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Abstract
Water supply consumes a substantial amount of energy directly and indirectly. This study aims to
provide an enhanced understanding of the influence of water stressors on the embodied energy of
water supply (EEWS). To achieve this goal, the EEWS in 75NorthCarolina counties was estimated
through an economic input-output based hybrid life cycle assessment. Tenwater stressor indicators
related to population, economic development, climate, water source, and land usewere obtained for
the 75 counties. Amultivariate analysis was performed to understand the correlations betweenwater
stressor indicators and the EEWS. A regression analysis was then conducted to identify the statistically
significant indicators in describing the EEWS. It was found that the total amount of water supply
energy varies significantly among selected counties.Water delivery presents the highest energy use and
water storage presents the least. The total embodied energywas found to be highly correlatedwith
total population. The regression analysis shows that the total embodied energy can be best described
by total population and temperature indicators with a relatively highR square value of 0.69.

1. Introduction

Water and energy are highly interdependent: provid-
ing water needs energy for pumping and treatment,
and providing energy requires a large amount of water
for cooling and processing. It has been argued that this
‘water-energy nexus’ could substantially increase the
vulnerability of water and energy resources under
future global changes [1, 2]. Over the past decade, a
growing awareness of the water-energy nexus has led
to proliferated research efforts to understand and
quantify the energy embodied in varied water infra-
structures. For instance, energy audits and risk assess-
ments have been carried out to estimate operational
energy use during a myriad of treatment processes [3–
6]. Recently, with the development of life cycle
assessment (LCA), an increased number of studies
have examined energy consumption over the life cycle
of water infrastructure, including construction, opera-
tion and maintenance (O&M), and decommission
phases [7–18]. Such energy consumption is commonly
referred to as ‘embodied energy’ or ‘life cycle energy’.

Previous life cycle studies have revealed the signifi-
cance of indirect energy flows associated with provid-
ing chemicals and services in water systems, which are
commonly neglected in water utilities’ energy audits
[17, 19]. Meanwhile, the heterogeneity of local socio-
economic conditions and water availability have been
found to influence regional energy use of water supply
[17]. Nevertheless, there is still little understanding on
how and to what degree regional heterogeneity is
correlated with the embodied energy of water sup-
ply (EEWS).

Water demand, availability, and quality could
potentially serve as important indicators of the EEWS.
When water demand increases, a larger amount of
water has to be treated and pumped, requiring a higher
energy input. The need to expand treatment capacity
or construct new treatment plants may arise, further-
ing energy consumption. In existing or future cases
where local freshwater availability is no longer able to
meet the growing demand, alternative water sources,
such as brackish groundwater or seawater, need to be
adopted; these are usuallymuchmore energy intensive
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to treat compared with freshwater [9, 17]. Degraded
freshwater quality could also lead to higher energy
consumption associated with providing higher
amounts of aeration or chemicals to meet quality
standards.

Certain region-specific characteristics, such as cli-
mate, population, land use, urbanization, and eco-
nomic growth, havemultiple effects onwater demand,
availability, and quality, and are considered to be pri-
mary global ‘water stressors’ [20]. Previous studies
have projected water stressor influence on water
resources, showing that population growth and eco-
nomic development, especially in urban areas, have a
significant impact on local water demand [21–24].
These factors also degrade water quality by diminish-
ing the return flow and impairing water bodies’ self-
cleaning abilities [25]. Studies have also shown a sig-
nificant relationship between land use and water qual-
ity [26–29] and quantity [30, 31]. It has been reported
that agricultural and impervious urban lands produce
much higher levels of nitrogen and phosphorus in sur-
rounding water bodies than other land surfaces
[27, 29]. Regional climate characteristics related to
temperature and precipitation could potentially influ-
ence agricultural [32] and residential [33] water
demand.

