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Abstract
Drought constitutes a significant natural hazard in Europe, impacting societies and ecosystems across
the continent. Climatemodel simulations with increasing greenhouse gas concentrations project
increased drought risk in southern Europe, and on the other hand decreased drought risk in the north.
Observed changes inwater balance components and drought indicators resemble the projected
pattern.However, assessments of possible causes of the reported regional changes have so far been
inconclusive. Here we investigate whether anthropogenic emissions have altered past and present
meteorological (precipitation) drought risk. For doing sowefirst estimate themagnitude of 20 year
return period drought years that would occurwithout anthropogenic effects on the climate.
Subsequently we quantify towhich degree the occurrence probability, i.e. the risk, of these years has
changed if anthropogenic climate change is accounted for. Both an observational and a climate
model-based assessment suggest that it is>95% likely that human emissions have increased the
probability of drought years in theMediterranean, whereas it is>95% likely that the probability of dry
years has decreased in northern Europe. In central Europe the evidence is inconclusive. The results
highlight that anthropogenic climate change has already increased drought risk in southern Europe,
stressing the need to develop efficientmitigationmeasures.

1. Introduction

Drought has affected 37% of the European Union’s
territory in the past three decades (EC2007), triggering
ecological (Gudmundsson et al 2014, Blauhut
et al 2015) and socio-economical damages (EC 2007,
Kossida et al 2012, Blauhut et al 2015), impactingmore
than 100 million inhabitants (EC 2007). Climate
model projections highlight Europe as one of the
future hot spots of hydro-climatic change, with
contrasting effects of anthropogenic forcing in the
south (drying) versus the north (wetting) of the
continent (Orlowsky and Seneviratne 2013, Prud-
homme et al 2014). Although increasing evidence
suggests the emergence of similar trends in historical
water balance components and drought indicators
(Stahl et al 2010, Seneviratne et al 2012, Hartmann
et al 2013, Gudmundsson and Seneviratne 2015b,
Meko and Cook 2016), it is not yet clear to which
degree anthropogenic climate forcing has contributed

to changes in European drought risk (Bindoff
et al 2013). Among the sources of uncertainty, hinder-
ing a clear interpretation of observed changes in
European drought are differences in the employed
drought indicators (Sheffield et al 2012) and uncertain
precipitation estimates (Trenberth et al 2014). In
addition the influence of the north Atlantic oscillation
(Hurrell and VanLoon 1997) on Europe’s hydro-
climatology at times amplifies the south–north con-
trast (Hurrell and VanLoon 1997, López-Moreno and
Vicente-Serrano 2008, Kelley et al 2012, Meko and
Cook 2016). This can make it difficult to distinguish
trends in drought occurrence from natural decadal-
scale variability (Bindoff et al 2013).

Drought risk is commonly considered to be a
function of (i) the hazard, e.g. a meteorological
drought, (ii) the exposure, e.g. the number of assets in
a drought prone region and (iii) the vulnerability, e.g.
the susceptibility to suffer damages (Cardona
et al 2012). A consequence of this definition is that a
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changed occurrence rates of meteorological drought
years (increased hazard) necessarily implies changed
drought risk as long as there are no shifts in exposure
or vulnerability. This also implies that it is possible to
respond to changes in meteorological drought risk
through environmental management, aiming at con-
trolling both exposure and vulnerability.

In this study we aim at explicitly addressing the
question whether anthropogenic climate change has
altered drought risk in Europe. For doing so, we focus
on meteorological (precipitation) drought and quan-
tify how the occurrence probability of drought years
has changed in response to global warming. In con-
trast to hydrological drought, which can be impacted
by on ground human interventions in the water cycle
(Van Lanen et al 2016, Van Loon et al 2016), meteor-
ological drought is expected to only respond to
anthropogenic climate change. Consequently possible
climate signals will not be obscured by mitigation
activities.

In the following we introduce amethodological fra-
mework for meteorological drought risk assessment,
that can be applied to both observations and climate
model simulations. Subsequently we apply this frame-
work to an array of observations and state of the art cli-
mate model simulations to quantify how European
drought risk has changed in response to anthropogenic
climate change throughout the past century. Con-
sistency of both observational and climate model based
results will be assessed to increase the confidence in the
results. Finally the findings will be discussed in light of
previous assessments and implications for drought
managementwill be considered.

