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Abstract
The spatial context is criticalwhen assessingpresent-day climate anomalies, attributing them topotential
forcings andmaking statements regarding their frequency and severity in a long-termperspective. Recent
international initiatives have expanded thenumber of high-quality proxy-records anddevelopednew
statistical reconstructionmethods. These advances allowmore rigorous regional past temperature
reconstructions and, in turn, the possibility of evaluating climatemodels onpolicy-relevant, spatio-
temporal scales.Hereweprovide a newproxy-based, annually-resolved, spatial reconstructionof the
European summer (June–August) temperaturefields back to 755CEbased onBayesianhierarchical
modelling (BHM), togetherwith estimates of the Europeanmean temperature variation since 138BCE
based onBHMand composite-plus-scaling (CPS).Our reconstructions comparewell with independent
instrumental andproxy-based temperature estimates, but suggest a larger amplitude in summer
temperature variability thanpreviously reported. BothCPS andBHMreconstructions indicate that the
mean20th centuryEuropean summer temperaturewas not significantly different fromsomeearlier
centuries, including the 1st, 2nd, 8th and10th centuriesCE. The 1st century (inBHMalso the 10th
century)may evenhave been slightlywarmer than the 20th century, but the difference is not statistically
significant.Comparing each 50 yr periodwith the 1951–2000period reveals a similar pattern.Recent
summers, however, have beenunusuallywarm in the context of the last twomillennia and there are no
30 yr periods in either reconstruction that exceed themean average European summer temperature of the
last 3 decades (1986–2015CE). A comparisonwith an ensemble of climatemodel simulations suggests
that the reconstructedEuropean summer temperature variability over the period 850–2000CE reflects
changes in both internal variability and external forcing onmulti-decadal time-scales. For pan-European
temperatureswefind slightly better agreement between the reconstruction and themodel simulations
withhigh-end estimates for total solar irradiance. Temperature differences between themedieval period,
the recent period and theLittle IceAge are larger in the reconstructions than the simulations. Thismay
indicate inflated variability of the reconstructions, a lackof sensitivity andprocesses to changes in external
forcing on the simulatedEuropean climate and/or anunderestimationof internal variability on
centennial and longer time scales.

Introduction

Europe has experienced a pronounced summer (June–
August) warming of approximately 1.3 °C over the
1986–2015 period (figure 1b), accompanied by an
increase of severe heat waves (length, frequency and
persistency), most notably in 2003, 2010 and 2015
(Luterbacher et al 2004, Schär et al 2004, Benis-
ton 2004, 2015, Della-Marta et al 2007, García-Herrera
et al 2010, Barriopedro et al 2011, Rahmstorf and
Coumou 2011, IPCC 2012, Russo et al 2015). The
likelihood of occurrence of heatwaves and extremely hot
summers in Europe has risen significantly in the first
part of the 21st century—a trend mainly attributed to
anthropogenic forcing (Stott et al 2004, Christidis
et al 2015). Initiatives to benchmark European summer
warming and the occurrence of extreme events have
been launched to improve our understanding of the
climate system and thus reduce and quantify uncertain-
ties in themagnitude of projected future climate change
(Hegerl et al 2011, Christidis et al 2012, 2015, Goosse
et al 2012a). Paleoclimatic data covering the past 2000 yr
provide a crucial perspective for characterizing natural
decadal to centennial time-scale changes and to put
recent climate change into a long-term perspective.
Paleoclimatological advances over the past decade
include: (i) the production of new proxy records and

