
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 210.77.64.106

This content was downloaded on 30/03/2017 at 11:54

Please note that terms and conditions apply.

On the decreasing trend of the number of monsoon depressions in the Bay of Bengal

View the table of contents for this issue, or go to the journal homepage for more

2016 Environ. Res. Lett. 11 014011

(http://iopscience.iop.org/1748-9326/11/1/014011)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Shift in Indian summer monsoon onset during 1976/1977

A S Sahana, Subimal Ghosh, Auroop Ganguly et al.

Decreasing intensity of monsoon low-frequency intraseasonal variability over India

Nirupam Karmakar, Arindam Chakraborty and Ravi S Nanjundiah

Prediction of Indian rainfall during the summer monsoon season on the basis of links with

equatorial Pacific and Indian Ocean climate indices

Sajani Surendran, Sulochana Gadgil, P A Francis et al.

Impact of river runoff into the ocean on Indian summer monsoon

P N Vinayachandran, S Jahfer and R S Nanjundiah

The impact of monsoon intraseasonal variability on renewable power generation in India

C M Dunning, A G Turner and D J Brayshaw

Roles of interbasin frequency changes in the poleward shifts of the maximum intensity location of

tropical cyclones

Il-Ju Moon, Sung-Hun Kim, Phil Klotzbach et al.

Amplified subtropical stationary waves in boreal summer and their implications for regional water

extremes

Jiacan Yuan, Wenhong Li and Yi Deng

Multi-decadal modulation of the El Nino–Indian monsoon relationship by Indian Oceanvariability

Caroline C Ummenhofer, Alexander Sen Gupta, Yue Li et al.

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1748-9326/11/1
http://iopscience.iop.org/1748-9326
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1748-9326/10/5/054006
http://iopscience.iop.org/article/10.1088/1748-9326/10/5/054018
http://iopscience.iop.org/article/10.1088/1748-9326/10/9/094004
http://iopscience.iop.org/article/10.1088/1748-9326/10/9/094004
http://iopscience.iop.org/article/10.1088/1748-9326/10/5/054008
http://iopscience.iop.org/article/10.1088/1748-9326/10/6/064002
http://iopscience.iop.org/article/10.1088/1748-9326/10/10/104004
http://iopscience.iop.org/article/10.1088/1748-9326/10/10/104004
http://iopscience.iop.org/article/10.1088/1748-9326/10/10/104009
http://iopscience.iop.org/article/10.1088/1748-9326/10/10/104009
http://iopscience.iop.org/article/10.1088/1748-9326/6/3/034006


Environ. Res. Lett. 11 (2016) 014011 doi:10.1088/1748-9326/11/1/014011

LETTER

On the decreasing trend of the number of monsoon depressions in
the Bay of Bengal

SVishnu1, PAFrancis1, S SC Shenoi1 and S SVSRamakrishna2

1 IndianNational Centre forOcean Information Services,Ministry of Earth Science, Government of India, Hyderabad, India
2 Department ofMeteorology andOceanography, AndhraUniversity, Visakhapatanam, India

E-mail: vishnunair.s@incois.gov.in

Keywords:monsoon depression, genesis potential index,moisture budget, global warming, Bay of Bengal,monsoon

Supplementarymaterial for this article is available online

Abstract
This study unravels the physical link between theweakening of themonsoon circulation and the
decreasing trend in the frequency ofmonsoon depressions over the Bay of Bengal. Based on the
analysis of the terms ofGenesis Potential Index, an empirical index to quantify the relative
contribution of large scale environmental variables responsible for themodulation of storms, it is
shownhere that the reduction in themid-tropospheric relative humidity is themost important reason
for the decrease in the number ofmonsoon depressions. The net reduction of relative humidity over
the Bay of Bengal is primarily due to the decrease in themoisture flux convergence, which is attributed
to theweakening of the low level jet, a characteristic feature ofmonsoon circulation. Further, the
anomalousmoisture convergence over thewestern equatorial IndianOcean associatedwith the rapid
warming of the sea surface, reduces themoisture advection into the Bay of Bengal and hence adversely
affect the genesis/intensification ofmonsoon depressions. Hence, the reduction in the number of
monsoon depression over the Bay of Bengal could be one of themanifestations of the differential rates
in the observedwarming trend of the IndianOcean basin.