Though the implications of water stressors such
as population growth and climate change on water
resource management have been intensively studied
in the past two decades [34–41], very few studies
have further discussed how changes in water stres-
sors could influence the energy management in
water systems [42, 43]. Quantifications of the ‘water
stressor-water-energy’ relationships are not found in
literature, implying a lack of understanding on how
human interventions influence resource depletion
from a water-energy nexus perspective. Missing this
critical aspect could potentially lead to under-
estimation of resource depletion rates and the
urgency in adopting alternative water and energy

management measures. In reality, water stressor
influences have been increasing at accelerated rates
in terms of scale and intensity over the past 150 years
and will continue to change rapidly in the foresee-
able future [20]. It is vital to understand how water-
related energy consumption changes in order to pro-
vide guidance for future water and energy decision
making and resource planning. This study attempts
to fill an initial piece in this complex puzzle by exam-
ining the relationships between water stressors
(population, economy, land use, and climate) and
EEWS via statistical methods. This is accomplished
through a case study in North Carolina (NC), where
population, land use, climate, and EEWS were esti-
mated on a county basis. Althoughwater scarcity and
quality degradation are not immediate issues in NC,
the method developed in this case study could
potentially be applied (given uncertainties) to other
regions that do face such issues.

2. Case study area

NCwas selected as a case study area based on its highly
heterogeneous socioeconomic and environmental
conditions and well-documented water supply infra-
structure database. NC is ranked the 9th most
populous state in the US with the 6th highest net
population growth in 2014. Population is unevenly
distributed across the state; around two thirds of the
population concentrate primarily in the middle third
of the state’s landmass [44]. NC is a major producer of
textiles, chemicals, food and tobacco, furniture, and
electrical machinery in the nation, representing
14.5%, 8.8%, 8.3%, 7.4%, and 7.4% of the nationwide
production of each industry respectively in the year of
2012 [45]. The thriving agricultural industry occupies
around 27% of the state’s 31 million acres land area
[46]. Percentages of agricultural land across the NC
counties are highly diverse, ranging from less than 1%
to greater than 50% (figure 1). NC’s climate is mainly

Figure 1. Locations of water treatment plants included in this study aswell as the total population and percentage of agricultural land
of each county.
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influenced by the altitude of its three principal
physiographic divisions, the Coastal Plain (<200 feet
elevation), the Piedmont (200–1500 feet elevation),
and the Mountains (1500–6684 feet elevation) [47].
The annual mean temperature across NC varies more
than 20° F from the lower coast to the highest
mountain. The Mountains also present a unique
precipitation pattern.

Detailed Geographical Information System (GIS)
file data on water supply infrastructure, including
water treatment plants, pipelines (public water mains
only), wells, surface water intakes, storage tanks, and
pumping stations developed during 1997–2000, were
obtained for 75 out of 100 counties statewide [48].
These data were originally developed by the NC Rural
Economic Development Center (NCREDC) to facil-
itate water and wastewater systems’ planning, siting,
and impact analysis in NC. Locations of varied water
infrastructure were digitized from state or owner sup-
plied maps and digital files with tabular attribute data
populated by information obtained from public water
supply systems and individual owners [48]. A list of the
25 counties without water infrastructure data is pro-
vided in table S-1 of the supporting information; these
counties were not analyzed. Figure 1 shows the loca-
tions of water treatment plants included in this study
as well as each county’s total population and percent-
age of agricultural land. Public water supply in NC
mainly relies on its abundant surface water resources
(85%) and groundwater withdrawals (15%) [49].
Average uphill/downhill slope was assumed to be zero
for the pipelines, and its associated uncertainty is dis-
cussed in section 5.

3.Methodology

3.1. Indicator selection and estimation
A variety of quantitative indicators, selected based on
their potential correlations with water supply infra-
structures and data availability, were used to describe
the different aspects and current states of each water
stressor (population, economy, land use, and climate)
acrossNCcounties. To improve temporal consistency,
most indicators were obtained for the similar time
period when the water infrastructure data were
generated (1997–2000), except for climate indicators
where thirty-year normal data were used. Each
county’s population is described using two indicators:
total population (P, number of people) and population
density (Pd, number of people acre−1). While total
population is directly correlated with water demand
and supply, population density influences the distri-
bution and density of water pipelines. County level
estimations of the two population indicators in 2000
were obtained from the US Census Bureau [44]. The
economic development of each county was described
by the average per capita personal income (I, $) over

1997–1999 obtained from the US Bureau of Economic
Analysis [45].