2.Methods

2.1. A framework formeteorological drought risk
assessment
In this study we rely on a probabilistic framework that
roots in epidemiology (Rothman et al 2012) and has

seen wide application in studies attributing extreme
weather events to climate change (e.g. Palmer and
Raisanen 2002, Allen 2003, Stott et al 2004, Stone and
Allen 2005, van Oldenborgh 2007, Pall et al 2011, Otto
et al 2012, Stott et al 2013, Fischer and Knutti 2015,
King et al 2015). The approach is based on comparing
pNAT, the occurrence probability of extreme weather
events under natural conditions, with pHIST, the
occurrence probability of the same event under
historical conditions. As common in detection and
attribution studies (Bindoff et al 2013), ‘natural
conditions’ referrers to climate variability as it would
occur without human interventions, whereas ‘histor-
ical conditions’ refer to climate variability that occurs
with anthropogenic emissions. Comparison of the two
probabilities is commonly done using the using the
risk ratio (Stone andAllen 2005, Rothman et al 2012),

( )= p pRR , 1HIST NAT

or closely relatedmeasures. The interpretation of RR is
straight forward. Values larger than one indicate
increased risk, e.g. RR=2 indicates that drought risk
for a given year is twice as large if anthropogenic effects
on the climate are taken into account. Likewise
RR=0.5 shows that drought risk decreases by a factor
two if the anthropogenic effects are accounted for. If
RR=1 the risk does not change.

In this study we analyse annual precipitation and
aim at quantifying how the occurrence probability of a
20 year return period event has changed in response to
human influences on the climate. For doing so we set

=p 0.05NAT (corresponding to a 20 year return per-
iod) and estimate, DNAT, the magnitude of the
corresponding event for a given time step. Subse-
quently pHIST, the probability of DNAT for historical
conditions, is estimated (see figure 1(a)) and com-
bined with pNAT to compute the risk ratio, RR. As the
estimation is based on finite data and relies on meth-
ods with strong assumptions it is inevitable that the
estimates of both DNAT and pHIST will be uncertain.
Consequently RR will also be uncertain and best
described by a probability distribution, which can be

Figure 1. Illustration of probabilistic risk change assessment. (a)Hypothetical cumulative distribution functions of annual
precipitation with (HIST) andwithout (NAT) human effects on the climate. Shading indicates estimation uncertainty of the two
distributions. Arrows indicate how an event, DNAT, with an occurrence probability of =p 0.05NAT under natural conditionsmay get
more likely if human effects are accounted for (pHIST). (b)Distribution of the risk ratio (equation (1)), accounting for the estimation
uncertainty. Note the log-scale in the abscissa of both panels.
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used to assess whether it is significantly different from
one (see figure 1(b)). Note that the definition of
droughts as 20 year return period low precipitation
years is approximately consistent with the SPI defini-
tion of severe and extreme droughts, which are defined
as precipitation sums with an occurrence probability
p 0.07 and p 0.02 respectively (McKee et al 1993).
The methodological challenge is to estimate both

DNAT and pHIST, which can be achieved using both cli-
mate model based (e.g Palmer and Raisanen 2002,
Allen 2003, Stott et al 2004, Stone and Allen 2005, Pall
et al 2011, Stott et al 2013, Fischer and Knutti 2015)
and observation based approaches (e.g. van Old-
enborgh 2007, Otto et al 2012, Stott et al 2013, King
et al 2015). The advantage of climate model based
approaches is that large samples of climate with and
without human emissions can be simulated, which in
turn can be used to estimate the probabilities. Climate
models, however, suffer from incomplete process
knowledge and other model uncertainties. The advan-
tage of observational approaches is that they can utilise
the power of real-world observations. This comes,
however, at the cost of strong simplifying assump-
tions, which may introduce biases to the analysis.
Recognising the strengths and weaknesses of both
approaches we follow the recommendations of Hegerl
(2015) and analyse both climate model output and
observations in parallel to assess the effect of climate
change on drought risk in Europe. In contrast to pre-
vious studies we do not aim at estimating the risk ratio
for single extreme events, but to provide estimates of
its evolution throughout the past century.

