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Abstract
Power plants constitute roughly 40%of carbon dioxide (CO2) emissions in theUnited States. Climate
change science, air pollution regulation, and potential carbon trading policies rely on accurate,
unbiased quantification of these large point sources. TwoUS federal agencies—theDepartment of
Energy and the Environmental Protection Agency—tabulate the emissions fromUSpower plants
using two differentmethodological approaches.Wehave analyzed those two data sets and have found
that when averaged over all US facilities, themedian percentage difference is less than 3%.However,
this small differencemasks large, non-Gaussian, positive and negative differences at individual
facilities. For example, over the 2001–2009 time period, nearly one-half of the facilities havemonthly
emission differences that exceed roughly±6%and one-fifth exceed roughly±13%. It is currently not
possible to assess whether one, or both, of the datasets examined here are responsible for the emissions
difference. Differences this large at the individual facility level raise concerns regarding the
operationalization of policy within theUnited States such as the recently announcedClean Power
Plan. This policy relies on the achievement of state-level CO2 emission rate targets.When examined at
the state-level we find that one-third of the states have differences that exceed 10%of their assigned
reduction amount. Such levels of uncertainty raise concerns about the ability of individual states to
accurately quantify emission rates in order tomeet the regulatory targets.

1. Introduction

Emission of carbon dioxide (CO2) from the combus-
tion of fossil fuels remains the largest net annual flux
of greenhouse gases to the Earth’s atmosphere [1].
Quantification of fossil fuel CO2 emissions began with
global and national-scale accounting but recent needs
have placed more emphasis on quantification at
smaller space and time scales in addition to detail
regarding the emitting process [2–4]. This need is
partly driven by the increasing density of atmospheric
CO2 measurements from both ground-based and
remote sensing platforms [5, 6]. Utilizing such mea-
surements within a carbon monitoring system (CMS)
requires improved quantification of emissions, their
uncertainties and disaggregation in space, time and by

function [7, 8]. It is anticipated that a mature CMS can
act to verify emissions at varying domains from city, to
national and global scales. In addition to verification
and improved understanding of complete carbon
budgets, high-resolution emissions quantification can
offer much more precise, reliable information on
mitigation options and their reduction potential
[9, 10]. Central to all of this research and applied policy
needs is a reliable estimate and understanding of fossil
fuel CO2 emissions uncertainty. However, because
much of the data used to construct high-resolution
bottom-up emissions data products contain limited
information on measurement or estimation proce-
dures, uncertainty quantification remains challenging.

The United States collects considerable informa-
tion regarding fuel consumption, economic activity
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and pollution statistics, offering a unique opportunity
to understand fossil fuel CO2 emissions uncertainty.
Of all the emitting activities, electricity production
represents the single largest CO2 emitting sector in the
US, accounting for roughly 40% of national emissions
[11]. Electricity production is also the sector for which
particularly detailed data are collected and archived
but for which questions have been raised challenging
the somewhat traditional assumption that it may be
the most accurately estimated emitting sector. Hence,
it is a logical choice for exploration of fossil fuel CO2

emissions uncertainty and implications of uncertainty
for greenhouse gasmitigation policies.

On 3 August, 2015, the need to understand and
quantify CO2 emissions and uncertainty from the pro-
duction of electricity intensified. On that date, the US
Environmental Protection Agency announced regula-
tion of power plants burning fossil fuels [12]. The pro-
posed regulation establishes numerical targets to be
met by 2030 for each US state’s power plants in the
form of a state average emission rate. The emission
rate is the quantity of CO2 emitted per unit of elec-
tricity produced (e.g. lbs CO2/MWhr). Because the
overall goal of this proposed rule is to reduce the
atmospheric burden of greenhouse gases, the accuracy
of the emitted CO2 amount within the calculation of
the emission rate, is a critical element in establishing,
implementing and verifying the emission rate goals.
Estimation methods that can provide an unbiased
emission quantity with a known level of accuracy and
precision are needed. Furthermore, because each state
will propose and implement the means by which they
meet the EPA proposed emission rate targets, these
methodsmust be consistent across all US power plants
and transparent to the public.