1. Introduction

India receives 70–90 percent of the annual rainfall
during the four months of the summer monsoon
season alone. Being a country having a large fraction of
agriculture depend on the seasonal rains, variation in
the monsoon rainfall affects the lives of billions of
people and influence the economy of the country
considerably (Gadgil and Gadgil 2006). There have
been several studies on the interannual variation of the
Indian summer monsoon (June–September) rainfall
(ISMR), suggesting that there are teleconnections
between the variation of ISMRand ocean-atmospheric
processes happening elsewhere such as Pacific Ocean,
Atlantic Ocean and Indian Ocean (Sikka 1980, Pant
andParthasarathy 1981,Gadgil et al 2004, Pottapinjara
et al 2014, and references therein), and the nature of
the links and the physical mechanisms of their
interactions are still being explored. Similarly, the
presence of long term trends in ISMR are also being

debated extensively (Wang et al 2013, Kitoh et al 2013,
Guhathakurta and Rajeevan 2008, Goswami
et al 2006). Differences in the conclusions are primar-
ily due to the differences in the data sets used for these
studies as pointed out by Wang et al (2013) as well as
the analysis techniques. For example Guhathakurta
and Rajeevan (2008) showed that even though there
are no long term trends in the ISMR, there is a
significant decreasing (increasing) trend in three
(eight) meteorological subdivisions. Goswami et al
(2006) argued that even though seasonal rainfall does
not show any significant long term trend, the number
of extreme (moderate) rainfall events within the
season shows an increasing (decreasing) trend. In a
recent study, using long term gridded rainfall data,
Roxy et al (2015) reported that there is a significant
decreasing trend in the rainfall over the central-eastern
Indian region. They argued that this long term
decreasing trend is primarily associated with the
westward spread of the Indian Ocean warm pool. The

OPEN ACCESS

RECEIVED

29 September 2015

REVISED

5 January 2016

ACCEPTED FOR PUBLICATION

6 January 2016

PUBLISHED

27 January 2016

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2016 IOPPublishing Ltd

http://dx.doi.org/10.1088/1748-9326/11/1/014011
mailto:vishnunair.s@incois.gov.in
http://dx.doi.org/10.1088/1748-9326/11/1/014011
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/11/1/014011&domain=pdf&date_stamp=2016-01-27
http://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/11/1/014011&domain=pdf&date_stamp=2016-01-27
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


mechanism of this association put forth by them
points to the reduced land-ocean thermal contrast and
excessive atmospheric convergence to the western
equatorial Indian Ocean which is responsible for the
weakening of themonsoon circulation.

It is well known that the Indian summer monsoon
is maintained by northward progression of the inter
tropical convergence zone (ITCZ Sikka and Gad-
gil 1980) and the synoptic scale disturbances, com-
monly known as monsoon depressions (MDs), which
generally form over the Bay of Bengal (BoB) or cross
over to the BoB from south-China sea and propagate
westward/northwestward to the mainland (Ding and
Sikka 2006). It is not uncommon that MDs move
north-westward along the monsoon trough and reach
as far as northwestern India/Pakistan and produce
large rainfall totals (some times up to 300–400 mm)
along its track (Sikka 1977). As far as agriculture is
concerned, MDs are very important, especially in cen-
tral India as it could act as a main source of moisture
(Sivakumar et al 2005). Some studies have reported a
decreasing trend in the observed frequency of MDs in
the recent decades (Patwardhan and Bhalme 2001,
Kumar and Dash 2001, Mandke and Bhide 2003),
while some other studies noted that along with the
decreasing trend inMDs there is an increasing trend in
the number of low pressure systems (Rajeevan
et al 2000, Kumar and Dash 2001, Jadhav and
Munot 2009). Nevertheless, understanding the rea-
sons behind the decreasing trend in MDs is one of the
most important science questions to be addressed.

