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Abstract
Record low snowpack conditions were observed at SnowTelemetry stations in theCascades
Mountains, USAduring thewinters of 2014 and 2015.We tested the hypothesis that these winters are
analogs for the temperature sensitivity of Cascades snowpacks. In theOregonCascades, the 2014 and
2015winter air temperature anomalies were approximately+2 °Cand+4 °Cabove the climatological
mean.We used a spatially distributed snowpack energy balancemodel to simulate the sensitivity of
multiple snowpackmetrics to a+2 °Cand+4 °Cwarming and compared ourmodeled sensitivities to
observed values during 2014 and 2015.We found that for each+1 °Cwarming,modeled basin-mean
peak snowwater equivalent (SWE) declined by 22%–30%, the date of peak SWE (DPS) advanced by 13
days, the duration of snow cover (DSC) shortened by 31–34 days, and the snowdisappearance date
(SDD) advanced by 22–25 days. Our hypothesis was not borne out by the observations except in the
case of peak SWE; other snowmetrics did not resemble predicted values based onmodeled sensitivities
and thus are not effective analogs of future temperature sensitivities. Rather than just temperature, it
appears that themagnitude and phasing of winter precipitation events, such as large, late spring
snowfall, controlled theDPS, SDD, andDSC.

1. Introduction

In 2015 the state of Oregon experienced widespread
drought following the lowest winter snowpack since
automated recordkeepingbegan in1981 (NRCS2015).
At the end of water year 2015 (1 October 2014–30
September 2015), the United States DroughtMonitor
estimated that 67% of the state was in ‘Extreme’ (D3)
drought conditions, resulting in a drought emergency
declaration by the governor of Oregon and the release
of $2.5 million in disaster relief (NRCS 2015). These
conditions developed despite winter precipitation
during 2014 and 2015 thatmostly tracked the previous
30 year mean, in contrast to record low precipitation

that characterized drought conditions in California
(Diffenbaugh et al 2015, Mao et al 2015, Shukla
et al 2015). 1 April snow water equivalent (SWE), on
the other hand, was 68% and 11% of normal in 2014
and 2015, respectively. These represent the 8th and 1st
lowest 1 April SWE in Oregon Snow Telemetry
(SNOTEL) history, 1 April being the date on which
SWE is normally maximum at most SNOTEL loca-
tions (Serreze et al 1999) and on which west-wide
streamflow forecasts are largely based (McCabe and
Dettinger 2002). These unique conditions have
prompted many to speculate they may provide a
harbinger of future conditions in a warming world,
and an opportunity for managers to envision plans for
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the future (Thompson 2015, Walton 2015,
Floyd 2016).

Speculation aside, these 35 year record low snow-
pack conditions are set against a backdrop of long-
term climate warming, declining SWE, and associated
shifts in streamflow throughout the American West
(Hamlet et al 2005, Mote et al 2005, Fritze et al 2011,
Safeeq et al 2013, Knowles 2015). These trends are
strongly correlated with temperature, are not
explained by natural variability (Hamlet et al 2005,
Mote 2006, Abatzoglou 2011), and appear to be largely
explained by decreased spring accumulation and/or
increased spring melt, even at locations where winter
accumulation has increased (Kapnick and Hall 2011).
At broad scales they are at least in part attributed to
anthropogenic warming (Barnett et al 2008, Pierce
et al 2008, Hidalgo et al 2009). Given this attribution
and current climate trajectories (Kirtman et al 2013),
continued shifts toward less snow, more rain, and ear-
lier snowmelt are considered likely. Looking toward
such a future, the temperature sensitivity of Cascades
snowpacks is of considerable interest (Casola
et al 2009, Minder 2010, Luce et al 2014) and we ask
the question: do these years serve as climate analogs
for the sensitivity of mountain snowpacks in the mar-
itime climate of the PNW?

This background and research question motivates
our hypothesis that the 2014 and 2015 snow drought is
an analog for the temperature sensitivity of SWE in the
PNW. A simple way to test this hypothesis is to first
establish the expected temperature sensitivity, and
then compare with observations. Therefore, the first
part of this paper describes a modeling experiment
that estimates the temperature sensitivity of SWE for
two watersheds (windward and leeward) in the Ore-
gon Cascades, expressed in terms of changes in the
magnitude and timing of SWE. The second part of this
paper compares the modeled sensitivity of three key
metrics—the peak SWE, the date of peak SWE (DPS),
and the snow disappearance date (SDD)—to observed
sensitivity derived from measurements of SWE at
SNOTEL sites within the study watersheds and across
the state of Oregon during the recent snow drought.
These snow metrics are relevant to different stake-
holders and we aim to demonstrate for which metrics
the recent snow droughtmay serve as an analog for the
temperature sensitivity of SWE in the study region.