An exploration of FFCO2 emissions from elec-
tricity production facilities in the US can be accom-
plished through close examination of two datasets on
power plant characteristics. The Department of Ener-
gy’s Energy Information Administration (EIA) and the
Environmental Protection Agency’s Clean Air Mar-
kets Division (CAMD) maintain independent data
collection efforts, which can be used to quantify fossil
fuel CO2 emissions at all large electricity producing
facilities in the US. Because the CAMD and EIA data-
sets are generated by two different Federal US agencies
with differentmandates, the data reflect different goals
and collection methods. The EPA’s data collection
effort is focused on establishing regulatory compliance
of SO2 and NOx emissions and primarily uses stack
monitoring. The EIA, by contrast, is focused onmain-
taining statistics on fuel consumption and electricity
production and hence, relies primarily on fuel calcul-
ation procedures to estimate emissions.

Recent research explored the differences between
the EPA’s emissions data and that supplied by the EIA
[13]. The annual relative difference for the total of all
paired fossil fuel-burning facilities in the year 2004was
2.5% (EPA>EIA). However, the mean individual

relative difference (IRD) for all paired fossil fuel-burn-
ing facilities was 0.7% (EPA>EIA) and the mean
individual ‘unsigned’ difference for all paired facilities
was 18.3%. This suggests that the small total and aver-
age annual differences are caused by cancellation of
large positive and negative individual paired
differences.

A more narrowly focused study compared the
2009 EIA and CAMD CO2 emissions at 210 coal-fired
power plants, a subset of the total capacity in the US,
and concluded that annual emissions from the EIA
calculations were more accurate than the measured
values contained within the CAMD data [14]. Though
important in confirming that these two datasets have
numerical differences at the facility level, a number of
questions remain regarding the reliability of this ana-
lysis [15]. Indeed, the peer-reviewed discussion that
followed this paper questioned the veracity of the ana-
lysis and whether or not the conclusions were possible
given the limitations in the data.

In spite of these important contributions, a num-
ber of questions remain regarding the differences
between these two datasets. Firstly, key attributes need
to be tested such asmeasurementmethodology, power
plant age and measurement time of year, in order to
better isolate the differences. Analysis must be per-
formed at sub-annual scales in order to isolate con-
sistent measurements at the facilities. These additional
attributes combined with a more detailed statistical
examination of the differences may uncover the
mechanistic drivers of the mismatch between these
two datasets, at both the individual and aggregate facil-
ity level. Finally, the policy implications of the dis-
crepancies as they relate to the recent EPA rulemaking
can informwhat steps, if any,must be taken in order to
support this and future policymaking on greenhouse
gas emissions.

This study asks two questions: (1)what are the dif-
ferences between these two datasets and what are their
statistical properties? (2) Are these differences and the
uncertainties they imply large enough to have an
impact on policymaking exemplified by the recent
EPA final rulemaking on CO2 emissions from elec-
tricity production in the US. Previous attempts to
answer the first question have relied on a single year of
data and only annual resolution. This, as we will show,
does not allow for an accurate determination of which
EPA estimates are predominantly continuous emis-
sion monitoring (CEMs)-based versus a variety of
undocumented substitution methods, critical to a
cogent comparison. Furthermore, previous work has
assumed Gaussian statistics which is not supported by
the distribution of the differences and is therefore, a
potentially inaccurate means to assess these differ-
ences. Finally, one recent study remains clouded in
controversy due to questioned statistical assumptions.
No previous studies have attempted to assess how the
differences may intersect with recent US policy target-
ingCO2 emissions at power production facilities.
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In order to answer these questions, we examine the
differences between the CAMD and EIA across the
2001–2009 time period in an attempt to better quan-
tify the differences between these datasets. We place
these differences within the context of the recent EPA
Clean Power Plan (CPP).

