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Abstract
Humans affectfire regimes byproviding ignition sources in some cases, suppressingwildfires in others,
and altering natural vegetation inways thatmay either promote or limitfire. InNorthAmerica, several
studies have evaluated the effects of society onfire activity; however,most studies have been regional or
subcontinental in scope anduseddifferent data andmethods, therebymaking continent-wide
comparisons difficult.We circumvent these challenges by investigating the broad-scale impact of
humans onfire activity using parallel statisticalmodels offire probability from1984 to 2014 as a function
of climate, enduring features (topography andpercent nonfuel), lightning, and three indices of human
activity (populationdensity, an integratedmetric of humanactivity [HumanFootprint Index], and a
measure of remoteness [roadless volume]) across equally spaced regions of theUnited States and
Canada.Through a statistical control approach,wherebywe account for the effect of other explanatory
variables,we found evidence of non-negligible human–wildfire association across the entire
continent, even in themost sparsely populated areas. A surprisingly coherent negative relationship
betweenfire activity andhumanswas observed across theUnited States andCanada:fire probability
generally diminisheswith increasinghuman influence. Intriguing exceptions to this relationship are
the continent’s least disturbed areas,where fewer humans equate to lessfire. These remote areas,
however, also often have lower lightning densities, leadingus to believe that theymay be ignition
limited at the spatiotemporal scale of the study.Our results suggest that there are fewpurely natural
fire regimes inNorthAmerica today.Consequently, projections of futurefire activity should
consider human impacts onfire regimes to ensure soundadaptation andmitigationmeasures in
fire-prone areas.

Introduction

Humans affect fire regimes worldwide, sometimes
causing profound changes to ecosystem structure and
function (McWethy et al 2013). In many parts of the
world, people increase fire activity beyond what is
naturally expected by deliberately or accidentally
setting fire to natural vegetation (Carcaillet et al 2009,
Bowman et al 2011). This is the case, for example, in
African savannas, where cultural practices of frequent

burning make it the archetype of a ‘human-tended’
fire regime (Archibald et al 2012). Conversely, in other
regions or ecosystems of the world, such as in parts of
North America, land-use change and a culture of
aggressive fire suppression may limit fire activity
(Cumming 2005, Finney et al 2009). Globally, humans
are usually responsible for the majority of ignitions;
however, many regions where human ignitions are
prevalent are also subject to intense fire management
programs aimed at extinguishing fires before they
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become large (Stocks et al 2002, Stephens 2005). In
addition to these direct effects on fire activity, humans
may exert pervasive and enduring indirect effects on
fire regimes by altering, or removing, the natural
vegetation (e.g., change in forest structure, invasive
annuals, logging, conversion to irrigated agriculture)
(Cochrane 2003, Pausas and Keeley 2009, Perry
et al 2012, Fréjaville andCurt 2015).

Several investigations of wildland fire in North
America show a dramatic effect on fire activity following
the arrival of Europeans. An initial surge in area burned
at the time of settlement due to slash-and-burn practices
in some areas (Weir and Johnson 1998)was followed by
a large-scale reduction in fire activity that was largely the
result of fire suppression and human modifications to
thenatural vegetation cover (Marlon et al2008).Over the
past three decades, however, substantial increases in
wildfires have been reported, notably in thewesternUni-
ted States (Westerling et al 2006) and in the boreal zone
(Kasischke and Turetsky 2006). Although this phenom-
enon has been largely attributed to a warmer and drier
climate, it is increasingly recognized that, in some areas,
humans may have played a role (Stephens et al 2007,
McWethy et al 2013). Paradoxically, some of the recent
increases in fire activity in parts of the continent, notably
in the west, may be due to a legacy of fire management
policies that were too successful (Stephens and
Ruth 2005). Almost a century of active fire suppression
has led to unintended biomass accumulation that conse-
quently increased the average size and intensity, aswell as
ecological impact, of modern fires (Keane et al 2002).
The impact of humans on fire is thus inherently com-
plex: some human activities yield more fire, whereas the
opposite is true of others (Sturtevant and Cleland 2007,
Parks et al 2015), thereby challenging our assessment of
the net effect of humans on wildland fire activity in
NorthAmerica and elsewhere.

In North America, the influence of humans on fire
activity is assumed to be highly variable, ranging from
extreme in areas of high population and altered land use
to seemingly negligible in unmanaged wildlands. Areas
with historically active fire regimes (whether natural or
anthropogenic), notably in the northeastern United
States and adjacent Canada, now experience virtually no
wildland fire (Clark and Royall 1996, Nowacki and
Abrams 2008). In contrast, the heavily populated regions
of southeastern North America, where a culture of pre-
scribed burning has existed for centuries, have highly
active fire regimes that are largely human dominated
(Waldrop et al 1992, Slocum et al 2007). In the center of
the continent, in the American Midwest and Canadian
Prairies, where vast grasslands were converted to agri-
culture, previous high fire activity has been greatly
diminished or even excluded altogether (Collins and
Wallace 1990, Brown et al 2005). Currently, most fire
activity in North America occurs in the western United
States and in the boreal forests of Canada and Alaska,
where, in spite of large pockets of urbanization and agri-
culture, fire is promoted by expansive wildlands

combined with fire-conducive climates and vegetation
(Swetnam1993,Westerling et al2003).However, though
quite active, it has been argued that fire regimes in most
forests of western North America are far from natural,
having been shaped by a century of fire suppression and
forestmanagement (Stephens and Ruth 2005). Themost
natural fire regimes of North America are presumed to
occur in the northern forests of Canada and Alaska
(Flannigan et al 2009). Not only are these regions sparsely
populated, but, given their regimes of low-frequency,
high-intensity fires, some have suggested that fire sup-
pression is less effective here than it is in other forest
types (Johnson et al2001).

