
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 210.77.64.106

This content was downloaded on 10/04/2017 at 04:23

Please note that terms and conditions apply.

Time series analysis of satellite data reveals continuous deforestation of New England since

the 1980s

View the table of contents for this issue, or go to the journal homepage for more

2016 Environ. Res. Lett. 11 064002

(http://iopscience.iop.org/1748-9326/11/6/064002)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012

A Tyukavina, A Baccini, M C Hansen et al.

National-scale estimation of gross forest aboveground carbon loss: a case study of the Democratic

Republic of the Congo

A Tyukavina, S V Stehman, P V Potapov et al.

National satellite-based humid tropical forest change assessment in Peru in support of REDD+

implementation

P V Potapov, J Dempewolf, Y Talero et al.

Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from

deforestation and forest degradation under REDD+

Scott J Goetz, Matthew Hansen, Richard A Houghton et al.

Land use patterns and related carbon losses following deforestation in South America

V De Sy, M Herold, F Achard et al.

Carbon changes in conterminous US forests associated with growth and majordisturbances: 1992–2001

Daolan Zheng, Linda S Heath, Mark J Ducey et al.

Effects of systematic sampling on satellite estimates of deforestation rates

M K Steininger, F Godoy and G Harper

Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin

Lands area of Kazakhstan

Roland Kraemer, Alexander V Prishchepov, Daniel Müller et al.

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1748-9326/11/6
http://iopscience.iop.org/1748-9326
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1748-9326/10/7/074002
http://iopscience.iop.org/article/10.1088/1748-9326/8/4/044039
http://iopscience.iop.org/article/10.1088/1748-9326/8/4/044039
http://iopscience.iop.org/article/10.1088/1748-9326/9/12/124012
http://iopscience.iop.org/article/10.1088/1748-9326/9/12/124012
http://iopscience.iop.org/article/10.1088/1748-9326/10/12/123001
http://iopscience.iop.org/article/10.1088/1748-9326/10/12/123001
http://iopscience.iop.org/article/10.1088/1748-9326/10/12/124004
http://iopscience.iop.org/article/10.1088/1748-9326/6/1/014012
http://iopscience.iop.org/article/10.1088/1748-9326/4/3/034015
http://iopscience.iop.org/article/10.1088/1748-9326/10/5/054012
http://iopscience.iop.org/article/10.1088/1748-9326/10/5/054012


Environ. Res. Lett. 11 (2016) 064002 doi:10.1088/1748-9326/11/6/064002

LETTER

Time series analysis of satellite data reveals continuous
deforestation of New England since the 1980s
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Abstract
Land cover and land changeweremonitored continuously between 1985 and 2011 at 30m resolution
acrossNewEngland in theNortheasternUnited States in support ofmodeling the terrestrial carbon
budget. It was found that the forest area has been decreasing throughout the study period in each state
of the region since the 1980s. A total of 386 657±98 137 ha (95%confidence interval) of forest has
been converted to other land covers since 1985.Mainly driven by lowdensity residential development,
the deforestation accelerated in themid-1990s until 2007when it plateaued as a result of declining new
residential construction and in turn, thefinancial crisis of 2007–08. The area of forest harvest,
estimated at 226 519±66 682 ha, wasmapped separately and excluded from the deforestation
estimate, while the area of forest expansion on non-forested landswas found to not be significantly
different from zero.NewEngland is often held as a principal example of a forest transitionwith
historical widespread deforestation followed by recovery of forestlands as farming activities
diminished, but the results of this study support the notion of a reversal of the forest transition as the
region again is experiencing widespread deforestation. All available Landsat imagery acquired after
1985 for the study areawere collected and used in the analysis. Areas of land cover and land change
were estimated from a random sample of reference observations stratified by a twelve-class land
changemap encompassing the entire study area and period. The statistical analysis revealed that the
net change in forest area and the associatedmodeled impact on the terrestrial carbon balancewould
have been considerably different if the results of themapwere usedwithout inferring the area of forest
change by analysis of a reference sample.

