuel-based
policies are unlikely to be sufficient to avoid dangerous
climate change, and long-term climate targets will
likely only be feasible with global implementation of
land-use and transportation policies to reduce vehicle
travel [28]. Even where the connections between land-
use and travel demand are addressed, many technical
and policy syntheses, including the transportation
chapter of the most recent assessment report from the
Intergovernmental Panel on Climate Change [25]12,
11 On a per capita basis, low-density development is more than
twice as intensive in both energy use and GHG emissions as high-
density development in the urban core, taking into account
infrastructure and building materials and operations, and public
and private transportation [23].
12 Chapter 8, Transport, of the IPCC report mentions street
connectivity only as a brief aside, although the topic is covered in
more detail in the same report in chapter 12, Human Settlements,
Infrastructure, and Spatial Planning.
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overlook the mitigation potential of improving street
connectivity.

We find that reducing street-network sprawl can
make a large contribution to greenhouse gas mitiga-
tion, particularly in the medium-to-long term. On
current trends alone, we project vehicle travel and
emissions to fall by ∼3.2% over the 2015–2050 period,
compared to a scenario where sprawl plateaus at its
1994 peak. Concerted policy efforts to increase street
connectivity could nearly triple these reductions to
∼8.8% by 2050. Longer-term reductions over the
2050–2100 period are more speculative, but could be
more than 50% greater than those achieved by 2050.

Our projected reductions from current trends,
even without assuming an accelerated connectivity
policy, have an impact of comparable or greater
magnitude to the climate policy interventions
modeled in various studies. For example, a CO2 price
of $30–$60/t from an economy-wide cap-and-trade
scheme would reduce vehicle travel in 2030 by ∼1%
(although reductions in the energy sector from cap-
and-trade would be much greater) [27]. An ‘aggressive
deployment’ of land-use strategies, with at least 64% of
new development in ‘compact, pedestrian- and
bicycle-friendly neighborhoods with high-quality
transit’ yields a 2.7% reduction in vehicle travel by
2050 [3, p. 42]. A Transportation Research Board/
National Research Council special report [32],
meanwhile, suggests that doubling density in
25%–75% of new developments would lead to a
1.0%–7.7% vehicle travel reduction by 205013. While
policies to reduce travel often yield individually small
impacts and can best be viewed in combination, our
results suggest that the implementation path may be
easier than previously thought.

More concerted policy efforts can accelerate the
mitigation benefits. Current trends are likely due to a
combination of market preferences and policy
initiatives by some local governments. However, state
and/or federal government policy could bring about a
faster transition to more connected street networks.
Some state-level policies have already been imple-
mented, such as the Virginia legislation noted above
that strongly discourages cul-de-sacs. Federal policy is
also a possibility. Historically, guidelines from the
Federal Housing Administration and other agencies
contributed to the early 20th Century rise of cul-
de-sacs [31]. Thus, federal policy could also work in
the opposite direction, and discourage street-network
sprawl through mortgage underwriting guidelines,
fiscal incentives to states and regional agencies, or
market-based policies such as taxes on less-connected
street networks. Such taxes would account for the
13 The report notes that the higher-end estimates would be
‘challenging,’ and that the committee was split over the feasibility of
achieving such a change in urban densities. On the other hand, [11]
suggests a much higher impact than the TRB/NRC study.
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social costs imposed on others, now and in the future,
by low-connectivity roads14.

Street-network decisions likely have an additional
cost related to future options. The same gridded street
network supports, on the one hand, a low-density,
single-family housing neighborhood with large lots
and, alternatively, contiguous apartment buildings or
even skyscrapers. By contrast, low-connectivity street-
network sprawl is mostly good for just one specialized
option involving low-density, car-oriented living. In
the long run, prices, transportation modes, work
habits, and consumption patterns may be hard to
predict, and are certainly not captured in our
projections. In this sense, the ability of urban regions
to adapt quickly to new circumstances is ultimately the
most valuable asset. Urban landscapes like the
municipalities of Los Angeles and Vancouver have
the option to transform transit and cycling infra-
structure, residential density, and land-use mix
rapidly, on account of having a largely gridded road
network.

The case of street-network sprawl also highlights
the need for a package of mitigation policies that
operate over different time scales. Increasing street
connectivity will do little to contribute to the
immediate emission reductions that are needed to
avoid the risks of overshooting an atmospheric CO2

concentration that reduces the risks of dangerous
climate change [4, 26]. However, the longer the
timescale, the more important it becomes to address
the physical form of the built environment. While
emission reductions from connectivity policies are
substantial by 2050, they become even steeper by 2100
(figure 9). Moreover, the costs of waiting are amplified
by the persistence of urban streets. A new car might be
on the road for 15 yr, and a new coal-fired power
station might last several decades, but cul-de-sacs can
lock in a high-emissions pathway for a century or
more.
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