High sea surface temperature (SST), presence of
low level (850 hPa) cyclonic vorticity over the BoB,
high mid-tropospheric humidity and weak vertical
wind shear are considered to be the essential environ-
mental conditions for the formation and intensifica-
tion of MD (Sikka 1977). Interestingly, these are the
same essential criteria for the genesis of tropical
cyclones as suggested by Gray (1968). However, it may
be noted that the vertical wind shear is very strong par-
ticularly over the Arabian Sea and the BoB during the
monsoon season. This is a major factor that limits the
synoptic scale disturbances from intensifying into tro-
pical cyclones during this season, while in all other
basins in the Northern Hemisphere, cyclone activity
peaks in July-August (Gray 1968, 1979, Sikka 1977;
and references therein). Recent studies of Rao et al
(2004) and Rao et al (2008) suggested that the variation
in the strength of upper tropospheric wind could
modulate the frequency and intensity of the storms
over northern Indian Ocean. It may be worth to note
that the decadal variability of low-level vorticity and
vertical and horizontal wind shear of zonal wind are in
the unfavorable phase for the genesis and intensifica-
tion of storms over the BoB after 1980 (Mandke and
Bhide 2003). Rajeevan et al (2000) reported that SST in
the BoB and frequency of MD had shown similar dec-
adal variations till early 1980s, however the MD have
been decreasing in-spite of increasing SST since mid-

1980s. Prajeesh et al (2013) suggested that the decreas-
ing trend in the frequency of occurrence of MD could
be associated with the declining trend in mid-tropo-
spheric relative humidity.

Roxy et al (2015) observed that the decreasing
trend in the rainfall activity over the central-eastern
India is intriguing as this is the region which receives
substantial amount of rainfall due to MDs/low pres-
sure systems. This motivated us to explore whether
there is any link between the decreasing trend in MDs
and rainfall over the central-eastern Indian region and
if so, whether the latter is also influenced by the chan-
ges in the monsoonal circulation as suggested by Roxy
et al (2015). In fact, some of the studies on the long
term variation of MD indicate that the changes in the
‘large scale environmental parameters’ are responsible
for the decreasing trend in the frequency of MD over
the BoB, which could be related to the changes in the
circulation that Roxy et al (2015) refer to. Hence, in
this paper, we try to address the links between the
trends in the monsoon rainfall in India and the fre-
quency of MD and derive the quantitative estimates of
the relative contributions of each of the environmental
variables responsible for the long term variation in the
number ofMD.

The Genesis potential index (GPI) formulated by
Emanuel and Nolan (2004) is a useful tool to quantita-
tively describe the influence of large-scale environ-
mental factors on the genesis of the tropical cyclones.
GPI has been successfully used to analyze the seasonal,
intra-seasonal and inter-annual modulation of tropi-
cal storm activity in various tropical basins (Camargo
et al 2007, Camargo et al 2009, Yanase et al 2012, Li
et al 2013, Girishkumar et al 2014). Given the fact that
the environmental conditions responsible for the
organization of the low pressure systems to depres-
sions and cyclones are same (Sikka 1977), it is possible
to use the GPI for estimating the relative contributions
of different environmental conditions in the forma-
tion and development ofMD.

2.Data andmethodology

2.1.Data
The information on the number of days in which MD
were present over the BoB or the Indian subcontinent
is taken from the website of India Meteorological
Department (IMD) (http://www.rmcchennaieatlas.
tn.nic.in). Daily high resolution (0.25°×0.25°)
gridded rainfall data (Pai et al 2014) for the period
1901–2010 is also used in this study. Monthly mean
profiles of atmospheric temperature, horizontal wind,
specific humidity, relative humidity, precipitation and
evaporation (derived from latent heat flux) from
National Centre for Environmental Prediction
(NCEP) Reanalysis (Kalnay et al 1996) and monthly
mean SST from the Hadley Centre Global Sea Ice and
Sea Surface Temperature version2 (HadISST2)
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(Rayner et al 2003) are used for the computation of
GPI andmoisture budget.