Most evaluations of the influence of human activity
on North American fire regimes have been conducted
for specific countries, subregions, or landscapes (e.g.,
Cardille et al 2001, Sturtevant and Cleland 2007,
Syphard et al 2007, Gralewicz et al 2012, Hawbaker
et al 2013, Liu and Wimberly 2015). Moreover, pub-
lished studies have been carried out at various temporal
and spatial scales and using different data types and
modeling techniques, thereby preventing an unbiased
comparison among regions (but see Bistinas et al 2013).
A continent-wide assessment that uses a consistent
approach would complement previous efforts with the
added benefit of providing a baseline for large-scale pol-
icy or management plans. As such, the overarching goal
of this studywas to conduct a comprehensive evaluation
of the effect of humans on fire activity across North
America. Our specific objectives were to (1) assess the
importance of human influence on fire activity and (2)
evaluate the shape of this relationship (positive, negative,
unimodal). Thiswas achievedby partitioning theUnited
States and Canada into 16 hexagonal polygons
(size=1.38×106 km2) and, for each hexagonal poly-
gon, creating a statisticalmodel offire probability (based
on area burned) for the 1984–2014 time period as a
function of climate, enduring features (topography and
percent nonfuel), lightning, and indices of anthro-
pogenic influence. Thesemodels allowed us to (1) statis-
tically control for the effect of other factors when
assessing the influence of humans on fire activity and (2)
evaluate the spatial variability in these relationships at a
continental extent.

Methods

The study area covers theUnited States (US) andCanada
(hereafter North America; 19 437 101 km2) (figure 1(a)),
excluding Hawaii and the Caribbean islands. Full cover-
age ofNorthAmericawas not possible due to lack of data
for Mexico. The study area was partitioned into 16
hexagonal polygons (hereafter hexels) (hex 1 to hex 16)
having a width of 1260 km and an area of 1 374 902 km2

(figure 1(b)). Explorations showed that this size and
placement of hexels represent a good tradeoff between
capturing subcontinental variability in fire activity and
producing robust models of fire activity across the study
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area. The response variable is sampled within burned
areas, and consequently themodeled response quantifies
the probability that any given pixel burned over the
1984–2014 time period (hereafter fire probability). For
each hexel, we built a statistical model of fire probability
as a function of climatic normals, enduring features
(topography and nonfuel), lightning, and measures of
anthropogenic influence.

The fire probability models were fully comparable
among hexels, as they were built using the same set of
explanatory variables and used the same model settings.
We evaluated the importance of indices of anthro-
pogenic influence to determine the human impact on
fire activity by controlling (statistically) for the effect of
climate, enduring features, and lightning patterns in
each hexel. We then plotted the relationship of each of
these metrics to assess whether fire probability
decreased, increased, or had a nonlinear (e.g., unimodal)
relationship to the anthropogenic variables in eachhexel.

Data

Models of fire probability were built as a function of
several explanatory variables likely to influence fire
activity for each hexel. Although a large set of
independent variables was initially considered for
modeling, we selected a subset of variables that were

not highly correlated with one another and also had
good explanatory power for predicted area burned
across North America (table 1; figure B1). The descrip-
tion that follows focuses on the variables selected for
the modeling. The full list of variables is found in
table A1. We processed all model variables using a
North America Albers equal-area conic projection at a
1 kmpixel resolution.

Fire
The US fire data were obtained from the Monitoring
Trends in Burn Severity (MTBS) project (Eidenshink
et al 2007), whereas Canadian data were obtained from
the Canadian Forest Service National Fire Database
(Parisien et al 2006). Because only fires �400 ha are
included in the western US, this size threshold was
applied to the entire study area; fires <400 ha were
numerous but represent a small fraction of the total area
burned (<5%). Both datasets include prescribed burns,
but these comprise<7%of thefires and<2%of the total
area burned across the study area. We noted two
limitations with these data: (1) fires were inconsistently
reported from 1984 to 1995 in Ontario north of 54°N
and (2) unburned islands were not mapped (or incor-
rectly mapped) for many of the fire perimeters in the
dataset. Neither limitation is expected to greatly affect
estimates of area burned at the spatial extent of a hexel.

Figure 1.The study area (United States andCanada)with political boundaries and area burned by fires for the1984–2014 time period
(in red) (a).Models are created for each of the hexels superimposed on the study area (b).
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Fire occurrence, as integrated in the model, consists
of points randomly sampled within fire perimeters of
mapped fires �400 ha from 1984 to 2014. We con-
sidered areas as either burned or unburned over the 31
year time period and did not distinguish areas that may
have burned more than once. This approach was
deemed themost suitable given the lowproportion of re-
burned areas during the study time period (∼8% of the
total area burned). The points were sampled within the
polygon data (rather than a raster dataset); therefore,
therewasno loss of spatial resolution in this process.

Climate
A suite of 30 year climate variables describing gradients
of energy (temperature) and moisture (precipitation
and humidity) for the 1981–2010 time period was
generated. This time period represents a slight mis-
match to that of the fire data (1984–2014), but is not
expected to greatly influence the results. The Climate
WNA software (Wang et al 2012) was used to inter-
polate the climate data from a digital elevation model.
Of the climate variables selected for modeling, two
depicted patterns of moisture: mean annual

precipitation (MeanPrecip) and mean annual relative
humidity (RelHumid). One variable was a measure of
temperature, the degree days under 18 °C (Deg-
DaysU18), and another, the climate moisture index
(CMI), was an annual integrativemeasure of energy and
moisture (precipitation–potential evapotranspiration).