Due to potential correlations with water demand
and quality, percentages of urban land (Lu, %) and
agricultural land (La, %) over the total land area of
each county were used to describe land use conditions.
State land use was obtained from the 1996 Statewide
LandCover RasterMap (93.5 feet resolution) provided
by the NC Center for Geographic Information and
Analysis [50]. GIS was used to process the map and
estimate Lu and La. The map was divided into 100
counties using a county boundary layer obtained from
the US census TIGER database [51]. Land cover was
classified into 22 categories in accordance with the
state’s Standard Classification System for theMapping
of Land Use and Land Cover [50]. Among the 22 cate-
gories, ‘high intensity developed land’ and ‘low inten-
sity developed land’ were included as urban land,
while ‘cultivated land’ and ‘managed herbaceous
cover’ were included as agricultural land. The rest 18
categories represent unmanaged natural land, such as
forest land, shrub land, water bodies, or barren land.
Lu and La were then calculated as the number of grid
cells assigned to the target land covers divided by the
total grid cell numbers within the county.

Climate indicators includemean temperature (T, °
F), cooling degree days (CDD, °F day), heating degree
days (HDD, °F day), and monthly precipitation (Pr,
inch). Original temperature and precipitation infor-
mation of all climate stations within each county was
obtained from the NCClimate Retrieval and Observa-
tions Network of the Southeast Database [52]. As each
station provides climate information for a variety of
time periods (ranging from a fewmonths tomore than
100 years), only stations with longer climate records
were included. All four indicators were calculated as
averaged 30 year normal values from1971 to 2000.

Different water sources usually require specific
water intake and treatment infrastructures. Generally,
groundwater supply requires more energy for water
intake and pumping, while surface water supply
requires more energy for system constructions and
providing chemicals [6, 9] because of a lower raw
water quality [53]. As surface and groundwater are the
two primary water sources in NC, the percentage of
surface water supply (ws, %) provided by NCREDC
[48] was used as an indicator to describe the water
source composition of each county.

The values of all aforementioned indicators for the
75 NC counties are provided in table S-2 of the sup-
porting information.

3.2. Embodied energy calculation
The current study examines the embodied energy (in
the form of primary energy) associated with providing
energy,materials, and services during the construction
and O&M of all water supply infrastructures (treat-
ment plants, wells, surface water intakes, pipelines,
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storage tanks, and pumping stations) in each county.
Equation (1) shows the calculation of embodied
energy associated with water supply infrastructures in
each county

( ) ( )å å= ´ +
´

= =

⎛
⎝⎜

⎞
⎠⎟C e

C e

T
EE , 1

i i1

6

o,i o
1

6
c,i c

i

where EE is the total embodied energy of supplying
water in a certain county each year, Terajoule (TJ)/
year; i is the water infrastructure index; Cc,i is the total
constructional cost ofwater infrastructure ‘i’; $million
in 2002 $USD; eo is the embodied energy intensity of
water infrastructure O&M in primary energy form; TJ
of primary energy/$ million in 2002 $USD; ec is the
embodied energy intensity of water infrastructure
construction in primary energy form; TJ of primary
energy/$million in 2002 $ USD; and Ti is the life span
of water infrastructure ‘i’; years. Life span of all water
infrastructures was assumed to be 100 years [7, 9]with
regular maintenance of water treatment plants occur-
ring throughout [54]. Embodied energy intensities
used in the current study (eo and ec)were adapted from
Mo et al (2011) [9], estimated as averages of construct-
ing or operating and maintaining an entire water
supply system using an input-output based hybrid
LCA approach (table 1). These embodied energy
intensities were chosen because they have been
tailored to both a typical groundwater supply system
and a typical surface water supply system. Most NC
groundwater is treated through simple disinfection
and most surface water supply systems adopt conven-
tional treatment processes, including coagulation,
sedimentation, filtration and disinfection [48]which is
consistent withMo et al (2011) [9].