2.2.Methodology
2.2.1. Genesis potential index
Following Emanuel and Nolan (2004) and Li et al
(2013), we have used the following expression in order
to understand the relative contributions of the changes
in individual environmental conditions in the changes
of frequency ofMDs

H

V

GPI 1
50

2 10 3

1 0.1V 4
70

.

1

3
5

3
2

shear
2 pot

3

| |

( )

( )

d a d a d h a

d a d

= ´ + ´ +

´ + + ´-

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

where

V

H V

H V

H

1 10 1 0.1V
70

,

2
50

1 0.1V
70

,

3
50

10
70

,

and

4
50

10 1 0.1V ,

5
3
2

shear
2 pot

3

3

shear
2 pot

3

3
5

3
2 pot

3

3
5

3
2

shear
2

| | ( )

( )

| |

| | ( )

a h

a

a h

a h

= ´ + ´

= ´ + ´

= ´ ´

= ´ ´ +

-

-

-

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

where H is the relative humidity (%) at 600 hPa, is h
the absolute vorticity at 850 hPa (s−1), Vshear is the
magnitude of the vertical wind shear (ms−1) between
850 hPa and 200 hPa, and Vpot is the maximum
tropical cyclone potential intensity (PI) (ms−1) defined
by Emanuel (1986, 1995, 1999) andmodified by Bister
and Emanuel (1998, 2002) to take into account of
dissipative heating. The bar indicates seasonal (June–
September) climatology and δ represents the differ-
ence between recent epoch (1981–2010) and earlier
(1951–1980) epoch of individual parameter. As the
GPI has a good skill in representing the parameters
affecting the genesis potential of MDs over the BoB, as
seen in the supplementary material, we use it for this
study to address the changes in such environmental
factors that affected the frequency in the occurrence of
MDs over the BoB.

2.2.2.Moisture budget
Applyingmass continuity equation and vertical integra-
tion to the water vapor budget proposed by Yanai et al
(1973), Zangvil et al (2004) represented the traditional
atmosphericmoisture budget equation (MBE) as
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where, g is the acceleration due to gravity, S and T
represents the surface and top level of atmosphere, and

E and P are the surface evaporation and precipitation
rate, respectively. The first term in the left hand side of
the equation (2) is the time change of atmospheric
precipitable water, often called also ‘storage term’,
which is negligible for large scale analysis (Jin
et al 2011). The second and third terms are the
horizontal water vapor advection and horizontal
velocity divergence. The sum of second and third term
is named as moisture flux divergence. Compared to
the previous studies, moisture budget calculated by
NCEP data shows appreciable match between left-
hand side and right-hand side of MBE over the BoB
(figure S4 in supplementarymaterial).

3. Results and discussions

Long term variation (1901–2010) of the monsoon
rainfall over the Indian region shows decreasing trends
in most parts of the country, with significant decrease
observed in the central-eastern parts of the mainland
as seen in figure 1(a). Recently, Roxy et al (2015) also
had reported this decreasing trend in all India rainfall.
In the Indian subcontinent, particularly in the core
monsoon zone above which the monsoon trough lies,
a large fraction of seasonal rainfall occur during the
passage of MD. The ratio of rainfall in this region
during the occurrence of MD to the seasonal mean
rainfall varies in the range of 35–45%, which is quite
substantial (figure 1(b)). It may be noted that even the
west coast of India receives significant amount of
rainfall during the occurrence of MD over the BoB.
This is not surprising as it is well known that the
orographic rainfall over the west coast of India has
links to the large-scale convection over the BoB
(Srinivasan and Nanjundiah 2002 Francis and Gad-
gil 2006). In this context, it is important to investigate
whether the decrease in the rainfall over parts of the
country has links to the decrease in the number of
MDs. Figure 1(c) shows the spatial distribution of the
long term trend in total rainfall received in association
with MD in a given season. The rainfall of any day on
which a MD is present over the BoB or the Indian
subcontinent during summer monsoon season is
considered as ‘rain associated with MD’. It is interest-
ing to note that the rainfall associated with MD shows
a significant negative trend over the core monsoon
region, particularly over the central-eastern India and
the west coast of India. However, the rainfall in non-
MD days has shown no significant trend except a
prominent positive trend over the west coast of
peninsular India (figure not shown). Essentially the
decrease in rainfall is associated with a decrease in
rainy days associated with the MDs, which could be
either due to a decrease in the number of such systems
or a reduction in their life span. Hence it is appropriate
to assess the long term trend in number of MD days
(days in which MDs were present) rather than the
actual number of such systems. Figure 2(a) depicts the
variation of number of MD days, which shows a clear
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reduction in the number of such days after 1980.
However, it may be noted that this decrease is
essentially due to decrease in the number of MDs
rather than changes in the life span of the systems
(figure S1 in supplementarymaterial).