new compilations on a regional basis (e.g. PAGES 2k
Consortium 2013, 2014, Büntgen et al 2016, Schneider
et al 2015); (ii)developments inmulti-proxy reconstruc-
tion methodologies (e.g. Tingley and
Huybers 2010a, 2010b, Smerdon 2012, Werner
et al 2013,Neukom et al 2014, Guillot et al 2015,Werner
and Tingley 2015); and (iii) development of comparison
strategies between model experiments and reconstruc-
tions to assess the role of external forcing, feedbacks, and
internal variability on the historical course of climate
(e.g. Hegerl et al 2011, Bothe et al 2013a, 2013b, Fernán-
dez-Donado et al 2013, 2015, Schmidt et al 2014,
Barboza et al 2014, Coats et al 2015, Moberg et al 2015,
PAGES2k-PMIP3 Group 2015, Stoffel et al 2015, Ting-
ley et al 2015). Additionally, new standards have been
reached regarding the collection and archiving of proxy
data (e.g. PAGES 2k Consortium 2013, 2014), estima-
tion methods for past climate variability and associated
uncertainties, and the analysis of uncertainties related to
model forcing (Fernández-Donado et al 2013, 2015 and
references therein). In a coordinated effort, the PAGES
2k Consortium (2013) presented a global dataset of
proxy records and associated temperature reconstruc-
tions for seven continental-scale regions, including
Europe and the Mediterranean region. Eleven annually
resolved tree-ring width (TRW) and density records and
documentary records from ten European locationswere
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used in an ensemble composite-plus-scale (CPS) recon-
struction of mean European summer land temperature
for the past two millennia. Here we build upon these
results and provide new estimates of European summer
temperature variability over more than the past two
millennia. We present: (i) annually-resolved gridded
summer temperature fields over Europe for the period
755–2003 of the Common Era (CE) based upon
Bayesian hierarchical modelling (BHM; Tingley and
Huybers 2010a, 2010b, 2013, Werner et al 2013; see
methods and supplementary online material, SOM, for
details) integrating a number of recently developed
millennium length tree-ring records and historical
documentary proxy evidence including a comparison
with independent long-instrumental and proxy based
regional summer temperature reconstructions (see data
section; SOM); (ii) two reconstructions of mean
European (weighted average over European land areas,
see data) summer temperatures back to 138 BCE based
on the CPS method and the averaged ensemble BHM.
The CPS based reconstruction is similar to the one
published for Europe by the PAGES 2k Consortium
(2013), although it employs a slightly different proxy
set (see data and SOM); (iii) a comparison between our
new reconstructions and an ensemble of millennium-
length climate model experiments (Masson-Delmotte

et al 2013) in order to assess consistency with changes in
external forcing and the simulated climate variability
over Europe; and (iv) spatial differences between
simulated and reconstructed European summer temp-
erature for the periods of the ‘Medieval Climate
Anomaly’ (MCA, 900–1200 CE), the ‘Little Ice Age’
(LIA, 1250–1700CE), andpresent-day (1950–2003CE).

Data

Proxy and instrumental data
Nine annually resolved tree-ring width (TRW, Popa
and Kern 2009, Büntgen et al 2011, 2012), maximum
latewood density (MXD; Büntgen et al 2006, Gunnar-
son et al 2011, Esper et al 2012, 2014), combinedMXD
and TRW (Dorado Liñán et al 2012) and documentary
historical records (Dobrovolný et al 2010) were used
for the reconstructions (table S1). Their locations
encompass the region from 41° to 68° N and from 1°
to 25° E (figure 1(a); SOM). The reconstructions target
the period 138 BCE to 2003 CE, the last year for which
all proxies are available. Records were selected based
upon their seasonal summer temperature signals, their
record length (700+ years for tree-ring records), and
sample replication. We excluded the PAGES 2k

Figure 1. (a) Spatial distribution of proxy records used in the reconstructions. (b)Comparison of the instrumentalmean summer
temperature anomalies for Europe (1850–2015)with themeanBHM-based andCPS reconstruction anomalies 1850–2003. (c)CPS-
and area-weightedmeanBHM-based reconstructions of European summer temperature anomalies and 95% confidence intervals
(shading in respective colour) over the period 138BCE–2003CE (all anomalies are with respect to the 1961–90 climatology).
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Consortium (2013) TRW records from Slovakia
(Büntgen et al 2013) and Albania (Seim et al 2012) that
were found to lack significant correlations with
European summer temperature variability. Further-
more, the Torneträsk MXD record of Briffa et al
(1992) that originally ends in 1980 CE, was substituted
with the updated and newly processed data of Melvin
et al (2013) and Esper et al (2014).

Calibration data for the European summer temp-
erature reconstructions were derived from the CRU-
TEM4v data product, comprising monthly mean
surface air temperature anomalies (with respect to
1961–1990 CE) on a 5°×5° land-only grid spanning
the period 1850–2010 CE (Jones et al 2012). The
region 35°–70° N/10°W–40° E was selected, exclud-
ing grid cells over Iceland and small North Atlantic
islands. Thus, 61 grid cells were retained. Missing
months in the selected cells were infilled using the reg-
ularised expectation maximisation algorithm with
ridge regression (Schneider 2001) to yield a time-con-
tinuous monthly anomaly grid over the period
1850–2010 CE (see SOM for details). The resulting
data were used to calculate mean June–August (JJA)
temperatures of each year and each grid cell, from
which an area-weighted (North et al 1982)mean sum-
mer temperature index was computed. For the BHM
based reconstruction, the original, non-infilled data
were used (see methods and SOM for details). A com-
parison between the seasonal mean temperatures for
the European domain using the raw (non-infilled)
data and the temporally and spatially continuous
(infilled) field is presented in figure S1 (SOM). Corre-
lation coefficients between the proxy data and both the
European mean summer temperature and local JJA
grid cell temperatures from the infilled dataset for the
period 1850–2003CE are given in table S2 (SOM).