2.2.Observational assessment
To assess changes in drought risk we need a model of
the probability distribution of annual precipitation.
For this we follow the SPI approach (McKee et al 1993)
and assume that annual precipitation P follows a
Gammadistribution, with the probability density

( )
( )

( )
q

=
G

q- -f P
k

P
1

e , 2
k

k P1

for P 0, where the shape parameter k influences the
skewness and the scale parameter θ controls the
spread. The validity of this assumption has been tested
at thousands of grid cells in Europe (Stagge et al 2015).
However, this model assumes stationary conditions,
implying it cannot be used directly to account for
anthropogenic climate change and other factors that
may influence drought probability. To facilitate this,
we adapt previous studies (vanOldenborgh 2007, Otto
et al 2012) and assume that the occurrence probability
of climate extremes can be modelled by allowing the
parameters of the underlying distribution to depend
on indicators of global mean temperature anomalies
(TG) and indicators of large-scale climate variability.
The rational for considering the effect of TG is that its
increase is attributed to human emissions (Bindoff
et al 2013) and it is thus a reliable indicator for
anthropogenic climate change. Here we consider TG

series that are centred to the 1880–1899 period, i.e.
decades where effects of human emissions on the
climate can be considered to be minimal. To approx-
imate observed natural climate variability and to
account for the north Atlantic influence on European
drought magnitude (López-Moreno and Vicente-
Serrano 2008) we also consider effect of the station
based north Atlantic oscillation index, NAO (Hur-
rell 1995, Hurrell and VanLoon 1997), on drought
probability. The combined effects of bothTG andNAO
on the the distribution of annual precipitation can
then be estimated as

( ) ( )m b b b= + +Tlog NAO, 3T G N0

where m q= k is the expected value of the gamma
distribution (equation (2)) and b0, bT and bN are
regression parameters. The combination of the
gamma distribution (equation (2)) with the log-linear
regression (equation (3)) is a special case of generalised
linear models (GLMs) (McCullagh and Nelder 1989).
GLMs are generalisations of ordinary linear regression
that allow for response variables that are not normally
distributed and the parameters can be estimated using
common statistical software packages (e.g. Venables
and Ripley 2002, R Core Team 2016). In this study the
shape parameter of the gamma distribution, k, is
estimated on the basis of the regression residuals using
the moment estimator following the recommenda-
tions of McCullagh and Nelder (1989). The remaining
scale parameter, θ, is calculated as q m= k. Once the
parameters of the statisticalmodel have been identified
it can be used to estimate the distribution of annual
precipitation for any combination ofTG andNAO.

Model uncertainty is first assessed using an ordin-
ary bootstrap with case wise resampling (2000 replica-
tions), which is consistent with the notion that all
variables entering the regression model exhibit sam-
pling uncertainty (Efron and Tibshirani 1993). In
practice this means that time series of P, TG and NAO
are first arranged in a table and with three columns
and n rows. In a next step n rows are drawn randomly
with replacement from this table, generating a random
sample of the data. Themodel is then fit to the random
sample. This procedure is repeated 2000 times, result-
ing in a large sample of model parameters. 90% con-
fidence intervals for the model parameters are
constructed from the 5% and 95% percentiles of the
bootstrapped parameter values.

In the following we use the above described model
to estimate how the probability of DNAT, a drought
event that would have a 20 year return period without
human emissions, has changed in response to global
warming. For doing so we first set =p 0.05NAT and
estimate the magnitude of DNAT for each year. This is
done by prescribing =T 0G and accounting for
observed NAO values for each year. By doing so, we
assume that global mean temperature in the
1880–1899 base period was approximately at pre-
industrial levels. Subsequently pHIST, the probability
of DNAT under climate change, is estimated
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conditional on both NAO and TG for the given year
(see also figure 1(a)). Both pNAT and pHIST are finally
used to compute the risk ratio, RR (equation (1)). This
evaluation is done for every year with available NAO
andTG, resulting in transient estimates of RR.

To quantify uncertainty in the risk ratio, we repeat
its computation for each of the bootstrapped para-
meter samples, resulting in an ensemble of 2000 tran-
sient estimates of RR. We further recognise that the
results of observational drought assessments are sub-
ject to uncertain precipitation estimates (Trenberth
et al 2014). To account for this we repeat the analysis
for five independent precipitation data sets (see
section 3.1), resulting in an pooled ensemble of
2×2000=10000 transient estimates of RR. Sig-
nificance of changes in drought risk is reported if the
90% confidence interval, defined as the range between
the 5% and 95% percentiles of the combined boot-
strap sample does not cover the line of no change
(RR=1). In this case, we report that it is>95% likely
thatTGhas an detectable influence on drought risk.