Constructional and operational costs (Co,i and Cc,

i) were calculated for each type of water supply infra-
structure by integrating infrastructure parameters
mapped by NCREDC (e.g., length of pipeline, well
depth, water flow etc) [48] into cost equations and/or
curves obtained from a variety of previous studies
(table 2) [53–55]. The operational cost for water deliv-
ery was included as the operation of pipelines instead
of pumping stations. Cost curves for the O&M of
water treatment plants include pumping energy for
providing a finished dynamic water head of 100 feet.
Additional pumping energy for elevated storage tanks
and other operational costs were neglected. Pumping
energy used for groundwater wells and surface water
intake is accounted as a part of water intake energy
instead of water delivery energy. All dollar values were

adjusted to 2002 $USD for consistency with the unit of
embodied energy intensities.

3.3.Multivariate and regression analyses
A multivariate analysis was conducted to understand
correlations between the socioeconomic, water
source, and climate indicators and the EEWS, and a
stepwise regression analysis was performed to find the
statistically significant contributors to the EEWS. Both
analyses were performed in JMP Pro 11® developed by
SAS Institutional Inc. Themultivariate analysis utilizes
the pairwise method to estimate Pearson correlation
coefficients among variables. The values of Pearson
correlation coefficients range from−1 to 1, indicating
the strength and direction of the linear correlations
among variables [56–58]. Values closer to 1 indicate
stronger positive correlation, while values closer to−1
indicate stronger negative correlation. Values closer to
0 indicate weaker correlation. All data were standar-
dized (equation (2)) before the regression analysis in
order to avoid bias associatedwith the scale differences
among the datasets

( ) ( ¯ ) ( )s= -f x x X , 2

where x = original data; f(x) is the transformed data
after standardization; X– is the average of the original
dataset; and σ is the standard deviation of the original
dataset. Stepwise regressions were then performed on
the standardized datasets in identifying important
contributors to the EEWS. This approach is usually
adoptedwhen there is little theory or understanding to
guide the selection of terms for a model. The program
examines all possible models to correlate socioeco-
nomic, water, and climate indicators with the EEWS,
and selects a best model with the minimum Bayesian
Information Criterion (BIC) value defined by
equation (3)

( ) ( ) ( )= - +L k nBIC 2 log ln , 3

where BIC is the Bayesian Information Criterion
value; L is the the maximized value of the likelihood
function for the regression model; k is the number of
parameters in the regression model; and n is the sam-
ple size.

4. Results and discussion

4.1. Embodied energy ofwater infrastructures
Of the 75 counties studied, the overall embodied
energy of each county (EE) ranges from around 10 TJ
of primary energy in sparsely populated Clay County
to over 1500 TJ of primary energy in more densely
populated Brunswick and Robeson Counties. Figure 2
provides the estimated embodied energy for each of
the 75 NC counties arranged in order of most to least
energy intensive from left to right. EE was further
separated into four subcategories, indicating the con-
structional and operational embodied energy

Table 1.The energy intensities for operating and construct-
ing the groundwater and surfacewater supply systems.

O&M Construction

Water source TJ/$million in 2002 $USD

Groundwater 24.8 11.1

Surface water 15.8 10.9

4
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associated with water intake (EEi), water treatment
(EEt), water delivery (EEp), and water storage (EEs)
respectively. EEp presents the highest contribution to
EE in the selected counties, ranging from 50% to

almost 99% of EE. This finding is consistent with
previous life cycle energy analyses of individual water
supply systems, where water pumping and pipeline
construction always comprise the largest portion of

Table 2.Cost estimation equations and sources for both operation and construction ofwater systems.