Atmosphere-ocean general circulationmodel
(AOGCM)data
The European summer temperature reconstructions
are compared with fully coupled state-of-the art
AOGCM simulations. The model-data comparison is
based on 37 millennium-length simulations (see table
S14) performed with 13 different AOGCMs. The
ensemble includes eleven simulations from the
Coupled Model Intercomparison Project Phase 5—
Paleo Model Intercomparison Project Phase 3
(CMIP5/PMIP3; Braconnot et al 2012, Taylor
et al 2012, Masson-Delmotte et al 2013) and 26 pre-
PMIP3 additional simulations discussed in Fernán-
dez-Donado et al (2013). Aside from differences in
model complexity and resolution, the most notable
asset of the ensemble is the range of variation in
applied external forcing configurations. The models
consider different forcing factors and are also based on
different forcing reconstructions. The CMIP5/PMIP3
simulations follow the forcing protocol outlined in
Schmidt et al (2011, 2012), while the pre-PMIP3

simulations use a larger variety of forcing reconstruc-
tions (see Fernández-Donado et al 2013). The range in
the applied external forcing configurations is largest
for total solar irradiance (TSI). This relates most to the
re-scaling and conversion of raw estimates (e.g. 10Be or
14C) into changes in incoming shortwave radiation in
units of Wm−2 (Solanki et al 2004, Steinhilber
et al 2012) rather than the character of the temporal
evolution over the past 2000 yr. The re-scaled TSIs
used for the climate simulations can be classified into
two groups according to the magnitude of their low
frequency variations, thus leading to two sub-ensem-
bles of simulations (Fernández-Donado et al 2013):
one involving stronger solar forcing variability (used
in some pre-PMIP3 simulations) with a percentage of
TSI change between the Late Maunder Minimum
(LMM; 1675–1715 CE) and present>0.23%, denoted
here SUNWIDE; another, with weaker solar forcing
scaling (used by the CMIP5/PMIP3 experiments and
some pre-PMIP runs) characterised by a TSI change
between LMM and present <0.1%, denoted here
SUNNARROW (see SOM for more details). On hemi-
spheric scales, the highest estimates of solar forcing
seems to yield a discrepancy between forced simula-
tions and reconstructions (Schurer et al 2014). Region-
ally and seasonally the effect of solar forcing may be
enhanced due to dynamic feedbacks that are largely
missing inmodels (seeGray et al 2010).

Methods

Europeanmean summer temperature reconstructions
covering more than 2000 yr were created by using
BHM and CPS. The two methods are based on
different statistical assumptions regarding the proxy
records and their associated temperature signals. Both
methods provide uncertainty estimates and have been
tested with synthetic data in pseudo-proxy experi-
ments (Werner et al 2013, Schneider et al 2015). BHM
was applied to derive spatial fields of summer temper-
ature. We show the area-weighted mean back to 138
BCE, but limit the analysis of the spatial results to the
period 755–2003 CE due to the low number of proxies
before that period.

Composite-plus-scaling
A nested CPS (e.g. Jones et al 2009, PAGES 2k
Consortium 2013, Schneider et al 2015) reconstruc-
tion was computed using eight nests reflecting the
availability of predictors back in time (see table S1 for
the initial year of each nest). A CPS reconstruction was
computed for each nest by normalising and centring
the available predictor series over the calibration
interval (1850–2003 CE). A composite for each nest
was then calculated by weighting each proxy series by
its correlation with the European mean summer
temperature. Finally, each composite was centred and
scaled to have the same variance as the target index
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during the calibration period. CPS was implemented
using a resampling scheme for validation and calibra-
tion (e.g. McShane and Wyner 2011, Schneider
et al 2015) based on 104 yr for calibration and 50 yr for
validation (the last year of the uniformly available
predictor series is 2003, providing 154 yr of overlap
with the target index, see SOM for details). Detailed
validation statistics, with associated information
across all reconstruction ensemble members within
each nest, are provided in the SOM (tables S3 and S4).
The limited number of proxies might be an important
caveat for the reconstructions. Figure S3 shows the
comparison of the eight nests in the CPS-based
reconstructions of mean European summer temper-
ature anomalies for the period 138 BCE–2003 CE.
There are small differences between nests, but the
covariance among each nest is remarkably consistent
across all of the nests during their periods of overlap.
The newCPS reconstruction, in the absence of the two
predictors used by the PAGES 2k Consortium (2013)
and employing the updated Torneträsk MXD record
(Esper et al 2014), is virtually identical to the original
PAGES 2k reconstruction over the full duration of the
two reconstructions (Pearson’s correlation coefficient
of 0.99;figure S2).