2.3.Model based assessment
Climate model based changes in drought risk are
estimated on the basis of an ensemble of model
simulations with historical radiative forcing (HIST)
and historical simulations with natural forcing only
(NAT) (Taylor et al 2011). For this, decadal segments
(e.g. 1886–1895, 1896–1905, ..., 1996–2005) of all
models were pooled into one sample. By doing so we
account for high frequency internal variability and
follow the previously utilised assumption (Stott
et al 2004) that decadal variability is approximately
stationary. For each decadal blockRR is then estimated
as follows: first a gamma distribution is is fitted to the
NAT simulations for each decadal segment and the
magnitude, DNAT of the 20 year return period
( =p 0.05NAT ) drought event is read of this distribu-
tion. Subsequently a gamma distribution is fitted to
the HIST simulations and pHIST the probability of
DNAT with human effects on the climate is estimated.
Finally pHIST is combined with pNAT to compute RR.
Uncertainty is estimated in this case using an ordinary
bootstrap (Efron and Tibshirani 1993) with 2000
replications. For this samples are drawn with replace-
ment from both HIST and NAT and a gamma
distribution is fitted to each sample, which in turn is
then used to estimate DNAT, pHIST and RR respectively
(see also figure 1). The 90% percentile confidence
intervals of climate model based RR are estimated
from the resulting bootstrap sample.

2.4. Comparing observational andmodel based
results
The consistency between observational and model
based estimates of RR is quantified in terms of time
series correlation. Best-estimate correlations are com-
puted as the correlations between estimates of all
considered precipitation data and the best estimate of

themodel simulations. As observation based estimates
of RR have an annual resolution, they are averaged for
10 year long time blocks corresponding to the model
based estimates. Uncertainty is assessed by correlating
each of the 10 000 bootstrap samples of the observa-
tional uncertainty analysis with each of the 2000
bootstrap samples of the model based assessment,
resulting in ´2 107 replications. If the 5% percentile
of these surrogate correlations is>0 we report that it is
>95% likely that observational and model based
estimates of RR are correlated.

3.Data

3.1.Observational data
As it has been recently highlighted that observational
uncertainty in precipitation can have significant effects
on historical drought assessment (Trenberth
et al 2014), we utilise a range of different precipitation
products for our analysis. More specifically we analyse
precipitation time series stemming from five different
gridded data products ranging from 1900 to 2013 and
covering at least the 1950–2010 time period. Refer-
ences and version numbers of the considered precipi-
tation data are as follows: CRU version 3.22 (Harris
et al 2014), GPCC version 6 (Becker et al 2013), U.Del
version 3.01 (Nickl et al 2010), E-OBS version 11
(Haylock et al 2008), PREC/L (Chen et al 2002). All
precipitation data have been interpolated to a com-
mon ◦0.5 grid using conservative remapping
(Jones 1999) and aggregated to annual values. To
guarantee consistency grid-cells that did not have full
temporal coverage in any of the data sets where
excluded from the analysis. This mainly affected the
Mediterranean (MED) region, essentially limiting the
analysis to southern Europe (figure 2(a)). The gridded
precipitation data where then averaged over three
predefined European macro regions (Seneviratne
et al 2012), corresponding to the Mediterranean,
central Europe (CEU) and northern Europe (NEU)
(figures 2(a) and (b)).

The station based north Atlantic oscillation index,
NAO is defined as the normalised pressure difference
between Ponta Delgada, Azores and Stykkisholmur/
Reykjavik, Iceland (Hurrell 1995, Hurrell and Van-
Loon 1997) (figure 2(c), available at https://
climatedataguide.ucar.edu/climate-data/hurrell-
north-atlantic-oscillation-nao-index-station-based).

In this study we follow the previviously utilised
assumption that global mean temperature anomalies
can act as an indicator for anthropogenic climate
change (vanOldenborgh 2007, Otto et al 2012). For this
we rely on global mean temperature anomalies pro-
vided by the Goddard Institute for Space Studies (Han-
sen et al 2010), which are available with regular updates
(http://data.giss.nasa.gov/gistemp/graphs_v3/). The
global mean temperature time series is centred to the
1880–1899 base period. As in previous studies (van
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Oldenborgh 2007, Otto et al 2012) globalmean temper-
ature anomalies were smoothed with a three-year run-
ning mean to reduce effects of the quasi biannual
oscillation. In the reminder of this paper the smoothed
temperature anomalies are referred to as TG
(figure 2(c)).