Infrastructures (ori-
ginal year of dollar

value) Equations for operation Equations for the construction Sources

Wells (2003 $USD) ( ( ))= ´ + ´ ´O Q m d h e y Pgw e = + ´ + ´C f f D f Dw a b i c e [53, 55]

Ow=Operational cost of a groundwater

well, $ yr−1;

Cw=Constructional cost of a groundwater

well, $1000;

Q=Design flow,MGD; Di=Diameter of the well, inches;

d=Depth towater level,m; De=Depth of thewell, ft;

h=Head loss,m; fa= Factor a,−288;

e=Unit cost of electricity, $0.07 Kwh−1; fb= Factor b, 145.9;

y=Days per year, 365 days yr−1; fc= Factor c, 0.754.

Pe=Pump efficiency, 0.7.

Surfacewater intake

infrastructures

(2003 $USD)

= ´ ´ ´

+ ´ ´

O f Q H e P

f Q R

i d a a e

e a
0.32

= ´ ´ + ´

+ ´ ´ + ´ ´

C f Q H f Q

f Q D f H Q

i f m
0.46 0.92

g m
0.76

f m
0.46 0.92

h m m
0.935

[53, 55]

Qi=Operational cost of surfacewater

intake, $ yr−1;

Ci=Constructional cost of surfacewater intake struc-

tures, $;

fd= Factor d, 1.14× 105; Qm=Maximum flow,MGD;

Qa=Average flow,MGD; H=Exposed tower height, ft;

Ha=Average head, 150 ft; D=Depth of wetwell at thewater intake pumping sta-

tion, 10 ft;

R= Standard labor rate, $30 hr−1; Hm=Maximal head for water intake pumping, ft;

e=Unit cost of electricity, $0.07 Kwh−1; ff= Factor f, 1451;

Pe=Pump efficiency, 0.7. fg= Factor g, 324;

fh= Factor h, 386.

Pipelines

(2003 $USD)
( )= ´ ´ + ´ ´O f f S f S e Ppi i j l k f e = ´C f Dpi l i

1.3983 [53, 55]

Opi=Operational cost of pipeline,

$/Kgal/mile;

Cpi=Constructional cost of pipeline, $ mile−1;

fi= Factor i, 0.0166; Di=Diameter of pipe, inches;

fj= Factor j, 0.75; fl= Factor l, 5792.16.

fk= Factor k, 0.667;

Sl=Average uphill/downhill slope, ft/

1000 ft, assumed to be 0;

Sf= Friction loss fromHazen–Williams

equation, ft/1000 ft;

e=Unit cost of electricity, $0.07 Kwh−1;

Pe=Pump efficiency, 0.7.

Water treatment

plant

(2007 $USD)

O&Mcost curves selected based on treatment

technologies to provide finishedwater with

a total dynamic head of 100 feet (main-

tenance of water treatment plant included)

Construction cost curves selected based on treatment

technologies

[54]

Pumping stations

(2007 $USD)
Included in the pipeline operation part = ´ +C f Q fpu m n [54]

Cpu=Constructional cost of pumping stations, $;

Q=Pumping station capacity,MGD;

fm= Factorm, 18888;

fn= Factor n, 140743.

Storage tanks

(2007 $USD)
None = ´ +C f Q fs o p [54]

Cs=Constructional cost of storage tanks, $;

Q= Storage tank capacity,MGD;

fo= Factor p, 604450;

fp= Factor q, 215121.
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total embodied energy [7–9, 18]. Within the water
delivery subcategory, operational energy usages
(around 97–99% of EEp) greatly outweigh the con-
structional energy usages, highlighting the importance
of improving pumping energy efficiency and reducing
water delivery needs.