Bayesian hierarchicalmodelling (BHM)
Bayesian inference from a localised hierarchical model
(Tingley andHuybers 2010a, 2010b, 2013)was used to
derive a gridded summer temperature reconstruction
from 138 BCE to 2003 CE. However, the drop-off in
proxy availability prior to 755 CE led to an increase in
uncertainty back in time (Werner et al 2013), especially
in locations remote from the remaining available
proxy sites. Thus, we only present a gridded BHM
reconstruction between 755 and 2003 CE, and a mean
European summer temperature index from 138 BCE
to 2003 CE. The BHM approach follows that of
Tingley and Huybers (2010a, 2010b, 2013), Werner
et al (2013, 2014) andWerner and Tingley (2015), with
minor modifications. A simple stochastic description
of the local (gridded) temperature anomalies is used to
model the spatial and temporal correlations of the true
temperature field (see SOM for details). Additionally,
the proxy response function for TRW data was
changed to include a low-frequency response term
(SOM, Werner et al 2014). Recent studies by Zhang
et al (2015) indicate, that, when using TRW as a
climate proxy, the low-frequency of the climate
reconstructions is generally intensified due to higher
long-term persistence in TRW data compared to
instrumental data. As suggested by Tingley and
Huybers (2013), we use the results of a predictive run
(without the instrumental data as input) as the
reconstruction product (see SOM).

Results and discussion

Comparison of the European temperature reconstruc-
tions with instrumental data indicates skilful recon-
structed representations of interannual to multi-
decadal variability over the calibration period
(1850–2003 CE, figure 1(b), the Pearson correlation
coefficient is 0.81 and 0.83 for BHM and CPS,
respectively; see tables S3 and S4 and SOM for
additional validation statistics). The reconstructions
also compare well with long, independent station
temperature series (table S13; figures S8), and reason-
ably well with summer temperature reconstructions
from various high and low temporal resolution proxy
records and gridded field reconstructions (table S13,
figure S9). Our BHM-based reconstruction shows
more pronounced changes inmean summer tempera-
tures over Europe than previously reported (Luterba-
cher et al 2004, Guiot et al 2010; figures S10 and S11),
which can partly be attributed to its better perfor-
mance in the preservation of variance. The reconstruc-
tions indicate that on amulti-decadal time-scale (31 yr
means)warm European summer conditions prevailed
from the beginning of the reconstructed period until
the 3rd century, and were followed by generally cooler
conditions from the 4th to the 7th centuries
(figure 1(c)). Warm periods also occurred during the
9th–12th centuries, peaking during the 10th century,
and again in the late 12th to early 13th centuries. The
timing of the European warm anomaly agrees with
medieval-period warmth detected inmost reconstruc-
tions of NH mean temperature (e.g. Esper et al 2002,
D’Arrigo et al 2006, Frank et al 2007, 2010, Esper and
Frank 2009, Ljungqvist et al 2012, Schneider
et al 2015). Summers are more anomalously warm in
Europe in the medieval period than reconstructed for
annual NH data (see Masson-Delmotte et al 2013,
figure 5.7), suggesting at least in part a dynamic origin.
It is presently unclear to what extent relatively low
volcanism (Sigl et al 2015), elevated solar forcing
(Steinhilber et al 2009) and higher obliquity (orbital
forcing)may have contributed to the unusual regional
summer warmth. The warmer medieval period was
followed by relatively cold summer conditions, per-
sisting into the 19th century (figure 1(c)), with a
notable return to somewhatwarmer conditions during
the middle portion of the 16th century. Finally, the
reconstruction reproduces the pronounced instru-
mentally observed warming in the early and late part
of the 20th century. The warmest century in both the
CPS and BHM reconstructions is the 1st century CE
(for BHM also the 10th century). It is<0.2 °Cwarmer
than the 20th century and multiple testing reveals the
difference is not statistically significant (tables S5 and
S6; see also SOM for details on testing how anomalous
the recent warm conditions are in the context of the
full reconstruction for 50-year and 30-year periods;
tables S7–S12).