Enduring features
Enduring features are those components of the landscape
that vary little, if at all, during the time scale of the study.
Elevation-derived metrics describing topography com-
prisedmost of this category of variables. Heat load index
(HeatLoadIndex), which is a measure of potential sun
exposure, and surface area ratio (SurfAreaRatio), which
is a measure of surface roughness, were computed with
Geomorphometry and Gradient Metrics Toolbox 2.0
(Evans et al2014). Topographic position index (TopoPo-
sIndex) describes the relative position along a valley-to-
peak gradient; this metric was computed with a 2000m
window. Percent permanent nonfuel (PctNonfuel),
which included openwater, glaciers, barren ground, and
urban areas from the 2005 global land cover (Friedl
et al 2010), was computed at 100 and 10 000 km2 scales

Table 1.Description of variables used in the statisticalmodeling offire probability in theUnited States andCanada. The time period covered
is 1984–2014 for the area burned and 1981–2010 for climate variables. Themean and range values of pixels are given for each variable. All
variables were resampled to a resolution of 1 km.

Variable name Description Units Mean (range)

Fire

Area burned USfiresmergedwithCanadian fires. USfires fromMTBS

database 1984–2014. Canadian fires fromCanadian

National Fires database 1984–2014. Fires over

400 ha used.

ha 5311 (400–2 205 060)

Climate (1981–2010 normals)
CMI Hargreave’s climaticmoisture index Dimensionless 299.4 (0–1754)
DegDaysU18 Degree days under 18 °C Degree days 5043 (0–11 539)
MeanPrecip Mean annual precipitation mm 722 (50–10 149)
RelHumid Mean annual relative humidity (%) 59.6 (36–85)

Enduring

HeatLoadIndex Heat load index, an index calculating the southwestness of a

slope

Dimensionless 0.64 (0.096–1.03)

SurfAreaRatio Surface area ratio Dimensionless 1.01 (1–1.40)
TopoPosIndex Topographic position index calculated at 2000 m scale Dimensionless –0.34 (–489–843)
PctNonfuel Percent nonfuel at a 1000 km2movingwindow size. Non-

fuel classified as barren lands, water, snow, and ice. From

2005 land cover

% 4.5 (0–99.7)

Lightning

Lightning Average number of lightning strikes per year from1995

to 2005

Flashes km–2 year–1 5.9 (0–46.4)

Anthropogenic

HumanFoot Human Footprint Index, an index of human influence for

the year 2004. Calculated from a 100 km2moving

window.

Dimensionless 16.5 (0–98.1)

LogPopDens Log of population density for the year 2000 People km–2
–0.51 (–4 to 4.3)

RdlsVol Roadless volume calculatedwith a 10 000 km2moving

window

km3 6.5 (0.067–100)
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using moving window averages at each of the radii to
account for possible scale-dependent effects (Parisien
et al 2012); PctNonfuel at the 10 000 km2 scale was
retained formodeling.

Lightning
Patterns of lightning were used to describe natural
ignition potential across the study area. The density of
cloud-to-ground lightning strikes for the 1995–2005
time period was obtained from the NASA LIS/OTD
0.5° high-resolution annual climatology dataset
(Christian et al 2003). In spite of the lightning dataset
having only partial overlap with the time period of the
study and a coarser resolution than the other variables,
it was deemed acceptable for depicting lightning strike
patterns at the spatial scale of this study.

Anthropogenic influence
Three anthropogenic variables were considered in our
evaluation of the influence of humans on fire activity
in North America. Population density (log10-trans-
formed; LogPopDens) was obtained from the Center
for International Earth Information Network (Balk
et al 2006). High values of this metric are concentrated
in urban areas and, as such, it effectively separates
urban versus rural (including wild) areas. The Human
Footprint Index (HumanFoot) is an integrated index
of human influence derived from roads, urban areas,
and nighttime light (Sanderson et al 2002). Because it
is based on a range of features, this index reveals more
about human activities than LogPopDens. We evalu-
ated LogPopDens and HumanFoot variables at the
1 km2 (resolution of raw data) and 100 km2 scales
(moving window average); only the best-performing
scale was selected. Roadless volume (RdlsVol; Watts
et al 2007) is a metric of isolation from human
influence computed from road data (ESRI 2008). It
represents the product of the footprint (area of cells
containing roads) and the mean distance to roads and
was computed at 100 and 10 000 km2 scale. Though
similar to HumanFoot, RdlsVol is simpler and better
emphasizes remoteness. Road density was initially
considered but subsequently dropped because of its
strong correlationwith RdlsVol.

Variable selection
A subset of 12 variables from the initial pool of
explanatory variables (table A1)was selected formodel
building according to their degree of correlation and
ability to predict fire activity (table 1; figure B1). First,
correlations were computed between each pair of
variables to identify those correlated at |r|>0.7 across
the study area and within each hexel. Although
correlations varied among hexels, explorations
showed that a hexel-wise selection yielded similar
variable sets than for the entire study area. This
variable selection approach thus provides a good

trade-off between model performance and the ability
to compare results among hexels. In each grouping of
correlated variables, a single variable was chosen
according to its ability to explain fire activity in
bivariate MaxEnt models of fire according to the area
under the curve (AUC) metric (see Statistical model-
ing). Because we were primarily interested in human
influences on fire activity, LogPopDens, HumanFoot,
and RdlsVol were retained in spite of correlations
|r|>0.7. Of these variables, LogPopDens and RdlsVol
were correlated to the DegDaysU18 climate variable at
r=0.80 and r=−0.72, respectively. Anthropogenic
variables were also correlated with one another:
LogPopDens–HumanFoot at r=0.86; LogPopDens–
RdlsVol at r=−0.78; and HumanFoot–RdlsVol
at r=−0.75.