Water intake (0%–21% of EE), treatment (0%–

37% of EE), and storage (0%–4% of EE) are relatively
less significant in terms of embodied energy consump-
tions compared with water delivery. The water intake
subcategory in figure 2 includes the constructional and
operational embodied energy of both surface water
intake infrastructures and groundwater intake wells.
Water withdrawal (including public, industrial, agri-
cultural, and recreational water supply) in the 75
counties represents around 40% of the total water
withdrawal of the entire state, because some of the
most populous counties are not included in the avail-
able datasets. Within the 75 counties, the amounts of
surface and groundwater withdrawals represent 70%
and 30% respectively [49], while their associated
embodied energy represent 79% and 21% of the total
water intake energy (EEi) respectively, implying sur-
face water intake ismore energy intensive compared to
groundwater intake in NC (2.6 versus 1.7 MJ m−3).

Most surface water supply systems in the selected
counties employ conventional processes of coagula-
tion, sedimentation, and filtration, while 11 systems
apply direct filtration. Most groundwater supply sys-
tems employ direct disinfection, while around 50 sys-
tems have hardness and iron removal. These
treatment processes are relatively simple and energy
efficient, which explains the relatively insignificant
contribution of water treatment to EE in each county.
Water storage is the least significant contributor to EE.
The tanks are used to store either rawwater or finished
water. Most tanks in the selected counties are made of
metal, and only a few are made of concrete. Around
two thirds of these tanks are elevated; the majority of
the rest are ground storage tanks, while a few (less than
7%) are hydro-pneumatic.

4.2.Multivariate analysis
For the multivariate analysis, all indicators and
embodied energy were classified into four groups
(figure 3): socioeconomic indicators (Lu, La, P, Pd, I),
water source indicator (ws), climate indicators (T, Pr,
CDD, HDD), and EEWS (EE, EEi, EEt, EEp, EEs). High
correlations were observed within some of these
groups. Among the socioeconomic indicators, Lu has

Figure 2.Embodied energy of water supply systems in the 75 selected counties of NorthCarolina. EEs represents the constructional
embodied energy of water storage infrastructure; EEp represents the constructional and operational embodied energy of pipelines and
pumping stations; EEt represents the constructional and operational embodied energy of water treatment plants; andEEi represents
the constructional and operational embodied energy of water intake infrastructure including surfacewater intake infrastructures and
groundwater intakewells.
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relatively high positive correlations with Pd and P,
implying the potential effect of population growth on
land use patterns. P is highly correlated with Pd, with a
correlation coefficient of 0.85 (Tables S-3 and 4 in SI).
La and I, on the other hand, do not have significant
correlations with any other socioeconomic indicators,
showing they are relatively independent variables.
Multivariate analysis results of the climate indicators
of T, CDD, and HDD indicate they are highly
dependent with absolute values of correlation coeffi-
cient above 0.97. Because CDD and HDD are both
calculated based on temperature, and both were
removed in the following regression analysis to
improve its fitting performance. Pr does not have high
correlation with any other climate indicators, and is
considered an independent variable. ws is relatively
independent, and does not have high correlations with
any socioeconomic or climate indicators. Socioeco-
nomic, water source, and climate source indicator
groups do not have high correlationswith each other.

The high positive correlation between EE and EEp
can be explained by the high percentage of water deliv-
ery energy within the total embodied energy. EEi and
EEt are also positively correlated with EE and EEp, but
to a lesser extent because although the amount of
water is the same, water delivery distance varies across
counties. EEi and EEt have a relatively high correlation
with each other, which can be explained by the fact
that they are both dependent on systems’ water flow
and the variance can be explained by the different
intake systems and treatment technologies adopted.
EEs is not highly correlated with any other embodied
energy variables, showing the construction of water
storage tanks might be relatively independent of the
other types of water infrastructures. Across the indi-
cator groups, most embodied energy variables except
EEs have relatively high correlations with population.
EE and EEp also have positive correlations with Lu,

with correlation coefficients of 0.54 and 0.52
respectively.