Many studies reported that the majority of MDs
over the BoB are attributed to re-genesis of westward-

propagating residual lows of tropical storms, or of
other tropical disturbances from western Pacific–
SouthChina Sea (WTP–SCS) region (Koteswaram and
Bhaskara Rao 1963, Ramanna 1969, Mooley and
Shukla 1989, Krishnamurti et al 1977). It is interesting
to note that the number of MDs over the BoB has
shown a decreasing trend even though more cyclonic

Figure 1. (a)Observed trend in the summermonsoon rainfall (unit:mmyear−1); (b) percentage ratio of rainfall during the occurrence
ofMD to the seasonal total rainfall (unit:%); (c) the trend in rainfall during the occurrence ofMDs (unit:mmyear−1), for the period
1901–2010.
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storms move westward from the WTP-SCS after 1980
compared to the earlier epoch (figures 2(b) and (c)).
This suggests that either these systems are not reinten-
sifying after they cross over to the BoB or there is con-
siderable decrease in the number of MDs forming
within the BoB basin. An important question which
arises from these observations is essentially what chan-
ges in the environmental parameters which are
responsible for the development and intensification of
a MD have occurred in the recent epoch (1981–2010,
epoch 2) compared to the previous one (1951–1980,
epoch 1). In order to address this question, next we
analyse the changes in each of the terms in the GPI
equation.

3.1. Variation in the environmental factors
responsible for the formation ofMDs
The difference in the GPI between epoch 2 and epoch
1 clearly shows a decrease in the genesis potential
over the head BoB (figure 3(a)) in epoch 2. The
maximum epochal difference is about 1 (note that,
GPI is a dimensionless quantity) where the climato-
logical GPI is about 4.5 (which means that the
reduction in GPI is approximately 22% of its mean
value). A clear reduction in the GPI is observed in
association with the decreasing trend in the fre-
quency MDs (table 1). To assess the relative contrib-
ution of large-scale environmental parameters on
the reduction in MD activity in different epochs,
each of the terms in equation (1) is examined
(figure 3) separately. Relative contributions (in
percentage ratio) of the terms in the right-hand side
of equation (1) to the reduction of GPI averaged over

the head BoB and central BoB are also presented in
table 2. It may be noted that the key process
responsible for the reduction in the GPI in the epoch
2 is the decrease in the mid-tropospheric relative
humidity (figure 3(b)). The relative humidity term
contributes around 62% and 72% of the total GPI
reduction over the head BoB and the central BoB
respectively (table 2). This is consistent with the
results of Prajeesh et al (2013)which showed that the
weakening trend in the mid-tropospheric relative
humidity is a major factor in reducing the MD
frequency. The strong spatial correspondence
between the relative humidity term and net change
in GPI (δGPI) clearly demonstrates the dominant
contribution of mid-tropospheric relative humidity
on the observed decrease in number ofMDs.