3.2. Climatemodel data
Climate model simulations from the CMIP5 archive
(Taylor et al 2011) were selected based on the rule that
each model should provide simulations with historical
forcing (HIST) and historical simulations with natural
forcing only (NAT). The selected models are listed in
table 1. For HIST and NAT, simulations from 1886 to

2005 are considered,where 2005 is the last available year
of historical simulations. Prior to further processing,
simulated precipitation was interpolated to a common

◦2.5 grid and aggregated to annual values. Only grid-
cells that contained observations were maintained for
the analysis. The gridded time series were averaged for
each of the three considered regions (figure 2(a)). As
there are model specific biases in simulated precipita-
tion, the regional precipitation series where bias
corrected to match the distribution of the E-OBS data
using a power-law transformation (Gudmundsson
et al 2012). The E-OBS data were chosen as reference, as
this data product was developed specifically for Europe
and is hence assumed to bemost accurate.

Figure 2.Observational data under consideration. (a): mean annual precipitation in Europe (E-OBS data). The analysis focuses on
threemacro-regions, suggested in the IPCC Special Report on Extremes (Seneviratne et al 2012), allowing for an assessment of
drought frequency in northern Europe (NEU), central Europe (CEU) and theMediterranean region (MED). Grey land areas were
omitted from the analysis due to incomplete temporal coverage. (b): annual precipitation series averaged for each region under
investigation. Values in the parenthesis of thefigure legend correspond to the start and the end year of each series. (c): station based
north Atlantic oscillation Index and globalmean temperature anomalies (base period: 1880–1899). See text for references and detailed
information on data processing.

Table 1.Considered climatemodels from theCMIP5 archive. The suffixes _p1 and _p3 indi-
cate different physics-parameterizations.

bcc-csm1-1_p1 BNU-ESM_p1 CanESM2_p1

CCSM4_p1 CESM1-CAM5_p1 CNRM-CM5_p1

CSIRO-Mk3-6-0_p1 FGOALS-g2_p1 GFDL-CM3_p1

GFDL-ESM2M_p1 GISS-E2-H_p3 GISS-E2-R_p3

HadGEM2-ES_p1 IPSL-CM5A-LR_p1 IPSL-CM5A-MR_p1

MIROC-ESM_p1 MIROC-ESM-CHEM_p1 MRI-CGCM3_p1

NorESM1-M_p1

5

Environ. Res. Lett. 11 (2016) 044005



4. Results

The effects of both NAO and TG on annual precipita-
tion, expressed as the coefficients of equation (3), are
shown in figure 3. In each of the considered regions,
the confidence interval of the NAO effect, bN , does
not overlap zero, indicating a significant influence on
the distribution of annual precipitation. The sign of
the effect, indicating increased precipitation in the
north and decreased precipitation in central and
southern Europe for positive NAO is consistent with

previously reported results (Hurrell and Van-
Loon 1997, López-Moreno and Vicente-Ser-
rano 2008). Overall the effect of global mean
temperature anomalies on regional precipitation, bT ,
supports the hypothesis that annual precipitation has
increased in the north and decreased in the south as
response to global warming. However, the signifi-
cance of the results is dependent on the considered
data set, pointing towards the importance of observa-
tional uncertainty in precipitation (Trenberth
et al 2014).

Figure 3.Effects of the north Atlantic oscillation index (bN ) and globalmean temperature (bT ) on the precipitation distribution in
Europe. Displayed are the best estimate (dot) as well as the 90% confidence interval of equation (3) estimated from each considered
precipitation data set in each region under investigation.