4.3. Regression analysis
Stepwise regression analysis identifies the most statis-
tically significant variables in determining the EEWS
of a county. Figure 4 provides the 5 selected variables
out of 10 initial variables (CDD and HDD excluded,
and variables that are not selected in any individual
regression analyses are not listed) in determining the
values of EE, EEi, EEt, EEp, and EEs through five
individual regression analyses. The variables selected
for the total embodied energy are total population and
temperature. Both variables have p-values of less than
0.0001, indicating their very strong statistical signifi-
cance in determining the values of EE. The two
variables combined have an R square value of 0.69 in
determining the values of EE, which is higher than
using either one of them as a predictor. Given the
higher correlation between EE and EEp, the selected
variables of water delivery energy replicate those of the
total embodied energy. The R square value for using
the same two variables in determining the values of
EEp is also relatively high (0.67). Selected determinates
of water intake energy are percentage of urban land
and total population with high statistical significance
(p-values <0.01). The R square value of this equation
is 0.52, indicating a relatively good predictability of
water intake energy using the two selected variables.
However, none of the 8 initial variables could offer
good estimations of water treatment energy and water
storage energy; even the bestmodels selected yield very
lowR square values. Nevertheless, water source, urban
land, and temperature have been identified to have
relatively high statistical significance in determining
the values of EEt, while population density has high
statistical significance in determining the values ofEEs.

Figure 3.Pearson correlations among socioeconomic indicators of percentage of urban land (Lu), percentage of agricultural land (La),
population (P), population density (Pd), and personal income (I); water source indicator of percentage of surfacewater (Ws); climate
indicators of temperature (T), precipitation (Pr), cooling degree days (CDD), and heating degree days (HDD); and embodied energy of
water supply including total embodied energy (EE), water intake energy (EEi), water treatment energy (EEt), water pumping energy
(EEp), andwater storage energy (EEs). Darker blue or red represent a correlation factor closer to−1 or 1 respectively.

7

Environ. Res. Lett. 11 (2016) 064018



It must be noted that these selected variables for
each type of embodied energy might not explain the
actual causes of the changes in EEWS, but rather iden-
tify statistically significant factors in determining the
values of each type of embodied energy. For instance,
population density, and total population have high
positive correlation with each other, and hence, selec-
tion between the two variables purely depends on how
well either variable improves the model performance
in terms of BIC instead of which variable actually
explains the embodied energy results. Nevertheless,
the regression results still provide an important means
to roughly estimate the embodied energy of a region
based on variables that could be easily obtained (e.g.,
population and temperature).

5.Uncertainties

It is important to understand the uncertainties asso-
ciated with this study to guide future investigations
and improvements. In the current study, most of the
raw data were obtained from quality sources as
detailed in section 3.1 with relatively high confidence.
Some assumptions were made for estimating embo-
died energy intensities and costs of water infrastruc-
tures. First, an assumption of 100 year life span was
made for all types of water infrastructures in accor-
dance with previous practices [7, 9]. A previous study
conducted a sensitivity analysis investigating the
potential influence of infrastructure life span on
embodied energy estimations [17], and it was found
that when the life span is between 50 and 150 years,
insignificant changes (<10%) in EEWS were observed
due to the insignificance of constructional energy

compared with operational energy. Nevertheless,
when the life span is further reduced to 20 years,
embodied energy might increase significantly (15%–

25%). Another uncertainty is associated with the
assumption of zero average uphill/downhill slope in
estimating the operational cost of pipelines, which
could potentially underestimate the pumping energy
given NC’s elevation changes from east to west. When
the average uphill/downhill slope changes to an
expected maximum of 300 feet per 1000 feet, the
operational energy of pipelines will increase by 241%
in this study. An additional source of uncertainty is
that the selected counties in this study are primarily
water abundant rural areas, and hence outcomes of the
current study may not apply as well to regions that are
primarily urban areas where water system scales, raw
water sources (e.g., inclusion of seawater or brackish
groundwater as alternative sources), treatment tech-
nologies, and/or water demand could be significantly
different. The authors also acknowledge that not all
indicators that could potentially influence the EEWS
were exhausted. Hence, future studies are needed in
understanding the mechanistic cause and effect rela-
tionships among the indicators and the EEWS.