5

Environ. Res. Lett. 11 (2016) 024001



The gridded BHM reconstruction also reveals the
marked sub-continental scale spatial variability back
to 755 CE. Some of the warmer summer periods dur-
ing medieval times (see also figure 1(c)) mask a sub-
stantial spatial heterogeneity. For example, the 11th
century displayed multi-decadal periods characterised
by pronounced warm conditions over Northern Eur-
ope, but relatively cold conditions in central and
Southwestern Europe (figure 2). In addition, the dec-
ades around 1100 CE were cold in large parts of Eur-
ope (figure 2 right, top). The European cold
conditions between the 13th and 19th centuries
(figure 1(c)) also entail substantial temporal and spa-
tial variability. The mid-13th century, for instance,
was characterised by cooling in Northeastern Europe,
but warming in Southwestern regions (figure 2). An
exceptionally cold period occurred also in the late 16th
century and early 17th century, with negative temper-
ature anomalies over nearly half of Europe at decadal
and multi-decadal time scales (figure 2 right panels).
Cold summers were also prominent in the mid-15th
century overNortheastern Europe, in the late 17th and
the first half of the 19th century over central and
Southern Europe (figure 2 right, top panel). Thus, the
coldest intervals across Europe spread between the
15th and 17th centuries, depending on the region,

with poor temporal agreement at local scales across
the ensemble (figure 2 right, top panel). In large parts
of Europe, the summer temperatures of the latest 11 yr
period (1993–2003CE) are either similar to the warm
intervals of medieval times or even warmer than any
other period during the last 1250 yr (figure 2 left, top
panel). Northeastern Europe shows the warmest dec-
ades of the last 1250 yr during medieval times, when
large areas of Europe experienced recurrent and long-
lasting warm periods punctuated by cold intervals
during the 11th century (figure 2, top panels). If we
consider 51 yrmean periods (figure 2 left, bottom), the
largest, warm multi-decadal anomalies occurred dur-
ing different intervals within medieval times (exceed-
ing recent 51 yr averages inmost of Europe). However,
due to the competing level of warmth between the
10th and 12th–13th centuries and the higher uncer-
tainties in reconstructed temperatures during medie-
val times, the temporal agreement across the ensemble
for the 51 yr maximum is low. For the coldest inter-
vals, we do not find the same degree of dependence on
timescale (figure 2 right). The coldest decadal as well as
multi-decadal (51 yr) periods occurred in the 16th
and 17th centuries over most of Europe, but with
better agreement on longer time-scales. To further
assess how exceptional the warmest decadal and

Figure 2.Top left: spatial distribution,magnitude and extension of thewarmest 11 yr periods in European summer temperature. Grid
cell height represents the ensemblemean temperature anomaly (in °C,with respect to 755–2003CE) and the shading is incremented
with a contour interval of+0.2 °C. The colour and the height of the squared symbols above each grid point identify themost likely
date and the temperature uncertainty (+2·SD level) of thewarmestmean 11 yr period across the ensemble, respectively. Dots in
squares denote those grid points withmore than 75%of the ensemblemembers agreeing on the timing of the warmest 11 yr period
(i.e. having their warmest 11 yr periods in the same 100 yr interval). The front panel of themap shows the ensemble-based temporal
evolution of the fraction of European surface (in%of total analysed area)with 11 yrmean summer temperatures exceeding their+2
SD from the 755–2003CEmean climatology. The light (dark) red shading indicates the 5th–95th percentile (±0.5·SD) range of the
ensemble distribution. Bottom left: as in the top left panel but for 51 yrmean periods. Right: as left panels, but for the 11 yr (top) and
51 yr (bottom) coldest periods. See SOM for details.
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multi-decadal periods of the 20th century were, we
calculated (backwards in time) the number of years
through which the warmest interval of the 20th cen-
tury has remained unprecedented (figure S12). The
ensemble indicates with high agreement that the late
20th century has the warmest decades since 755 CE in
theMediterranean region, while Northeastern Europe
shows comparable warmth during theMCA, although
with low agreement. Thus, at multi-decadal time-
scales the warmest periods of the 20th century do not
have equals since medieval times in most of Europe
(figure S12).