1. Introduction

Trees in a forest sequester carbon as they grow, which
is released when the forest is logged through decaying
or burning of the logged wood. With the concentra-
tion of carbon dioxide in the atmosphere increasing,
the mapping and monitoring of change in forest area
have become a field of intensive research (Kennedy
et al 2007, Kuemmerle et al 2009, Olofsson et al 2011,
Zhu et al 2012, Hansen et al 2013, Pelletier and
Goetz 2015) and the focus of international frameworks
(UN-REDD 2008, Penman et al 2014). Much of the
reported deforestation is occurring in the tropics
while, according to the Global Forest Resources
Assessments of the United Nations, the forest area of
countries in Western Europe and North America are

stable or even increasing—in certain cases by as much
as 20%–30% since 1990 (FAO 2010). While these
numbers depend on the definition of forest, it is well
established that many Western countries have experi-
enced a forest transition (Mather 2001) with an
increase in forest area following economic develop-
ment despite a growing population (Kauppi
et al 2006). It has been suggested that if the same
development could take place in the developing world,
if a global forest transition could be achieved, it would
not only end a long era of net deforestation, but would
also lead to significant carbon sequestration in terres-
trial ecosystems (Meyfroidt and Lambin 2011). While
economic and technological development could slow/
reverse the trend of deforestation, and while the
historical deforestation undoubtedly has been
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reversed in many parts of the world, the claim of
increasing forest area in theWestern countries has not
been thoroughly investigated.

The six-state region of New England in the North-
eastern United States experienced a forest transition
when the deforestation trend that commenced with
European settlement in the 17th century was reversed
around 1850 as agricultural activity slowed and indus-
trialization increased (Foster 1992, Foster and
O’Keefe 2000). The forest area of New England con-
tinued to increase until the 1970s (Foster and
Aber 2004) after which the exact nature of the forest
change dynamics remains uncertain: Jeon et al (2014)
found that New England (Maine excluded) had lost
about 121 000±83 000 ha (error-adjusted area esti-
mate with 95% confidence interval) of forest between
1990 and 2005—a loss not reflected in the Forest
Inventory and Analysis (FIA) of the USDA US Forest
Service which instead showed that the forest area
remained stable from 1985 to 1998. Forest loss was
evident in the FIA data from 1998 to 2005, similar to
the findings of Jeon et al (2014) although the FIA loss
estimates were less. Evidence of forest loss was also
provided by Drummond and Loveland (2010) who
estimated the net forest loss in three ecoregions in the
Northeastern United States at 725 000±253 000 ha
or 3.4%±1.2% of the area between 1973 and 2000
(error-adjusted area estimates with 85% confidence
intervals). These estimates represent a larger area than
the study area of both Jeon et al (2014) and this study,
and includes all of Maine and large parts of New York
andNew Jersey, but even if just considering theNorth-
eastern Costal Zone ecoregion (most of Connecticut
and Massachusetts, and a small part of New Hamp-
shire) the net forest loss was estimated at
137 000±22 000 ha from 1973 to 2000 or
3.7%±0.6% relative to the total area of the ecoregion
(Drummond and Loveland 2010). Cunningham et al
(2015) studied the loss of undeveloped land (forest,
woodlands and agriculture) in Eastern Massachusetts
during the housing bubble in 2000–2006 and the sub-
sequent ‘bust’ in 2006–2013.While a smaller areas was

studied and areas of change were not adjusted for clas-
sification errors and uncertainty was not quantified,
the authors concluded that the rate of development
has remained high since 2000 although decreasing
from 598 ha yr−1 2000–2006 to 486 ha yr−1

2006–2103.
Thus, there is mounting evidence that New Eng-

land has experienced a net loss of forest since the
1970s/80s but the exact nature and trajectory remain
uncertain. The field of environmental remote sensing
has seen important advancements the last few years
following free data policies (Woodcock et al 2008,
ESA 2013), including: (1) production of global high
resolution forest changemaps (Hansen et al 2013, Kim
et al 2014); (2) the development of time series analysis
methods for monitoring change (Kennedy et al 2010,
Zhu et al 2012, Kennedy et al 2014); and (3) increased
development and use of statistical inference for area
estimation (McRoberts 2011, Olofsson et al 2013,
Stehman 2014). In this letter we report on a more
complete and detailed analysis of land change in New
England than has been done to date. The study is based
on an analysis of a time series of satellite data from the
Landsat satellite systems for continuousmonitoring of
land cover across New England. The analysis includes
identification of land change and subsequentmapping
of the pre- and post-disturbance land covers.
Unbiased estimates of rates of land cover change were
inferred from a sample of reference observations stra-
tified by a map of land cover and land cover change
(see table 1). the remotely sensed products.

2.Material andmethods

2.1.Mapping
The study area is in the Northeastern United States
and includes the states of Connecticut, Rhode Island,
Massachusetts, New Hampshire, Vermont and Maine
(figure 1). Only the southwestern part ofMaine (about
30% of the state) was mapped and a small sliver of
Northwestern Vermont was outside the coverage of

Table 1.Area estimates with 95% confidence intervals andmargin of errors (ratio of confidence interval to area estimate
expressed as percentages). Themapped areas are the size of the strata, andmap bias the difference betweenmapped and
estimated areas. All areas are presented in hectares.