6. Implications

This study estimated the EEWS in 75 NC counties,
explored a correlation with water stressors, and
provided an approach to rapidly estimate the EEWS
using socioeconomic and environmental variables.
Among the selected counties, the total amount of
water supply energy varies significantly. As water and
energy infrastructures are critical to city and region

Figure 4.Outcomes of the stepwise regression analysis showing the statistical significant water stressors of each type of embodied
energy of water supply in the studiedNorthCarolina counties (blue numbers: coefficients a1–a6 in equations EE (or EEi, or EEt, or
EEp, or EEs)= a1× Lu+ a2×P+ a3×Pd+ a4×ws+ a5×T+ a6;black numbers: p value of each coefficient based on t-statistics;
green numbers:R2 value of each equation; brown characters: standardized embodied energy andwater stressor indicators. Grey
shades indicate statistical significance: the darker the color, the higher the statistical significance).
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planning, it is important to understand their drivers
and predictors of changes to guide future decision
making. EEWS estimation shows that water distribu-
tion consumes the highest amount of embodied
energy, while water storage consumes the least. This
sheds light on a potential benefit of integrating onsite
or small-scale decentralized water supply technologies
such as rainwater harvesting, greywater recycling, or
community-scale water supply systems to supplement
future water supply in an energy efficient way by
reducing the need of long distance water delivery. The
total embodied EE was found to be highly correlated
with total population, and a rough prediction of EE
can be made using total population and temperature
indicators. Doubling of the average total population
per county could potentially result in 72% increase in
the total EEWS. Future climate change might influ-
ence the need of water infrastructures, and could
potentially impact the water-related energy demand.
Based on our results, a 10% increase in average
temperature could result in 40% increase in the
total EEWS.

The average total volumetric energy intensity cal-
culated in this study (∼34MJm−3) is higher than pre-
vious estimations of around 11MJm−3 [9, 17] (yet still
in the same order of magnitude), which could be con-
tributed by the economies of scale resulted from the
mostly small water systems (<10 thousand m3 d−1)
included in this study. We also examined the applic-
ability of the regression model in estimating the EE of
individual water supply systems located in regions
outside of NC [8, 9]. A groundwater supply system
(76.8 thousand m3 d−1 of daily flow and serving a
population of 121 000) located in Kalamazoo, Michi-
gan was previously estimated to have an EE of 289 TJ/
year via an input-output based hybrid LCA approach
[8, 9]. Additionally, a surface water supply system (287
thousand m3 d−1 of daily flow and serving a popula-
tion of 657 000) located in Tampa, Florida was pre-
viously estimated to have an EE of 1131 TJ/year [8, 9].
Applying the EE regressionmodel and an annualmean
temperature of 49.15 °F [59] to the Kalamazoo system
results in an EE of 345 TJ/year, which is within 20%
uncertainty range of the original estimation by [8, 9].
On the other hand, when applying the regression
model and an annual mean temperature of 73.35 °F
[60] to the Tampa system, a 1.5 times of increase in the
EE estimation (2867 TJ yr−1) was observed, although
both estimations are still in the same order of magni-
tude. This result indicates a potential broader applic-
ability of the regression model in different regions and
study scales across the US. The uncertainty variance
between the Kalamazoo and Tampa estimations aligns
with our suspicion that the regression model might be
more applicable for rural/smaller scale systems than
urban/larger scale systems. This study is a first attempt
to describe the EEWS by indicators of water stressors.
Often, such indicators are easy to obtain, while esti-
mating the EEWS for a region could be time and data

intensive. This study provides an alternative estima-
tion method. It could be useful for integrated water
and energy planning under climate change and popu-
lation growth [61]. Such an approach could also bene-
fit future studies of water-energy-society interactions.
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