Statistical modeling
Statistical models of fire probability using 12 explana-
tory variables (table 1) were produced for each of the
16 hexels. Models were built using MaxEnt v.3.3.3k
(Phillips et al 2006), a machine-learning technique
designed for presence-only data (i.e., when true
absences are unknown). A presence-only framework
was deemed adequate because a lack of fire need not be
interpreted as a true absence over the 31 years of fire
data for which we conducted this study (i.e., many
areas that did not burn will likely burn in future years);
however, presence-only or presence–absence frame-
work have been shown to produce similar models of
fire probability (Parisien and Moritz 2009). MaxEnt
evaluates the environmental space of the points
sampled within the fire perimeters (‘fire presence’) in
contrast to that of the entire environment of study area
(‘background’). It does so by fitting the probability
distribution of maximum entropy to the environmen-
tal variables at each fire-presence point. Thismodeling
technique allowed us to model highly complex rela-
tionships without overfitting the responses. MaxEnt
settings were selected following the advice of Elith et al
(2011) and through careful explorations in which the
aim was to produce robust models for the ensemble of
hexels. To this end, we opted for a regularization value
of four and did not use the ‘hinge’ feature, which tends
to produce unrealistic (i.e., overfit) responses.

A large number of fire presences and background
points were sampled to ensure that the appropriate
degree of variability was captured for statistical model-
ing. Points were randomly sampled in burned areas at a
density of 1 point per 5 km2 for fire presences and across
the hexel’s landmass at a rate of 1 point per 50 km2 for
the background. Points were never sampled within per-
manent nonfuels (water, glacier, urban, rock). Because of
variation in both area burned and hexel landmass, the
number of sample points varied among hexels. To
reduce spatial autocorrelation in model residuals, a ran-
dom subset of total fire-presence points were selected for
model building. One hundred such subsets were used
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and their results were subsequently averaged (see Par-
isien et al 2012). This strategy was appropriate across the
study area because it limited overfitting while yielding
robustmodels of area burned for eachhexel.

Four models of fire probability were produced for
each hexel. The first model (hereafter ‘full model’) was
built using all 12 variables, and its output was used to
determine the importance of the four categories of vari-
ables: climate, enduring features, lightning, and anthro-
pogenic influence. The other three models (simply
named after the variable of interest; e.g., LogPopDens)
were created to highlight the singular effect of each of the
anthropogenic variables. These three models were each
built using a total of 10 explanatory variables, including
climate, enduring features, lightning, and a single
anthropogenic variable. Thesemodels were used to eval-
uate the response of area burned to each of the three
anthropogenic variables; the reason for incorporating
only one of these variables was to avoid any distortion of
the response due to the anthropogenic variables’ correla-
tion toone another.

Model evaluation was performed on each of the
100 subset models and subsequently averaged for each
hexel. As a measure of overall of model performance,
the AUC was computed from the true positives and
false positives (Liu et al 2005). AUC values may range
from0.5, where prediction accuracy is no better than if
samples were randomly selected, to 1, which indicates

perfect classification accuracy. However, in a pre-
sence-only framework, as in this study, it is impossible
to achieve an AUC value of 1 because absences (hence
false positives) are unknown. The maximum achiev-
able AUC in a presence-only framework is equal to
1−a/2, where a is generally the fraction of the study
area covered by fire (i.e., the prevalence). For the sake
of adjusting the AUC value, we considered a to be the
percentage of 1 km2 pixels where fire was observed.
This provides a fair, yet underestimated, approx-
imation of prevalence. Additional evaluation metrics
are provided in table C1.

Assessment of anthropogenic influence
The contribution of each of the four variable categories
(climate, enduring features, lightning, and anthropo-
genic influence) for each hexel was calculated from the
full model by summing the relative importance of the
variables in each category. Variable importance was
calculated as the model gain associated with each
variable (Phillips et al 2006). Although it was impos-
sible to compute an absolute measure of variable
importance, this could be approximated by comparing
the values to the model performance metrics (e.g.,
AUC). The relationship of each anthropogenic vari-
able by hexel was then plotted from the results of the
LogPopDens, HumanFoot, and RdlsVol models. We
use partial dependence plots, whichmeasure the effect

Figure 2.The relative contribution of variables for fullmodels of fire probability by hexel in each of the four variable categories:
climate (C), enduring features (E), lightning (L), and anthropogenic influence (A). The value (in red) in the top-center of each hexel
represents the adjusted area under the curve (seemethods). The y-axis is a percentage and is the same for all plots.
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of a variable when the value of all other variables are
held constant at their means, to statistically control for
the effect of non-anthropogenic variables on fire
probability. To estimate the effect of this statistical
control, bivariate relationships of fire probability as a
function of individual anthropogenic variables were
also produced.

Results

Overall, models of fire probability as a function of all
variables (i.e., the fullmodel)performedwell (figure 2).
The test AUC averaged 0.776 among hexels, and
ranged from 0.672 (hex13) to 0.891 (hex8). AUC
values increased, sometimes substantially, when
adjusted for prevalence (mean 0.804).

The relative importance of climate, enduring fea-
tures, lightning, and anthropogenic variables varied
substantially among hexels (figure 2). For all hexels,
the two most influential categories of variables were
climate and anthropogenic. The anthropogenic cate-
gory was ranked as the most important in four hexels
(hex2, hex7, hex9, hex12) and the second-most
important in the remaining 12 hexels. Climate was the
most frequent dominant control on fire activity, hav-
ing the highest variable importance in all but four hex-
els (i.e., the ones dominated by anthropogenic
variables). Enduring features ranked third in terms of
importance in all hexels except four (hex1, hex5, hex8,
hex10), where this category was the least important

and lightning had the third-highest contribution.
Lightning was otherwise the least important variable.
The importance of each anthropogenic variable, cal-
culated both from the full model and models with a
single anthropogenic variable, is reported by hexel in
table 2. All three anthropogenic variables were useful
in explaining fire probability models, but their relative
importance varied substantially among hexels.