Stratum Area±95%CI MoE Mapped area Map bias

High/mediumdensity residential 163 548±45 972 28% 350 213 186 665

Lowdensity residential 1104 941±154 389 14% 968 118 −136 823

Herbaceous/Agriculture 910 208±102 449 11% 766 515 −143 693

Forest 7435 877±209 652 3% 7607 907 172 030

Wetland 307 649±86 683 28% 305 848 −1800

Water 415 040±32 830 8% 389 401 −25 639

Forest→High/mediumdensity residental 60 571±36 333 60% 66 381 5809

Forest→Lowdensity residential 210 973±81 000 38% 58 423 −152 550

Forest→Other land covers 122 343±53 350 44% 71 017 −51 327

Herbaceous/Agriculture→Forest 15 699±25 210 161% 16 316 616

Other land covers→Forest 9734±9563 98% 67 109 57 376

Forest→Forest 226 519±66 682 29% 378 749 152 230
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the satellite data that was processed for this study. The
part ofMaine that was not included in the study area is
less populated and it is assumed that the mapped part,
which includes the Portland Metropolitan area, exhi-
bits higher rates of residential development that the
rest of the state.

Land change was mapped by applying the Con-
tinuous Change Detection and Classification (CCDC)
algorithm to pixel-level time series of Landsat data
(Zhu et al 2012, Zhu andWoodcock 2014). CCDC is a
break detection method for finding structural change
in time series by monitoring for change in forecast
residuals. CCDC uses initial time series observations
as a training period to form simple statistical models
for each of the Landsat optical bands that can predict
the expected surface reflectance for a given date. The
predicted reflectance is compared to the subsequent

observations in the time series, and when the average
difference across the optical bands between predicted
and observed reflectance differs by two times the root
mean square error of the model multiple consecutive
times, the algorithm concludes that a change has
occurred on the land surface. When change has been
detected, the algorithm breaks the prediction and
starts a new model that progresses until a new change
is detected. Time series prediction model attributes,
including themodel coefficients and rootmean square
error, for each time series segment (i.e. the stable peri-
ods between abrupt change events) were input to a
random forests classifier (Breiman 2001) together with
training data to perform a supervised land cover classi-
fication for each segment for every pixel. This
approach to land cover classification allows for con-
tinuous monitoring of land change and for

Figure 1.The final stratification of the study area and the stratified random sample used for statistical inference of area.
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construction of a land covermap for any time step or a
change map for any time interval during the study
period.

2.2. Estimation of area
It was assumed that the mapped areas of land cover
and land change were biased because of classification
errors and were therefore estimated from a sample of
reference observations. For this purpose, a random
sample stratified from the map was selected. The
stratification is shown in figure 1; it contains six stable
strata and six change strata between 1986 and 2011.
The total sample size was determined using equation
(5.25) in Cochran (1977) with a target standard error
for the Forest-to-low-density-residential stratum of
0.25% of the total population and by assuming one
error of omission per 100 sample units. For twelve
strata, this gave a sample size of 1386. These were
allocated following ‘good practices’ for estimation of
the area of change such that 50 units eachwere selected
from the change strata and 100 each from the stable
strata except the Forest stratum from which 500 units
were selected (Olofsson et al 2014). An additional 50
units were allocated to the Unclassified stratum which
includes areas that did not have enough usable
observations to run CCDC or that experienced a
change too late in the time series to initialize a new
segment for a land cover prediction. The intent of
including this class in the stratification was to assign a
land cover class to these unclassified pixels. Pixels
without enough usable observations dominated this
class and include coastal shores with noisy signals due
to changes in the tide or bright mountain surfaces that
saturate Landsat’s detectors. This process yielded a
total sample of 1350 units.

The sample units were carefully examined using
time series of Landsat data visualized in a custom plu-
gin to the QGIS software (Holden 2015) and very high
resolution images in Google Earth with three inter-
preters examining each sample unit independently
and providing reference labels. The interpreters did
not know which stratum they were in when they pro-
vided the reference labels as we believe this would have
biased the interpretation. The reference labels pro-
vided were Forest,Wetland,Water,High and Low den-
sity residential and Herbaceous/Agriculture, and these
were provided at the start and end of the study period.
In case of transition, the timing was noted. A group
was convened to make a decisive interpretation for
each sample unit where there was disagreement
among interpreters or if they indicated a low con-
fidence in the assigned label. An error matrix of esti-
mated area proportions was created by cross-
tabulating the map and reference labels, and area esti-
mates with confidence intervals were constructed for
each stratum using stratified estimation (Olofsson
et al 2013).