2.Methods

The CAMD dataset used in this study is the ‘pre-
packaged’ hourly emissions data for Electrical Gener-
ating Units (EGUs) [16]. These data are reported as
hourly CO2 emissions monitored from an emitting
stack or through a calculation, based on records of fuel
consumption. There are seven categories used to
identify the CO2 emissions estimation method in the
CAMD dataset. While we perform some exploration
of all the methods [SI Text 2], we focus here on
measurements for which a CEMs method is opera-
tional on a continuous basis and for those facilities that
do not deliver both heat and power. We focus on the
CEMs as this is the primary means by which the EPA
quantifies power plant emissions.

The EIA dataset which we use here is derived from
reporting form 923, which reports monthly data on
receipts and cost of fossil fuel, fuel stocks, generation,
consumption of fuel for generation, and environ-
mental data at each power plant [17]. We use the sup-
plied CO2 emission factors to calculate the quantity of
CO2 emitted from the reported consumption data.

In both the CAMD and EIA datasets, every power
plant has a unique identifying code, allowing facilities
to be organized inmatched pairs. Pairs with zero emis-
sions in either or both datasets are removed and the
remaining non-zero emitting pairs are used for com-
parison purposes. Though both datasets include
power plants burning other fuel sources, we limit our
analysis to fossil fuels only [SI Text 1].

In order to systematically compare the two data-
sets, we define a series of differencemetrics [SI Text 1].
The annual individual difference (ID), is defined as the
CO2 emissions in the CAMD dataset minus the CO2

emissions in the EIA dataset for each matched power
plant. The IRD, is defined as the CO2 emissions differ-
ence at eachmatched power plant divided by the pair’s
average value (expressed as a percent). The total differ-
ence (TD), between the two datasets is defined as the
summed CAMD CO2 emissions minus the summed
EIA CO2 emissions where the summation occurs over
allmatched facilities. Similarly, the total relative differ-
ence (TRD), is defined as the TD between the two
datasets divided by their average value, expressed as a
percent.

Similarly, monthly or annual measures of differ-
ence can be computed. In the analysis presented here,
we use monthly CO2 emissions, unless specified
otherwise.

The Wilcoxon signed-rank test is used to decide
whether the median value (e.g., IRD) is significantly
different from zero [18]. The Wilcoxon test does not
require the data comply with a Gaussian distribution,
but it assumes that the data are continuous and sym-
metrically distributed (no skew) around the median.
We chose to use the Wilcoxon test, since our data dis-
plays a narrow peak and long tails, which violate the
Gaussian distribution assumption.

3. Results

3.1.Differences between the two datasets
Figure 1 shows standardized frequency distributions
of the IRD values of monthly CO2 emissions between
matched power plants for the year 2001 and 2009 in
addition to standard normal distributions. The IRD
distributions exhibit a narrower central peak and
longer distribution tails compared to standard normal
distributions. Furthermore, the IRD distributions
exhibits asymmetrical qualities, highlighted by the
differences between the mean and median values.
Therefore, we avoid the use of standard deviation in
describing the distribution and instead rely on direct
quartile and quintilemetrics.

Figure 2 shows the TRD, the median IRD values
and the three inner quintiles for each of the 9 years in
the 2001–2009 time period. The median IRD repre-
sents the median of large positive and negative
monthly differences and this can be seen from the
boundaries of the quintiles shown in figure 2. For
example, in the year 2001 the median IRD value is
+2.1%, yet the upper (lower) fifths of the distribution
show IRD values that are greater (less) than +10.8%
(−6.2%). The median IRD value in all years is positive
indicating that the majority of matched facilities have
larger values in the CAMD versus the EIA data. The
median IRD values initially increase, reaching a value
of +3.2% then decline to values less than +1% from
2006 and onward. The IRD distributions also tend to
be wider in the earlier portion of the record suggesting
a larger number of facilities with large IRD values. For
example, by 2009, the upper (lower) fifths of the dis-
tribution show IRD values that are greater (less) than
+5.9% (−6.1%).

The TD between the matched facilities also is lar-
gest and increasing in the first 3 years of the time series
up to a maximum value of 2.2% in 2003, after which it
declines to values less than ±0.6%. These results
demonstrate that although the mean differences are
not large (rarely exceeding 3%), this is the result of
large negative and positive IDs that cancel in the
aggregate.