The potential intensity term plays a secondary role
in the decrease of GPI during epoch 2 (figure 3(e)). It
contributes around 21% (25%) over the head BoB
(central BoB) of the total GPI decrease. The vorticity
term has a relatively lesser contribution to the reduc-
tion of GPI over the BoB during summer monsoon
season (around 9% over the head BoB and 6% in the
central BoB). It is interesting to note that the wind
shear term has a positive (8%) contribution to the
reduction of the GPI over the head BoB, while its
contribution is almost negligible and negative (−3%)
over the central BoB. We found that the GPI analysis
using ERA-20C reanalysis data also yields similar
results over the head BoB (figure S3 and table S1 in
supplementary material). As it is clear that the
decrease in the availability of the mid-tropospheric
relative humidity plays the most important role in the

Figure 2. (a)Time series of number ofMDdays. The trend lines shown in thefigure are significant at the 95% confidence level.Map
depicting the spatial distribution of the density of cyclonic storms over the western Pacific-southChina Sea during June–September,
in the (b) epoch1 (1951–1980) and (c) epoch2 (1981–2010). The colour scheme represents total number of cyclones passed over in the
given epoch.
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decreasing trend of MD, it is important to understand
whether this reduction of relative humidity is due to
changes in local evaporation or due to the changes in

Figure 3.The epochal difference in (a) theGPI and relative contribution of (b) the relative humidity term, (c) the vorticity term, (d) the
wind shear term and (e) the potential intensity term to the changes in theGPI. The black (blue) box represents theHead (Central)Bay
of Bengal.

Table 1.Decadalmean frequency ofmonsoon depres-
sion (MD;wind speed 17–33 kt), cyclone (CS; wind
speed 34–47 kt) and severe cyclone (SCS; wind speed
48–63 kt) formed in the BoB alongwith the
meanGPI.

Frequency of

formation of

Decades MD CS SCS GPI

1951–1960 5.90 0.80 0.10 1.88

1961–1970 5.50 0.70 0.10 1.41

1971–1980 4.70 1.10 0.70 1.51

1981–1990 3.00 0.70 0.20 1.08

1991–2000 2.00 0.30 0.00 1.06

2001–2010 2.50 0.60 0.10 1.14

Table 2. Seasonal estimate of relative contributions of
the terms (in%), averaged over the head BoB (12.5°
N–22.5°N, 82.5°E–95°E) and the central BoB (7.5°N–
12.5°N, 80°E–95°E), on the right-hand side of
equation (1) to the epochal difference in theGPI
(δGPI) between recent (1981–2010) and earlier epoch
(1951–1980).

GPI terms Head BOB Central BoB

Relative humidity 62.48 72.40

Vorticity 9.32 5.90

Wind shear 7.75 −2.89

Potential intensity 20.73 24.53
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the advection of moisture into the BoB. In order to
answer this question, next we assess the relative roles
of local and remote effects in themoisture budget over
the BoB.

3.2.Moisture budget estimates
Moisture availability in a given atmospheric column is
determined by the moisture advected and the local
evaporation. The interannual variation of the seasonal
moisture budget estimates over the head BoB (12.5°
N–22.5°N, 82.5°E–95°E, where majority of the MD
form) is depicted in figure 4. The contribution of
moisture flux convergence (MFC), which is the
negative of the moisture flux divergence in the MBE
(∼6.79 mm day−1), to the net moisture content is
significantly higher compared to the local evaporation
(∼4.64 mm day−1) over the head BoB. Being a region
with excess of precipitation compared to the local
evaporation during the summer monsoon season
(figure S5 in supplementary material), it is not surpris-
ing that there is substantial moisture convergence to
the head BoB. It may be seen that both the local
evaporation and MFC are decreasing at rates of
0.017 mm day−1 year−1 and 0.032 mm day−1 year−1

respectively over the head BoB (figure 4). The percent-
age contribution of theMFC term is higher (65%) than
local evaporation (35%) to the decreasing trend in the
totalmoisture flux also.

The decrease in the MFC should be either due to
the decrease in the moisture advected into the region
or due to the increase in the moisture advected out of
the region or a combination of the both. Following
Zangvil et al (2004), we quantitatively estimated the
outflow and the inflowof themoisture of the head BoB

bymodifying theMFD term in theMBE (equation (2))
as OF

A

IF

A
- where as OF, IF and A represent the out-

flow, inflow and the surface area respectively. The esti-
mates show that both the total inflow (TIF) and total
outflow (TOF) over the head BoB are decreasing, with
TIF decreasing at a higher rate (0.10 mmday−1 year−1;
p value<0.001) than the TOF (0.04 mm day−1 year−1;
p value 0.005) during the period 1951–2010. This sug-
gests that the decrease of moisture advected into the
head BoB is the major factor for the declining moist-
ure over BoB.