Joint evaluation of reconstructions and AOGCM
simulations covering the period 850–2000 CE allows
for comparative assessments of these two independent
sources of information of past climate variability. It
further provides insights into the relative contribu-
tions of estimated external forcing and internal
dynamics. For both the SUNWIDE and SUNNARROW

solar variability sub-ensembles, figure 3 shows the
ensemble average and the 10, 25, 75 and 90 percentiles.
Purple and green shading in figure 3 represent mea-
sures of the overlap among the ensemble of simula-
tions, taking into account the uncertainty due to
internal climate variability. The overlap was calculated
according to Jansen et al (2007). The scores are sum-
med over all simulations and scaled to add one for a
given year. The simulated range of internal variability

is ideally estimated based on SD from long control
simulations with constant external forcing, however,
these were not available for all models. Therefore, SDs
were estimated from the high-pass (51 yr) filtered
temperature outputs of the forced simulations. The
attribution of climate response to external forcing in
the multi-model ensemble is complicated by the het-
erogeneous choices of forcing agents (table S14). For
example, some pre-PMIP3 simulations did not
include anthropogenic aerosols or orbital forcing.
With this caution in mind, the mean European temp-
erature reconstructions using BHM and CPS correlate
with the SUNWIDE ensemble (r=0.61, p<0.05,
accounting for serial autocorrelation; figure 3) as well
as with the SUNNARROW ensemble mean (r=0.55
and 0.57 for BHM and CPS, respectively, both at
p<0.05). Reconstructed cold conditions (mid-13th,
mid-15th, and early 19th century) at multi-decadal
time-scales mostly agree with simulated temperature
minima attributed to solar and volcanic forcing
(Hegerl et al 2011). The reconstructed minima at the
beginning of the 12th century and around 1600 CE
have no counterpart in the climate model data
(figure 3), suggesting either an important role of inter-
nal variability (Goosse et al 2012b) or inaccuracies in
model forcing (Fernández-Donado et al 2013, 2015).
An alternative interpretation of the discrepancies as
being related to shortcomings in the reconstructions is

Figure 3. Simulated and reconstructed European summer land temperature anomalies (with respect to 1500–1850CE) for the last
1200 yr, smoothedwith a 31 yrmoving average filter. BHM (CPS) reconstructed temperatures are shown in blue (red) over the spread
ofmodel runs. Simulations are distinguished by solar forcing: stronger (SUNWIDE, purple; TSI change from the LMM to present
>0.23%) andweaker (SUNNARROW, green; TSI change from the LMM to present<0.1%). The ensemblemean (heavy line) and the
two bands accounting for 50% and 80% (shading) of the spread are shown for themodel ensemble (see SOM for further details).
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unlikely due to considerable support for these temper-
ature minima from other NH proxy evidence. Colder
conditions in the decades around 1100 CE were also
observed in other parts of the world, e.g. Russian
plains (Klimenko and Sleptsov 2003, SOM, figure S9),
East China (Ge et al 2003), the Tibetan Plateau
(Thompson et al 2003, Liu et al 2006) and the Eastern
Canadian Arctic (Moore et al 2001). Glacier advances
are reported around this time for the Alps, Western
Canada, the Canadian Arctic, Greenland, the Tibetan
Plateau, and the Antarctic Peninsula (for a review, see
Solomina et al 2015). Additionally, proxy-based evi-
dence supports the cold conditions of the 16th–17th
centuries (figure S9). Local proxy records of various
types (see figure 2 in Christiansen and Ljungq-
vist 2012), inferences of glacier expansions around the
world (e.g. Solomina et al 2015), continental multi-
proxy reconstructions (e.g. PAGES 2k Con-
sortium 2013), and extra-tropical NH tree-ring based
summer temperature reconstructions (Briffa
et al 2004, Masson-Delmotte et al 2013 and references
therein; Schneider et al 2015, Stoffel et al 2015) sup-
port the existence of a strong and geographically wide-
spread very cold episode around 1600CE.