3.2.Mappingmaximumdifferences
The differences at each of the individual matched
facilities can be examined in space. Figure 3 presents
both the maximum ID and maximum IRD at each
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facility across all 9 years of monthly differences. The
median of the absolute ID values across the facilities in
the eastern half of the US (using −95 longitude as
dividing line) is nearly 40% larger than the median of
the absolute ID values in the western half. The IRD
values, by contrast, show somewhat less geographic
dependence with the median of the absolute IRD
values nearly 20% larger in the East than theWest.

The facilities that occupy the top differences
shown in figure 3(a) are candidates for deeper onsite
evaluation. We define these top facilities as those
which emerge repeatedly within the top ID values in
each of the 9 years. This reflects those facilities with
both large ID values and a persistent presence among
the large ID values in each of the 9 years of matched
data. Table 1 lists these facilities and the number of

Figure 1. Standardized frequency distribution of the annual CO2 emissions individual relative difference (IRD) values ofmatched
power plants for the years 2001 (red) and 2009 (blue). Standard normal distributions for each are also shown (dashed lines) in addition
tomean andmedian values.

Figure 2.Median of theCO2 emissions individual relative difference (IRD—central line symbol) values, CO2 emissions total relative
difference (TRD—X symbol) values, and quintile distribution boundaries of theCO2 emissions IRDvalues atmatched power plants
for each year in the 2001–2009 time period. Box represents central quintile of cumulative IRDdistribution.Whiskers denote the next
quintile. Facility pairs include only power plants utilizingCEMs continuously over amonth and do not deliver both heat and power.
Allmedian IRD values are statistically significant at the p<0.01 level using aWilcoxon test (determines whethermedian IRD is
significantly different from zero).
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times they ranked in the top 12 differences in the
9 years. A complete list of the top ten in each of the
nine years is provided in the supplementary informa-
tion [see SI Text 3].

4.Discussion

Differences between these two United States power
plant energy/emissions datasets have implications for
policy and decisionmaking though the relevance is
dependent upon the spatial scale and scope of policy
purpose. For example, the United States greenhouse
gas inventory, used domestically and internationally,
uses power plant data derived from EIA fuel statistics
[19]. In the national aggregate, these data are consis-
tent with the EPA power plant CO2 emissions estima-
tion (1% to 2%). However, this small difference masks
an important element when comparing the underlying
datasets. First, though the aggregate values are nearly
identical between the two datasets, this is the result of
large positive and negative differences, which cancel in
the aggregate. For example, on those power plants for
which an EPA direct emission monitor is actively
sampling, differences between these and the EIA
estimates based on the consumed fuel, are greater than

−6% for 20% of the facilities and greater than +9%
for 20%. This increases to −13% and +14% for the
outer 20%of the facilities.

Differences this large at the individual facility level
raise concerns regarding policy operationalized at the
US subnational level for which examples already exist
at state and municipal levels [20]. At these scales, the
choice of dataset will have significant implications on
baseline emissions and policy outcomes. More impor-
tantly, actual emissions may indeed be accurately por-
trayed in one or the other of these datasets and hence,
the wrong choice, could lead to biased outcomes and
misguided policy.

Recently, the United States Environmental Protec-
tion Agency announced the implementation of the
Clean Power Plan (CPP) for existing power plants
[12, 21]. The rule establishes state-specific targets for
lowering the average emission rate (lbs CO2/MWhr)
from a state’s EGUs. The targets are to be achieved by
the year 2030 and represent reductions relative to the
year 2012. The rule establishes ‘interim’ goals that
states must meet over the 2020–2029 time period to
ensure compliance with the final target in 2030. For
example, the state of Arizonamust lower its state-aver-
age emission rate from a 2012 mean value of 1551 lbs
CO2/MWhr to a final level of 1031 lbs CO2/MWhr by
the year 2030 with an interim target of 1173 lbs CO2/

MWhr (measured as an average of the 2020–2029 time
period). In percentage terms, the 2030 target is equiva-
lent to a 34% reduction.