All the terms of the MBE and the related para-
meters for the earlier (1951–1980) epoch and the
recent epoch (1981–2010) and their differences are
shown in table 3. In the recent epoch, all terms in the
MBE show lower values compared to the earlier
epoch. The advection terms (TIF and TOF) have
higher epochal difference (−2.3 mm day−1 and
−1.15 mm day−1) compared to evaporation
(−0.46 mm day−1). In addition, the recycling ratio,
the ratio of local evaporation to the total inflow, does
not show any significant change (remains ∼0.15) for
both epochs. This indicates that even though the net
moisture content over the head BoB is decreasing, the
percentage contribution of local evaporation and the
TIF to the net moisture content remains same in both
epochs. As the local evaporation contribute only 15%
to the net moisture content, the variation in the TIF is
the major factor for the increasing trend of dryness
over the head BoB.

For the detailed investigation of TIF and TOF, we
calculated the inflow and the outflow of moisture
through all the boundaries of study area (head BoB;
12.5°N–22.5°N, 82.5°E–95°E). The inward moisture

Figure 4.Time series of precipitation (circle), evaporation (square), and theMFC term (triangle) inMBEover head BoB (12.5°N–
22.5°N, 82.5°E–95°E).
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transport over the head BoB ismostly throughwestern
(14.74 mm day−1) and southern boundaries
(11.18 mm day−1), while the outward moisture trans-
port is mainly through eastern (11.52 mm day−1) and
northern (5.54 mm day−1) boundaries of the head
BoB. The epochal difference shows a decrease in the
moisture inflow through both western (0.96 mm
day−1) and southern (1.66 mm day−1) boundaries
(table 3). The moisture outflow through the eastern
boundary also decreased in recent epoch (1.42 mm
day−1), while the outflow through the northern
boundary increased (0.30 mm day−1) (table 3). The
decrease in the inflow of moisture through southern
and western boundaries and increase in the outflow
through northern boundary cause the observed
decrease in themoisture content over the head BoB.

Interestingly, the epochal difference in vertically
integrated moisture transport (VIMT) shows a decreas-
ing trend into the head BoB (figure 5(a)). It may be
noted that the changes in the lower level (700 hPa to
1000 hPa) moisture transport play a key role in the
decreasing trend of VIMT. The epochal change in hor-
izontal wind at 850 hPa, where the core of the low level
jet (LLJ) present (Findlater 1969, Joseph and
Raman 1966) andVIMT show strong spatial correspon-
dence (figure 5(a) and (b)). The VIMT and LLJ have
decreased in the recent epoch over the eastern Arabian
Sea, the head BoB, and land over the east Asia, while it
has increased over the northwest Pacific. Further, cross
equatorial flow of moisture transport and the LLJ has
weakened over the western Indian Ocean and strength-
ened over the western Pacific region. The strong spatial
correspondence in the epochal changes in the LLJ and
VIMT suggest that the weakening of LLJ is associated
with thedeclining trendofmoisture over theheadBoB.

Anomalous convergence of VIMT seen over wes-
tern equatorial Indian Ocean, leads to relatively higher
accumulation of moisture over this region. It may be
interesting to note that there is an increase in the rain-
fall over the western equatorial Indian Ocean in the
recent epoch associated with an increased MFC
(figure 5(c)). Hence, the observed weakening of the
LLJ (which represents the strength of monsoon circu-
lation Joseph and Simon 2005) in the recent decades
might have reduced themoisture transport to the BoB,
which can lead to a decrease in the moisture content
over the BoB and hence cause reduction in the forma-
tion/intensification ofMD.