The relationship between fire activity and human
influence varied as a function of the specific anthro-
pogenic variable, but was overall fairly coherent among
hexels. Area burned usually decreased as a function of
increasing LogPopDens, except in hexels where there
was a strong (hex8) or moderate unimodal response
(hex1, hex2, and hex3) (figure 3). The HumanFoot vari-
able had a decaying form in all hexels, though the range
of slopes varied considerably (figure 4). The response to
the RdlsVol was the most diverse of the three anthro-
pogenic variables (figure 5). Fire activity increased
monotonically as a function of RdlsVol in some hexels
(hex3, hex4, hex5, hex6, hex7, hex13), decreased in
some hexels (hex10, hex12, hex15, hex16), and was
unimodal in others (hex3, hex8, hex9, hex14). The
bivariate relationship between fire activity and anthro-
pogenic variable show broadly similar patterns to the
partial dependence plots (figureD1).

Discussion

Because of its extensive wildlands and low human
densities over much of its territory, North America is
often viewed as having fire regimes that are closer to
natural than those in other parts of the world (Lavorel
et al 2007). Although this may hold true to some degree,
Cardille and Lambois (2010) have shown in the con-
terminous US that, even in seemingly ‘intact’ areas, very
few landscapes are completely free of some human
imprint. The results of this study similarly suggest that
the human impact on fire regimes is widespread and
pervasive. Climate is nevertheless the dominant environ-
mental control onfire inmost ofNorthAmerica, thereby
supporting the claim that its fire activity today—as it has
been for millennia—is mainly regulated by top-down
controls (Swain 1973, Flannigan et al 2005, Guyette
et al 2012). There are clearly, however, other ‘non-
natural’ controls that exert an influence on fire, even
overriding the effect of climate in some portions of the
continent, as shown by Hawbaker et al (2013) in the
conterminous US. We found a non-negligible impeding
influence of humans on fire, even in some of the least
densely populated areas. Though our results show a
remarkably coherent negative influence of humans on
fire, the specific nature—and hence outcome—of the
human–fire relationship is far from uniform. A poten-
tially interesting exception to the negative effect of people
on fire is observed in some of North America’s most

Table 2.Relative contributionof the three anthropogenic variables for
models offire probability for eachhexel.Valueswere calculated accord-
ing two tomodel types: one that incorporates only the anthropogenic
variable of interest (single) in combinationwith theother explanatory
variables and theother (full) that incorporates all three anthropogenic
variables. LogPopDens, populationdensity (logged);HumanFoot,
HumanFootprint Index;RdlsVol, roadless volume.

LogPopDens HumanFoot RdlsVol

Single Full Single Full Single Full

Hex1 30.9 11.8 4.43 5.25 29.5 6.05

Hex2 44.4 50.3 23.9 0.31 24.3 0.276

Hex3 4.65 7.97 2.54 3.23 4.39 8.37

Hex4 44.5 34.4 44.4 15.3 75.7 4.58

Hex5 16.6 15.0 21.6 13.2 8.46 6.42

Hex6 13.9 10.2 2.12 0.764 18.8 1.84

Hex7 14.3 12.4 16.3 11.3 15.2 4.05

Hex8 33.3 32.9 9.13 6.18 20.0 7.24

Hex9 51.5 24.2 54.3 21.3 61.3 5.19

Hex10 6.32 3.12 9.09 8.25 10.6 5.30

Hex11 10.6 4.70 2.81 9.74 10.1 10.3

Hex12 9.91 3.52 51.6 52.7 21.5 3.83

Hex13 14.0 5.18 7.49 6.54 29.4 12.3

Hex14 6.37 0.924 29.4 32.4 8.59 4.06

Hex15 9.07 4.86 16.0 18.0 8.77 4.55

Hex16 2.00 5.32 25.4 20.0 4.23 3.10

Mean 19.5 14.2 20.0 14.0 21.9 5.46
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remote areas where, despite the lack of humans, we saw
littlefire activity.

One of the most surprising aspects of this study’s
results is the relatively strong influence of humans on
fire activity across North America. Anthropogenic
effects were usually substantially greater than endur-
ing features and lightning, and even greater than cli-
mate in some areas. Our expectations were that more
sparsely populated parts of the continent would have
a relatively lower anthropogenic effect on fire. As
shown in all of the boreal hexels (hex10, hex12,
hex13, hex14, hex15, hex16), this expectation did not
bear out. More aligned with our expectations was the
high anthropogenic impact of the Midwest (hex4,
hex8), Great Plains (hex5, hex9), and Gulf of Mexico
(hex2, hex4), areas that have undergone widespread
land conversions and that are at a more advanced
stage of anthropogenic fire-regime transformation
(Guyette et al 2002, Bowman et al 2011). By contrast,
some heavily human-altered hexels of the con-
terminous US show an unexpectedly moderate effect
of humans on fire activity, perhaps because climate is
simply much more dominant than other environ-
mental controls. This may be the case in coastal Cali-
fornia (hex3), where a clear anthropogenic effect
(Syphard et al 2008)may bemasked by strong climate
forcing (Moritz et al 2010).