These estimators pertain to the full stratification in
time and space and are not directly applicable to dif-
ferent subregions and time intervals of the study
domain. As we are interested in the temporal develop-
ment of land cover for subregions such as individual
states, it was assumed that the bias in the area of map-
ped land covers were uniformly distributed in time
and space. This assumption implies that if, for exam-
ple, the mapped area of deforestation was x ha and the
unbiased estimate was x̂ ha for the full stratification,
and the mapped area for Massachusetts 1990–1995
was y ha, it was assumed that an unbiased estimate of y
was ˆ

ˆ=y y x

x
.

3. Results and discussion

The analysis revealed that the forest area of New
England has been decreasing throughout the entire
study period. The estimated areas of land cover and
land cover change are presented in table 1: a total of
386 657±98 137 ha of forest were converted to other
land covers since 1986—this estimate contains only
areas that experienced land use change and does not
include the 226 519±66 682 ha of disturbed forest
that remained forest after disturbance. The primary
driver of the New England deforestation is residential
development: more than half of the deforestation was
attributed to development of residential areas of low
density with another 15% being attributed to develop-
ment of high density residential areas, which includes
industrial and commercial development. The remain-
ing 31%, classified as being converted to other land
covers, includes post-disturbance land covers that are
not forest or urban development such as golf courses,
landfills, recreational parks, agricultural development,
etc. The accuracy of themapwas 84% and provided an
essential component in the estimation of the area of
land cover and land cover change: applying equation
(4.2) in Cochran (1977) for estimating the size of a
simple random sample required to achieve the preci-
sion of the estimate of the area of forest converted to
low density residential that was achieved in this study
(81 000 ha or 0.74% of themap area), yielded a sample
size of about 6000 units.

Of importance is the lack of forest expansion to
counter the deforestation: two strata were constructed
to capture reversion of agricultural lands and other
land covers to forest but neither of the area estimates
of these strata was significantly different from zero
(table 1). This implies that the land change process that
was driving the forest transition of New England—
reversion of agricultural lands and pastures back to
forest—ceased prior to the mid-1980s, seemingly
because there are less agricultural lands with potential
to revert.When combined with a recent renaissance of
small scale farming in New England and programs in
place aiming at preserving and even growing the farm-
ing industry (Donahue et al 2014), the result suggests
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that there is little or no prospect for a continuation of
the New England forest transition or a reversal of the
observed deforestation trend. This prediction is fur-
ther reinforced by the fact that forest is mainly being
converted to land covers that are harder and less likely
to revert back to forest than agricultural lands. The
lack of forest expansion also impacts the terrestrial
carbon dynamics; while the new forest added as a
result of the New England forest transition is still
growing and sequesters carbon, the lack of forest
expansion in combination with a permanent conver-
sion of forest lands will deplete much of New Eng-
land’s land use-related carbon sink. This result was
confirmed by Jeon et al (2016) who found the sink to
have decreased from 2 Tg of carbon per year in 1980 to
0.2 Tg in 2005, and while economic recessions may
slow the deforestation (Cunningham et al 2015) there
is little prospect of a reversal of the trend suggesting
that the depletion of the land use-related carbon sink
will continue and eventually turn the sink to a source.
When this will happen—or if it already happened—
remains to be investigated.

Further evidence of the observed change being dri-
ven by residential development is provided in figure 2
which shows the relationship between the annual esti-
mated rate of deforestation attributed to residential
development and the rate of percentage homeowner-
ship for the northeast census region (US Census
Bureau 2015). The time series of annual conversion of
forest to residential land is noisy because of classifica-
tion errors and the series was filtered using a Savitzky–
Golay filter to facilitate the comparison to the home-
ownership information. The filtered time series and
the homeowner time series are well correlated
(R2=86%) and the bust of the housing bubble
around 2006 is clearly evident with a marked drop in
both homeownership and forest conversion. It is also
an indication that the remotely sensed rate of forest
conversion is capturing the economic dynamics in the

region and that future studies could relate these chan-
ges in land cover to socio-economic drivers that cause
them. The forest conversion rate in figure 2 represents
the entire the study area whereas figure 3 shows the
accumulated amount of forest lost to residential devel-
opment per state. The conversion rates are expressed
as a percentage of the forest area in 1986 to facilitate
comparison: the states of Connecticut, Rhode Island
andMaine exhibit considerably higher rates that accel-
erated in the late 1990s with 3% to 4% of the forest
area converted by 2010. Note that only the south-
eastern, more populous part of Maine is included in
the study area and that deforestation expressed as a
percentage of forest area is likely to be considerably
less for thewhole state.