4. Summary and conclusions

Rainfall over the central-eastern parts of India during
the summer monsoon season is showing a decreasing
trend (1.49mm year−1) in the recent years. In this paper
we showed that this decreasing trend in rainfall is
associated with the decreasing trend in the number of
MD days (0.15 year−1). We also showed that the
reduction in the mid-tropospheric humidity is mainly
responsible for the decrease in MD days. A moisture
budget analysis suggested that compared to the changes
in local evaporation, decrease in the moisture flux
convergence (negative of moisture flux divergence)
contributes significantly to the observed dryness over
BoB in the recent years. It is also found that the observed
weakening of moisture advection into the BoB has
strong spatial correspondence with the variation in the
intensity of the low level jet. Interestingly, there is an
anomalous increase in the moisture convergence flux
over the western equatorial Indian Ocean and enhanced
precipitation over this region. The observed rapid
warming of the western equatorial Indian Ocean could
be reducing the meridional tropospheric temperature
gradient, which leads to the weakening of summer
monsoon circulationas suggested byRoxy et al (2015).

A study by Nieves et al (2015) reported that the
observed decrease in the sea surface temperature in the
Pacific Ocean during recent years is compensated by
warming in subsurface of the Pacific Ocean and the
Indian Ocean. Apart from this, the western equatorial
Indian Ocean warming could be also associated with
the asymmetry of ENSO teleconnection; El Niño
events induce warming in Indian Ocean through
Walker circulation and La Niña events failed to do the
reverse (Roxy et al 2014). Further, increase in magni-
tude and frequency of El-nino events in recent decades
may accelerate this warming (Roxy et al 2014).

Many studies using sensitivity experiments based
on the numerical models have shown that the changes
in the land-sea thermal contrast can modulate the
monsoon circulation in the global warming scenario
(Chou 2003, Wu et al 2012, Kamae et al 2014, Ma and
Yu 2014). Increase in the aerosol concentration can
enhance land surface cooling in the southern Asia

Table 3.Moisture budget components calculated over the head BoB
(12.5°N–22.5°N, 82.5°E–95°E) during recent (1951–1980) and ear-
lier (1981–2010) epoch and their differences.

1951–1980

(earlier)
1981–2010

(recent)

Difference

(recent–
earlier)

West Inflow 15.240 14.280 –0.960

Outflow 0.046 0.011 –0.035

East Inflow 0.004 0.000 –0.004

Outflow 12.230 10.810 –1.420

South Inflow 12.010 10.350 –1.660

Outflow 0.000 0.000 0.000

North Inflow 0.413 0.745 0.332

Outflow 7.388 7.690 0.302

Total Inflow (TIF) 27.670 25.370 –2.300

Total Out-

flow (TOF)
19.670 18.520 –1.150

TIF-TOF 8.001 6.854 –1.147

Avg Precipita-

tion (P)
11.960 10.490 –1.470

Avg Evapora-

tion (E)
4.879 4.418 –0.461

P−E 7.076 6.076 –1.000

Recycling ratio (R) 0.151 0.150 –0.001
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which could adversely affect the land-sea thermal con-
trast and hence weaken the monsoon circulation
(Meehl et al 2008, Bollasina et al 2011, Dong et al 2014,
Lau and Kim 2010, Sanap et al 2015). This might affect
the transport of moisture into the BoB, which has a
pivotal role in the genesis/intensification of monsoon
depressions. Dong and Zhou (2014) used coupled cli-
mate model experiments to show that the long term
changes in the surface latent heat and longwave fluxes
favour basin wide warming of the Indian Ocean and
the warming in the western Indian Ocean is particu-
larly stronger to produce an equatorial dipole struc-
ture. Roxy et al (2015) also showed that the western
equatorial Indian Ocean warming results in the weak-
ening ofmonsoon circulation as seen as the weakening
of Hadley circulation in the observation and model
simulations. They suggested that the response of the
Indian ocean to the global warming could lead to
anomalous moisture convergence over the western
equatorial Indian Ocean which could dampen the
monsoon circulation. This observation is consistent

with our findings in this paper that the primary cause
for the decrease in the number of MDs over the BoB is
the reduction of moisture advected to the head BoB
due to decrease in the strength of the low level jet.
Hence, the decreasing trend in the number of MDs
could be one of the manifestations of the response of
Indianmonsoon to the global warming.
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