Any large-scale effect of population density on fire
activity can be confounded by the type of human activ-
ities on the landscape (Hawbaker et al 2013). For exam-
ple, the culture of prescribed burning in the southeastern
US and, more recently the tolerance of lightning-ignited
fire in some of the protected areas in western North
America, may be idiosyncratic and not found elsewhere
at similar population densities. Overall, our results agree
with those of Knorr et al (2014) andHantson et al (2015),
who found a globally negative relationship between fire
and population density, and are coherent with the con-
clusions of Marlon et al (2008) and Mouillot and Field
(2005), who reported a decrease in area burned in rela-
tion to increased population trends in boreal and tempe-
rate biomes. As observed in this study, Bistinas et al
(2013) found this relationship to be spatially variable, but
there are discrepancies in the direction of relationships
(positive and negative) between the two studies. In some
parts of the continent (southwesternUS, Florida, and the
Great Lakes area), we observed the unimodal relation-
ship reported by Syphard et al (2007), whereby the peak
in fire ignitions occurred at intermediate population
densities, suggesting that both intense human activity
and the near absence of humans is associated with fewer
fires. We also observed that the per capita effect of
humans onfire activity varieswidely acrossNorthAmer-
ica. Notably, in the boreal zone we found a non-

Figure 3.Partial dependenceplots of themodeled responseoffire probability as a function of log10 of populationdensity. The red line
indicates themean response, whereas the blue areas represent the standard deviation calculated from the 100model subsets.Note that the
x-axes are variable amonghexels and its values havebeen scaled from0 to100 for easeof visualization; the y-axis is the same for all hexels.
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negligible human impact on fire activity in spite of that
region’s low population densities. This may be due in
part to the spatially expansive nature of human features
and policies of aggressive fire suppression (Cum-
ming 2005, Martell and Sun 2008). In this region, the
effects of humans on fire are spatially structured, in that
most fires are ignited by humans close to roads, but it is
the remote lightning-ignited fires that are responsible for
themajority of the area burned (Gralewicz et al2012).

While many large-scale wildland fire studies may
include a single variable describing anthropogenic
impacts on fire (e.g., Krawchuk et al 2009, Bistinas
et al 2013), we included three conceptually different
variables to capture varying aspects of the fire–
human relationship. We were expecting the Human
Footprint Index, which accounts for land use and
infrastructure in addition to population density, to
have a different relationship with area burned com-
pared to population density. Results, however, show
that population density and the Human Footprint
Index have a remarkably similar (negative) relation-
ship with fire. This provides further support to the
idea that, at the spatiotemporal frame of this study,
the anthropogenic factors that impede fire activity
(e.g., suppression, landscape fragmentation) out-
weigh those that promote it (e.g., ignitions) in North
America. Our third index, the roadless volume, tells a

somewhat different story, and therefore we caution
against using a single index to measure human influ-
ence on fire regimes. Even our use ofmultiple indexes
can probably not describe all important human
impacts. For instance, the invasion of exotic cheat-
grass species (Bromus spp.) have profoundly mod-
ified fire regimes in parts of the western US (Balch
et al 2013, Parks et al 2015), but are not fully captured
by our three indexes. The same could be said for the
effect of past fire management policies on current fire
activity, given that these have likely altered the nature
of the fire−environment relationship in some areas
(Higuera et al 2015, Ruffault andMouillot 2015).

The roadless volume represents a more accurate
depiction of the degree of isolation from human
activities than the population density and the Human
Footprint Index. That is, the ‘stretch’ of values in this
metric is more heavily weighted towards the distance
from roads (i.e., low-impact areas), translating into a
more diverse set of human−fire relationships. Much
of the northern and western parts of North America,
for instance, show a unimodal response of fire to
roadless volume, which suggests less fire in the most
isolated areas (mainly protected areas) compared to
areas of moderate-to-high remoteness. These results
are consistent with what Parisien et al (2012) reported
in the western US; however, our results show that a

Figure 4.Partial dependence plots of themodeled response offire probability as a function ofHuman Footprint Index. The red line
indicates themean response, while the blue areas represent the standard deviation calculated from the 100model subsets. Note that
x-axes are variable among hexels; the y-axis is the same for all hexels.
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single response for the western US masks the varia-
bility in the fire responses across such a large area.
Notwithstanding, there is a relative decrease in fire
probability in some of the most remote areas of some
hexels. Reasons why some remote areas may have
experienced relatively less fire than adjacent anthro-
pogenized areas may be due to differences in fire
environments, past fire-management policies, or
simply that there have experienced comparatively
fewer ignitions (Cardille et al 2001, Miller et al 2012,
Haire et al 2013).

We suspect that the unimodal response of fire to
human influence (roadless volume) in some areas of
North America is the result of ignition limitation, as
observed in some studies in California (Syphard
et al 2007, Keeley et al 2011) and other parts of the
globe (Bradstock 2009, Kraaij et al 2013). Flannigan
et al (2005) hinted that this may be the case in the lar-
gely uninhabited parts of the lightning-poor boreal
zone. Some of the most remote areas of the western
US may also be ignition limited simply because they
encompass some of the highest mountains and
because lightning ignitions are deficient at very high
elevations (Dissing and Verbyla 2003) (figure E1). It
must be noted that some remote areas may have
experienced more fire in the past if they were sub-
jected to frequent burning by humans, but the extent

to which these past fire regimes were ‘natural’ or not
is debated and likely varies greatly among areas
(Vale 2002, White et al 2011). Nevertheless, in an era
of rapid and sometimes drastic change, it is impor-
tant to evaluate the potential effect of changes in igni-
tion loads, especially given the sensitivity of some
ecosystems to changes in fire activity (McWethy
et al 2013).