While the housing bust following the acceleration
in development in many states after 2005 is evident in
figure 3, it is noteworthy that this does not flatten the
accumulation, but merely slows it down. This is even
more evident in figure 4 which shows the forest area of
the whole study area from 1986 to 2010. The time ser-
ies shown in blue is the net of all forest change includ-
ing the forest gain classes which are associated with
high uncertainty. The carbon emissions from fossil
fuel combustion increased steadily for all states in the
study area from 1990 to 2008 and after a decrease fol-
lowing the economic recession they are again increas-
ing (EPA 2015). The land use-related carbon sink had
decreased to just above zero in 2005 (Jeon et al 2016)
andwith continued deforestation it is bound to turn to
a source of carbon and will thus be adding to the
region’s increasing and already high carbon emissions.

Figure 4 also includes a comparison to the forest
area as inferred from the national forest inventory of
the United States (the FIA Program of the USDA US
Forest Service). Comparing FIA data with remote sen-
sing-based estimates of land change should be done
with care as different definitions, objectives and sam-
pling designs will yield different area estimates that are

Figure 2.Annual rates of homeownership in percent and deforestation attributed to residential development in hectares. The dashed
line shows the annual time series of forest conversionwhichwasfiltered (solid blue line) using a Savitzky–Golayfilter to reduce noise.
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not easily comparable (Jenkins and Riemann 2002,
Drummond and Loveland 2010). But the question of
how well the national forest inventory captures the
observed land use patterns is interesting and deserves
investigating. As evident in figure 4 the FIA data exhi-
bits a slight decline in forest area until 2005 after which
it plummets by about 100 000 ha in one year. Further
comparisons are presented in figure 5 where the
change rates for each state are expressed as percentages
of the forest area in 1986. The story is similar in all
states with a continuous loss of forest of about 1.5%–

2.5% (the reason for the loss being less than that in
figure 3 is that the net change in forest area includes
forest expansion); Vermont is the exception where the
forest loss rate was close to zero, and the rate forMaine

only includes the more populous part—the state-wide
rate is probably much less. This is reflected in the FIA
data which represents the entire state of Maine. For
many of the other states, the FIA data exhibits a high
variance, especially after 2005 with substantial gains in
forest area in Connecticut, Rhode Island and Massa-
chusetts (and in Vermont and New Hampshire
although a large drop occurs after 2010). This could
potentially be a consequence of measuring only 3/5 of
the sample of FIA plots in 2005 (personal communica-
tionwith staff at FIA,USDAForest Service).

Finally, this study highlights the importance of
constructing unbiased estimators of area from a sam-
ple of reference observations rather than just ‘believing
the map’. If counting the pixels of the land cover

Figure 3.Accumulated deforestation attributed to residential development expressed as a percentage of the forest area in 1986 for each
state in the study area.

Figure 4.Estimated forest area for the study area according to the data in this study in blue and as inferred from the FIA data in red.
The FIA estimate of the forest area ofMainewasmultiplied by 0.3 as only 30%of statewas included in this study, whichmay explain
the offset between the two estimates. Of primary importance here are the trends through time, not the overall total.
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categories in the map without making statistical infer-
ence of area from the reference sample, the area of net
forest change would have been associated with a severe
upward bias of about+320 000 ha (i.e. a deforestation
rate of about 120 000 ha—75% less than the unbiased
estimate). The story of this paper and the impact on
the terrestrial carbon balance associated with the for-
est change would have been considerably different if
good practices for estimation of the area of land
change had not been followed (Olofsson et al 2014).

4. Conclusions

Using a dense time series of Landsat data and statistical
inference of area from stratified sample of reference
observations it was found that New England has
experienced continuous deforestation over the last
30 years totaling a loss of almost half amillion hectares
of forest. The rates of forest expansion on previously
non-forested lands were found to not be significantly
different from zero. The deforestation, driven mainly
by residential development, has thus reversed the
forest transition of New England and is likely to turn

the land use-related carbon sink created by the forest
transition to a source of carbon. The temporal
trajectory of the deforestation is related to economic
activity and accelerated during the 1990s but plateaued
in 2007 following the 2007–08 financial crisis. While
the national forest inventory provides evidence of a
reduction in forestlands, it does not capture these
dynamics. The results highlight the importance of
continuous monitoring and targeted sampling of land
cover change as the bias in the land changemap would
have hidden the true magnitude and pattern of the
deforestation ofNewEngland.
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