Figure 4.Changes in European drought risk. (a): observational estimates of changes in drought risk, conditional on global warming.
Coloured lines represent the best estimate for each data product under consideration. Thin grey lines correspond to individual
bootstrap replications and highlight the overall uncertainty of the analysis. Dashed lines indicate the 90% confidence interval derived
from the bootstrap. (b): climatemodel based estimates of drought risk. Shown are the best estimate, as well as the 90%bootstrap
confidence intervals.Model based estimates are computed for 10 year long time blocks.
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Figure 4(a) shows the time evolution of the risk
ratio (equation (1)) in each considered pan-European
macro region. Despite the large combined parameter
and model uncertainty, clear changes in drought risk
associated with global mean temperature anomalies
emerge for northern Europe and the Mediterranean
region. In northern Europe drought risk has been
decreasing throughout the course of the past century.
In contrast to northern Europe, drought risk has
increased in the Mediterranean throughout the same
time period. In both regions the 90% confidence inter-
vals do leave the line of no change (RR=0) through-
out the course of the twentieth century. In central
Europe, changes in drought risk could not be detected.
Consequently these observational results show that
northern European and Mediterranean drought risk
has changed significantly in response to global mean
temperature. As global mean temperature change has
been attributed to anthropogenic climate forcing
(Bindoff et al 2013), it is possible to invoke the two-
step-attribution procedure (Bindoff et al 2013) and
claim that the identified changes in European drought
risk are attributable to human effects on the climate.

The climate model based estimates (figure 4(b))
are generally consistent with the observational esti-
mates indicating decreased drought risk in the north
and increased drought risk in the Mediterranean
region. In central Europe, model based estimate of
drought risk does not exhibit a clear change pattern,
although the simulations suggest a slightly increased
drought risk if anthropogenic effects are accoun-
ted for.

The similarity of observational and model based
estimates of drought risk is finally quantified in terms

of correlation. The correlation analysis (figure 5) con-
firms the significant similarity of observational and
model based estimates of drought risk for northern
Europe and the Mediterranean region. Note that the
correlation for northern Europe is not as pronounced
as for the Mediterranean region. Nevertheless the
uncertainty analysis suggests that it is>95% likely that
the observed and the modelled history of drought risk
are positively correlated in both regions. In Central
Europe observation based and model based estimates
of drought risk are not correlated, pointing at an
inconsistency between both estimates of drought risk.

5. Summary and conclusions

In conclusion, the consistency of both the observa-
tional and the model-based assessment suggests that it
is very likely that changed drought risk in northern
Europe and the Mediterranean region is attributable
to anthropogenic climate change. In central Europe
evidence from the observational and the model based
assessment is conflicting, highlighting that the results
are inconclusive for this region. Overall the decreased
drought risk in northern Europe is consistent with
regional (Bhend and von Storch 2008), hemispheric
(Min et al 2008, Wan et al 2014) and global studies
(Zhang et al 2007) that attribute increased annual
precipitation in high latitudes to anthropogenic cli-
mate change. In the Mediterranean region Hoerling
et al (2011) has highlighted the increased consistency
ofmodel simulations with the observed drying trend if
human emissions are accounted for, further support-
ing the evidence presented in this study. Note how-
ever, that the above mentioned assessments have
neither focused on central Europe nor explicitly
quantified the effect of climate change on the occur-
rence probability of drought years. Possible mechan-
isms underlying the observed pattern are likely related
to a dynamic response of atmospheric circulation to
increased temperature, including e.g. a northward
shift of the storm tracks and the descending branches
of the Hadley cell (Hoerling et al 2011), as well as to
thermodynamic contributions related to increased
wet-day precipitation and higher condensation
thresholds inwarmer air (Giorgi et al 2011).

This study is incomplete in that sense that it only
focuses on precipitation, neglecting the relevance of
terrestrial freshwater variables including soil moisture
and river flow for ecosystems and societies. Further the
considered annual resolution does not allow to analyse
seasonal differences, which may obscure a possible
summer drying in central Europe (Gudmundsson and
Seneviratne 2015a, 2015b). In addition, the spatial
aggregation to pan-European macro regions does not
allow for a detailed local assessment. Nevertheless the
results show unprecedented evidence in support of the
hypothesis that anthropogenic climate change has
already affected drought risk in southern and northern

Figure 5.Correlation between observational andmodel based
drought risk. The grey area indicate the probability density of
the bootstrap replicates. Horizontal linesmark the 90%
confidence interval. Coloured dots show the best estimates
for the considered precipitation data.
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Europe. Therefore the results also increase the con-
fidence in climate model projections, suggesting
increased drought risk in the Mediterranean region
(Orlowsky and Seneviratne 2013, Prudhomme
et al 2014). As this region is already water scarce under
current climatic conditions, the presented results
highlights the necessity to develop coping strategies
and policies to help remedy the most adverse effects of
the increasing frequency of exceptionally dry years.
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