Limitations
As is the case with all modeling studies, this study’s
results are subject to limitations both in terms of the
data and the modeling approach. In spite of our
dataset being largely comprehensive, the missing fire
data of hex12 (northern Ontario and Manitoba)may
have significantly affected the results; therefore,
results for this hexel should be interpreted with
caution. Although our systematic partitioning of the
continent into hexels allows us to see broad patterns
in human–fire relationships, comparison among
hexels is complicated by the widely varying range of
values in the three anthropogenic variables. For
example, the maximum value for roadless volume in
hex4 (southernMidwest) is lower than the minimum
value for in hex16 (Alaska). The dichotomization of
the response variable into burn and unburned
precluded consideration of areas that burned more

Figure 5.Partial dependence plots of themodeled response offire probability as a function of roadless volume. The red line indicates
themean response, while the blue areas represent the standard deviation calculated from the 100model subsets. Note that x-axes are
variable among hexels and its values have been scaled from0 to 100 for ease of visualization; the y-axis is the same for all hexels.
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than once. Although the fraction of these areas
was low for the study time period it may be important
to explicitly consider them as fire history atlases
are updated with new data in future years. Interpreta-
tion may also be complicated by the modeling
technique. For instance, even though an effort was
made to statistically control for the effects of
other variables, the influence of anthropogenic vari-
ables may still conflate with non-anthropogenic
variables in some parts of North America. This
may be the case at the forest/tundra transition
characterizing the northernmost band of hexels, for
example, where the presumed human influence may
be partly masked by other gradients in climate and
vegetation.

The difficulty in pinpointing specific mechan-
isms by which humans affect fire ignition and spread
from statistical relationships is further exacerbated
by the potential scale-dependence of these relation-
ships. The fire–human relationships reported in this
study are not necessarily expected to hold over much
smaller or greater spatial extents. For instance,
whereas the negative association of wildfire with
humans over large areas, such as our hexels, is partly
due to greater area burned in some protected areas,
this relationship could in fact be positive over areas
where humans are responsible for most (or all) of the
fire ignitions. Parisien et al (2011) observed a con-
sistently negative response of area burned to the
Human Footprint Index at four spatial scales in the
boreal forest of Canada. The scale-dependence of the
fire–human relationship, however, requires further
investigation and, as such, the results of this study
should thus not be extrapolated to greatly varying
spatio-temporal scales. Humans influence aspects of
the fire regime other than fire frequency or area
burned. For instance, human-induced changes to the
seasonality of fire occurrence, though difficult to
detect, may lead to fairly drastic ecological changes in
some biomes (Le Page et al 2010). It would be inter-
esting and important to consider other components
to paint a more complete picture of human influence
on this disturbance process (Whitman et al 2015).
Liu and Wimberly (2015), for example, found
that humans had a greater impact on fire size than
fire occurrence of high-severity burns in the wes-
ternUS.

Except for the percentage of permanent nonfuel,
the fire probability models of this study did not expli-
citly consider vegetation. There is compelling evidence
that biota affects spatial and temporal patterns of fire
activity (Girardin et al 2013, Terrier et al 2013), and
vegetation-related variables have been often incorpo-
rated into to large-scale biophysical models of fire
(Sturtevant and Cleland 2007, Hawbaker et al 2013,
Liu andWimberly 2015). Although these variables can
be very useful in explaining fire activity, they are also

highly correlated with climatic gradients at the spatio-
temporal scale of study. In fact, Parisien and Moritz
(2009) showed there was virtually no loss of model
performance when vegetation class was removed from
models of fire activity built for the conterminous US
that included several climate variables. Information
on vegetation is certainly useful in explaining potential
feedback mechanisms that can regulate fire occur-
rence via postfire succession, but this level of detail is
beyond the scope of this large-scale study. Another
reason for focusing on climate and not incorporating
vegetation composition into this study is that it is
usually impossible to know the state of the vegetation
at the time of burning. This caveat convinced us that,
to meet the goal of our study, it was more appropriate
to use climatic gradients; however, it must be
acknowledged that detailed vegetation information at
the time of burn would have likely substantially
improved ourmodels.

Conclusion

The results of this study suggest that there may be few
truly natural fire regimes in North America today.
While this study points to a general impeding effect of
people on fire across North America, it also paints a
complex picture of anthropogenic effects on fire across
the continent—one where fire is as variable as the
biophysical environment that defines it. Because of this
complexity, the specific mechanisms by which humans
alter fire ignition and spread may be difficult, or even
impossible, to identify. Further, humans can indeed
distort or mask fire–climate relationships, thereby
undermining our ability to predict current and future
fire activity in a changing climate (Parks et al 2014).
Consequently, this study’s results should be viewed as
another building block towards more in-depth investi-
gations of the spatial variability of human impacts on
North American fire regimes. The statistical relation-
ships reported here could, for example, be incorporated
into a process-based model to enhance our under-
standing of changing human–fire relationships (e.g.,
Thonicke et al 2010). As adaptation and mitigation
measures are developed for fire-prone areas, it will
become imperative that wildland fire scientists and land
managers account for human influences in projections
of futurefire.
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AppendixA

TableA1. List of all variables initially considered for themodeling offire probability. A subset of variables was selected to build thefire
probabilitymodels in this study.