In agreement with the results of Hegerl et al (2011)
using temperature reconstructions fromLuterbacher et al
(2004), our findings suggest that changes in external for-
cing have had a pronounced influence on past European
summer temperature variations. A more in-depth detec-
tion and attribution analysis of temperature changes over
Europe, as well as those over other PAGES 2k regions
(PAGES 2k Consortium 2013) can be found in
PAGES2k-PMIP3 Group (2015). The marginally better
agreement with the SUNWIDE ensemble lends tentative
support to both the importance of changes in solar for-
cing in driving continental past climate variations as well
as a potentially greater role for solar forcing in driving
European summer temperatures than is currently present
in the CMIP5/PMIP3 simulations. This might be evi-
dence for an enhanced sensitivity to solar forcing in this
particular region due to dynamics, as has been suggested
bymodelling studies (see e.g. Ineson et al2015).However,
this is beyond the current scope of this paper. It should
also be noted, that most periods with anomalously low
solar activity during the last millennium coincide with
clustering of medium-to-strong tropical volcanic erup-
tions, thus complicating a clear separation of individual
forcing contributions to large-scale temperature varia-
tions (Zanchettin et al2013a, Schurer et al2014).

The European summer temperature response to
strong tropical volcanic events is analysed through
Superposed Epoch Analysis (SEA, e.g. Fischer et al
2007, Hegerl et al 2011) for the PMIP3 model simula-
tions and the BHM reconstructions (figures S13–S14).
For each volcanic forcing, the 12 strongest volcanic
events are selected, following the same approach as in
PAGES2k-PMIP3 group (2015). The SEA for the
reconstruction is performed for the 13 strongest tropi-
cal volcanic eruptions (> =VEI 5) published in Esper

et al (2013). The selected eruptions all occurred during
the time period covered by the gridded BHM recon-
struction (figure S14). We show the anomalies during
the year of the eruptions and the 3 yr delayed post-
eruption anomalies evaluated with respect to the pre-
eruption climatology, defined as the average state over
the five summers preceding the eruption. Using the
PMIP3 climatemodels themulti-model response after
the strongest volcanoes over the last millennium
shows an overall European summer cooling (figure
S13), though much stronger than in the reconstruc-
tions (figure S14) and peaking during the year of the
eruption and the first year thereafter. The composite
analysis from the reconstructions clearly reveals that
the European summer cooling is strongest in the first
and second year after the eruptions. The average
anomalies are of the order of 0.5 °C.

The summer cooling is confirmed by a separated
analysis for a selection of strong tropical (Samalas
1257, Huaynaputina 1600, Parker 1641 and Tambora
1815) and non-tropical (Laki 1783/1784) eruptions
(figure S15, Lavigne et al 2013, Sigl et al 2015, Stoffel
et al 2015) in the BHMreconstructions.

Patterns of past sub-continental climate variability
contain information about the influence of external fac-
tors that affect the climate system and, together with cli-
mate models, can be used to better understand how
internal dynamics contribute to determining the regional
climate response to external forcing. Figure 4 shows the
spatial differences between the MCA, LIA, and present-
day averages for simulated and reconstructed European
summer temperatures. Note that the following results do
not differ significantly if alternative definitions of periods
are chosen (not shown). Overall, simulated differences
are statistically significant at the 5% level only at a few
grid-points, even without correction for multiple testing,
and are not clearly consistent across the model ensemble
(figure 4). The models tend to simulate the largest chan-
ges for all the threeperiodsoverNorthernEurope, resem-
bling the typical pattern of temperature response to
changes in forcing (e.g. Zorita et al 2005) and the possible
signature of Arctic amplification (see Masson-Delmotte
et al 2013). While the simulated pattern for both model
groups qualitatively matches the reconstruction of the
MCA to LIA transition, its amplitude is smaller
(figures 4(a)–(c)) for both sub-ensembles. The differences
between the reconstructed spatial patterns averaged dur-
ing theMCA and the present day (figure 4(f)) are distinct
from the same simulated metric (figures 4(d) and (e)),
particularly over North–Eastern Europe. The recon-
structed MCA is slightly warmer than recent decades in
many parts of (primarily)Northern and Eastern Europe,
while the simulations reveal a more generalised and
warmer present day over the whole spatial domain
(figures 4(d)–(f)), with the SUNNARROW simulations
appearing closer to the reconstructions than SUNWIDE.
Also the SUNNARROW ensemble fails to fully reproduce
the magnitude of the reconstructed temperature differ-
ences between the LIA and present day (figures 4(g)–(i))
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for which the agreement between different simulations is
regionally limited to Southern and Western parts of the
target region.