In order to demonstrate compliance with the tar-
gets established in the rule, state’s will have to measure
or otherwise estimate their state-average EGU CO2

emission rate. Such measurements or estimation pro-
cedures will depend upon themix of policies andmea-
sures adopted to meet their target. For example,
demand side energy efficiency improvements will
require a means to estimate the amount of electricity
demand obviated. Expansion of nuclear or renewable
electricity supply will require estimation of the
amount of zero-carbon electrical generation. How-
ever, because fossil fuel EGUs will remain a
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Table 1. Individual facilities with consistently large ID values.

Facility name

ORISPL

code State Frequency

JohnEAmos 3935 WV 4

Cumberland 3399 TN 3

BruceMansfield 6094 PA 5

Intermountain 6481 UT 5

Mount StormPower

Station

3954 WV 4

Rockport 6166 IN 5

Gen JMGavin 8102 OH 3

Pleasant Prairie 6170 WI 3

Clifty Creek 983 IN 3

Labadie 2103 MO 6

NavajoGenerating State 4941 AZ 3

Powerton 879 IL 5
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component of all state’s energy supply and is the part
of the US emitting landscape targeted by the EPA
rule, it will be essential to measure or otherwise esti-
mate the amount of CO2 emitted at the power plant
level.

We have aggregated the individual facility emis-
sions in the two datasets by state and calculated the
state-level IRD values (figure 4(a)). As with the
national facility-level results, the state-level median
IRD is+1.9%with 20% of the values greater/less than
−1.2/+4.2%. Though these state-level differences are
smaller than the individual facility differences owing
to in-state cancelation of positive and negative differ-
ences, the state-level differences must be cast in the
context of the proposed EPA Plan reduction amounts.
Hence, in figure 4(b), we show the magnitude of the
state-level IRD values as a fraction of the percentage
reductions associated with the EPA rule. For example,
the state of Minnesota must meet a state-wide carbon
emission rate of 1213 lbs CO2/MWhr in its fossil-
based power plants by the year 2030. This constitutes a
39.7% reduction from its 2012 state-wide emission
rate of 2013 lbs CO2/MWhr. With an estimated IRD
for the state of 7.1%, this suggests that the state ofMin-
nesota could have an actual emission rate 18% (7.1/
39.7) higher/lower than the emission rate they assume
they have when attempting to meet their target
amount. Worse yet, over one-third of the states show
potential over/under-estimated percentage amount
in the double-digits.

The inability of state’s to reliably use the existing
monitoring systems for power plant emissions sug-
gests the need for further investigation into more reli-
able monitoring, an assessment of which of these
datasets is more accurate, or both. Such an assessment
is critical for planning, implementing and verifying the
emission rate goals in the EPA rule. Given the poten-
tial uncertainties identified in this study, controversy
may arise on questions of compliance with the EPA
regulations.

5. Conclusions

The carbon dioxide emission from US power plants
represents roughly 40% of the national fossil fuel CO2

emissions budget. Hence, these point sources are a
critical element in policies aimed at lowering green-
house gas emissions. Two datasets provided by two
different US agencies have tracked the CO2 emissions
fromUS power plants: the Department of Energy’s EIA
and the Environmental Protection Agency. Analysis of
the matched plants in these two datasets shows large
offsetting differences in estimatedCO2 emissionswhich
are masked when aggregated to a national sum. For
example, over the 2001–2009 time period, nearly one-
half of the facilities have monthly emission differences
that exceed roughly±6% and one-fifth exceed roughly
±13%. When aggregated to the state-level, differences
remain large relative to the recently announcedUSCPP
which aims to lower the CO2 emissions at fossil fuel-
based power plants in the US by the year 2030. When
these differences are cast as a proportion of the percent
reduction, one-third of US states have percent propor-
tions greater than 10%, differences this large at the
individual facility and state-level raise critical concerns
about the ability of states to comply with the rule or the
reality of the actual emission reductions.
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