Variable name Description Units Mean (range)

Climate (1981–2010 normals)
StartFrostFree Julian date onwhich the frost-free period begins Day of year 135 (0–208)
CMI Hargreave’s climaticmoisture index Dimensionless 299 (0–1754)
DegDaysA18 Degree days above 18 °C Degree days 345 (0–3044)
GrowDegDays Degree days above 5 °C (growing degree days) Degree days 2081 (0–7643)
ChilDegDays Degree days under 0 °C (chilling degree days) Degree days 1358 (0–5339)
DegDaysU18 Degree days under 18 °C Degree days 5043 (0–11 539)
EndForstFree Julian date onwhich the frost-free period ends Day of year 271 (0–365)
MinTemp Extrememinimum temperature over 30 years °C –35 (–63 to 10)
Eref Hargreave’s reference evaporation Dimensionless 749 (0–1924)
MaxTemp Extrememaximum temperature over 30 years °C 36 (19–53)
FrostFree frost-free period Days 136 (0–365)
MeanPrecip Mean annual precipitation mm 722 (50–10 149)
MeanTemp Mean annual temperature °C 4.9 (–13 to 26)
MeanTempCold Mean temperature of the coldestmonth °C –9.1 (–32 to 22)
SumPrecip Mean summer (May–September) precipitation mm 347 (6–3175)
MeanTempWarm Mean temperature of thewarmestmonth °C 18.7 (2–38)
NumFrostFree Number of frost-free days 179.9 (0–365)
SnowPrecip Precipitation as snow mm 154.2 (0–6608)
SumPrecip Summer (June–August) precipitation mm 217.5 (0–1678)
WintPrecip Winter (December–February)precipitation mm 150.5 (8–3013)
RelHumid Mean annual relative humidity % 59.6 (36–85)
SumHeatMoist Summer heatmoisture index, calculated asMWMT/

(MSP/1000)
°C mm–1 89.9 (1–4085)

SumTemp Summer (June–August)mean temperature °C 17.3 (1–36)
WintTemp Winter (December–February)mean temperature °C –7.7 (–31 to 22)

Anthroprogenic

HumanFoota Human Footprint Index, an index of human influence for

the year 2004

Dimensionless 16.5 (0–100)

LogPopDensa Population density for the year 2000 People km–2
–0.51 (–4 to 4.3)

RdsDensb Road density using 2014 roads datawith only primary and

secondary roads used

Roads area–1 0.11 (0–4.3)

RdlsVolc Roadless volume km3 6.5 (0–100)

Enduring

HeatLoadIndex Heat load index, an index calculating the southwestness of a

slope

Dimensionless 0.64 (0.096–1.03)

SurfAreaRatio Surface area ratio Dimensionless 8178 (8100–42 944)
TopoPosIndex Topographic position index calculated at 2000 m scale Dimensionless –0.34 (–489 to 843)
PctNonfuelc Percent nonfuel. Non-fuel classified as barren lands, water,

snow, and ice. From2005 land cover.

% 4.5 (0–99.7)

GPP Gross primary productivity from2014 kg_carbonm–2 7144.6 (0–35 508)

Lightning

Lightning Average number of lightning strikes per year from1995

to 2005

Flashes km–2 year–1 5.9 (0–46.4)

Fire

Area burned USfiresmergedwithCanadian fires. US fires fromMTBS

database 1984–2014. Canadian fires fromCanadian

National Fires database 1984–2014. Fires>400 ha used.

ha 5311 (400–2 205 060)

a Variables calculated at 1 and 100 km2 scale.
b Variables calculated at 10, 50, and 100 km2 scale.
c Variables calculated at 100 and 10 000 km2 scale.
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Appendix B

AppendixC

Model evaluation followed the method of Parisien et al
(2012) and was performed on each of the 100 subset
models and subsequently averaged for each hexel. As a
measure of overall of model performance, the AUC was
computed from the true positives and false positives.
AUC values may range from 0.5, where prediction
accuracy is no better than if samples were randomly
selected, to 1, which indicates perfect classification
accuracy. However, in a presence-only framework, as in
this study, it is impossible to achieve an AUC value of 1

because absences (hence false positives) are unknown.
The maximum achievable AUC in a presence-only
framework is equal to 1–a/2, where a is generally the
fraction of the study area covered by fire (i.e., the
prevalence). For the sake of adjusting the AUC value, we
considered a to be the percentage of pixels where firewas
observed. This provides a fair, yet underestimated,
approximation of prevalence. Also calculated were the
estimated fraction of the suitable (i.e., burnable) area,
which represents an approximation of the false positive
rate, and the omission, which is the false negative rate.
These two metrics were measured at the fire probability

Figure B1.Mapof the explanatory variables incorporated in the statisticalmodels offire probability for each hexel.
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threshold that minimizes the sum of these errors of the
two metrics (Liu et al 2005). As such, they can be
interpreted as the expected rate of false negatives for a
givenpredicted suitable area.

AppendixD

Table C1.Performancemetrics of thefire probabilitymodel for each hexel (see
figure 1).

Test AUC

Adjusted

AUC

Suitable

area (%)
Omission

error (%)

Hex1 0.752 0.776 0.370 0.247

Hex2 0.831 0.858 0.293 0.172

Hex3 0.797 0.831 0.333 0.191

Hex4 0.827 0.836 0.231 0.273

Hex5 0.700 0.711 0.295 0.411

Hex6 0.881 0.877 0.249 0.118

Hex7 0.701 0.749 0.424 0.281

Hex8 0.891 0.894 0.211 0.115

Hex9 0.839 0.860 0.298 0.167

Hex10 0.837 0.875 0.308 0.155

Hex11 0.700 0.706 0.394 0.315

Hex12 0.704 0.765 0.539 0.154

Hex13 0.672 0.684 0.507 0.192

Hex14 0.746 0.827 0.501 0.094

Hex15 0.715 0.764 0.487 0.184

Hex16 0.818 0.849 0.343 0.137

Mean 0.776 0.804 0.361 0.200

FigureD1.Modeled fire probability as a function of the three anthropogenic variables obtained frombivariatemodels (i.e., area
burned as a single anthropogenic variable, without controlling for the effects of climate, enduring features, and lightning). The red line
indicates themean response, whereas the blue areas represent the standard deviation, calculated from the 100model subsets.
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FigureD1. (Continued.)
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