If we assume the BHM reconstruction to be our
best available evidence regarding the MCA–LIA trans-
ition, the amplitude mismatch between the multi-
model ensemble and the reconstructions suggest
either a reduced model sensitivity, or an under-
estimation of model forcings, or that internal varia-
bility may play a dominant role. Alternatively a
combination of all these factors may be at play. The
fact that different simulations agree with each other
only in a limited part of the domain indicates a hint
that the response to forcing can be model-dependent
and that ensemble members may diverge depending
on initial and boundary conditions (Zanchettin
et al 2013b). Concerning the latter, changes in ocean
circulation may be important, including aspects of
variability such as the state of the Atlantic Multi-
decadal Oscillation (AMO; Kerr 2000, Alexander

et al 2014) and dynamical implications of phasing
between the AMO and North Pacific sea-surface tem-
peratures for hemispheric-scale teleconnections (i.e.
Zanchettin et al 2013a). Additionally, some of the
models may not be able to reproduce the dynamical
mechanisms shaping the regional responses to forcing
variations (e.g. Ineson et al 2015), owing to, for exam-
ple, a lack of horizontal resolution or the absence of a
well-resolved stratosphere (Mitchell et al 2015).

Conclusions and outlook

In this study, we have updated and extended recon-
structions of European summer temperature variation
for the CE using a suite of proxy records and a BHM
approach. We also jointly analysed the new summer
temperature reconstruction with several state-of-the-
art reconstructions and AOGCM simulations in order
to clarify the relative role of external forcing and
internal variability for the evolution of European

Figure 4. Simulated and reconstructed summer (June–August) temperature differences for three periods: (a), (b), (c)MCA (900–1200
CE)minus LIA (1250–1700CE); (d), (e), (f) present (1950–2003CE)minusMCA; and (g), (h), (i)presentminus LIA.Model
temperature differences (left and central columns) indicate average temperature changes in the ensemble of availablemodel
simulations (see table S13).Model simulations are grouped into SUNWIDE (TSI change from the LMM topresent>0.23%; left
column) and SUNNARROW (TSI change from the LMMto present<0.1%;middle column). Reconstructed temperature differences
with the BHMmethod are shown in the right column. Simulations have beenweighted by the number of experiments considered
from eachmodel. Dots indicate significant (p<0.05) changes in the reconstruction; in the simulation ensemble a dot indicates at
least 80%of agreement in depicting significant (p<0.05) changes of the same sign.
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summer temperatures at different spatial and tem-
poral scales. Reconstructions of mean European
summer temperatures compare well for both the CPS
and the BHMmethods, strengthening our confidence
in the derived results. Our European summer temper-
ature reconstructions compare well with independent
instrumental and lower resolution proxy-derived
temperature estimates but show larger amplitudes in
summer temperature variability than previously
reported. There is thus merit in further studies
combining instrumental series with low and high-
resolution summer temperature proxies in a Bayesian
hierarchical framework (Werner and Tingley 2015).
Our primary findings indicate that the 1st and 10th
centuries CE could have experienced European mean
summer temperatures slightly but not statistically
significantly (5% level) warmer than those of the 20th
century. However, summer temperatures during the
last 30 yr (1986–2015) have been anomalously high
and we find no evidence of any period in the last 2000
years being as warm (tables S11, S12). The anomalous
recent warmth is particularly clear in Southern Europe
where variability is generally smaller, and where the
signal of anthropogenic climate change is expected to
emerge earlier (e.g. Mahlstein et al 2011). European
summer mean temperatures appear to reflect the
influence of external forcing during periods with
sustained sub-decadal (volcanic) and multi-decadal
(volcanic, solar, GHG) changes. Reconstructed sum-
mer temperature anomalies for the Roman period and
MCA in Europe, which are not reflected to the same
extent in large-scale means have important implica-
tions for predicting the magnitude and frequency of
extremes. Our results show that subcontinental
regions may undergo multi-decadal (and longer)
periods of sustained temperature deviations from the
continental average indicating that internal variability
of the climate system is particularly prominent at sub-
continental scales, in accordance with results from
simulations of future anthropogenic-driven climate
change (Deser et al 2012). The new reconstructions
provide the basis for future comparison with extended
simulations beyond the last millennium that are
currently underway. A significant advantage of the
gridded reconstructions is that they will allow an in-
depth analysis of the spatial co-variability within the
European realm in comparison to higher resolution
climate simulations capable ofmimicking the complex
geographical and climatic structure of Europe.
Further, forcings such as volcanic aerosols, solar and
land-use change are expected to have unique finger-
prints of temperature change, potentially affecting
some areas of Europe more than others. In future
analyses we will use the long-timescale sub-continen-
tal information presented here to try to disentangle
these different factors from internal variability.
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