2. Study region

The Cascades mountain range extends from southern
British Columbia to northern California (figure 1).
Our study focuses on two watersheds in the central
Oregon Cascades: the west side (windward)McKenzie
River Basin (MRB, 3040 km2) and east side (leeward)
Upper Deschutes River Basin (UDRB, 870 km2). Snow
provides a critical natural reservoir for hydropower,
irrigated agriculture, municipalities, and federally

protected native cold-water fish in the region, as is
common throughout the western US. The Natural
Resources Conservation Service (NRCS) measures
temperature, precipitation, and SWE at five SNOTEL
sites and SWE at two snow courses (snow measure-
ment transects) in the studywatersheds, which are part
of a larger US-wide snow monitoring network that
facilitates water resources management in snow
dependent regions.

Elevations in the watersheds range from 400 to
3200 m. Above 1800 m the topography is character-
istic of a volcanic plateau segmented by large volcanic
peaks; from 400 to 1800 m the watersheds are char-
acterized by steep and highly dissected terrain, typical
of the Pacific Arc maritime mountain ranges (Tague
and Grant 2004, Jefferson et al 2010). According to the
Parameter Regressions on Independent Slopes Model
(PRISM) climatology, basin wide mean annual pre-
cipitation ranges from 2200 to 1200 mm and mean
annual air temperature from 8.3 °C to 6.8 °C, for the
MRB andUDRB, respectively (Daly et al 2008).

3.Data andmethods

3.1. SnowModel setup, input data, and evaluation
We developed a 23 year climatology of SWE in the
study watersheds for the period 1989–2011 using
SnowModel, a spatially-distributed snow accumula-
tion and energy balance ablation model (Liston and
Elder 2006a, 2006b). We ran the model at 100 m
horizontal grid spacing with a daily time step. To
represent the distinct windward and leeward climates
of the study watersheds, we defined separate modeling
domains (figure 1) and defined unique temperature
lapse rates for the MRB and UDRB. Lapse rates were
computed from 30 arcsecond (800 m) PRISM
monthly timeseries of minimum and maximum air
temperature using standard least-squares linear
regression, which were then interpolated between
months and averaged to create daily lapse rates for
each watershed. Precipitation (PPT) was partitioned
into snowfall (SF) versus rainfall with a linear function
of air temperature:
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where TS (−0.5 °C) is the temperature below which
all precipitation is defined to be snowfall and TR
(1.75 °C) is the temperature above which all pre-
cipitation is defined to be rainfall. The United States
Army Corps of Engineers developed equation (1)
from measurements of snowfall in the PNW
(USACE 1956). We acknowledge the limitations of
this empirical approach (Dai 2008, Marks et al 2013,
Safeeq et al 2016) and provide a discussion of the
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uncertainty and how we handled it in the supple-
mentarymaterial.

Model inputs include (1) spatially distributed
fields of precipitation, air temperature, wind speed,
wind direction, and relative humidity; and (2) spatially
distributed fields of topography and vegetation type.
We used daily average air temperature, daily total pre-
cipitation, and daily average relative humidity gridded
at 1/16° (5×7 km) (Livneh et al 2013), and the
National Center for Environmental Prediction-
National Center for Atmospheric Research (NCEP–
NCAR) daily average wind speed and direction grid-
ded at 2.5° spatial resolution (Kalnay et al 1996). Air
temperature and precipitation were bias corrected
with the PRISM 800 m monthly time series using the
delta and ratio methods, respectively (Watanabe
et al 2012). Wind and humidity data were bilinearly
interpolated to the PRISM 800 m grid. The 800 m
grids were used as the final model inputs, which were
interpolated to the 100 m topography during model
setup using SnowModel’s built-in MicroMet utility.
Topography and vegetation were resampled to 100 m
resolution from the United States Department of
Interior 30 mNational Elevation Dataset digital eleva-
tion model and the 2011 National Land Cover Data-
base land cover definitions (Gesch et al 2002, Fry
et al 2011).

We used daily data from four automated SNOTEL
stations (‘test’ sites) in the study region to evaluate
SnowModel. The test sites span the windward and lee-
ward sides of the study region and range in elevation
from 1143 to 1733 m (figure 1). Some limited model

development and calibration was required to achieve
adequate model performance. This included adding a
parameterization for retention and drainage of liquid
water in the snowpack and a Monte Carlo parameter
calibration routine (supplementarymaterial).

3.2. Temperature sensitivitymodel experiment
Following Casola et al (2009), the effect of a change in
surface air temperature on snow accumulation and
melt can be assessed with a ‘temperature sensitivity’
parameter:

( ) ( )d l d=x T , 2

where x is a snow-related metric, dT is a change in
surface air temperature, and

( )ål = =
¶
¶

+
¶
¶

x

T
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d
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3
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is the temperature sensitivity of x. The first term on
the rhs of (3) is the ‘direct’ temperature sensitivity and
represents changes in x that result directly from
changes in air temperature. The second term on the
rhs of (3) represents indirect changes in x due to a
variable that is dependent on T , for example an
increase in local precipitation due to an increase in
specific humidity with air temperature. In this study,
we ignore all indirect effects and focus solely on the

‘direct’ temperature sensitivity,
¶
¶

x

T
, which we term S.

This choice simplifies the analysis for reasons of
tractability, but also introduces uncertainty by ignor-
ing potential indirect effects (e.g. Minder 2010). Fol-
lowing on this, if an estimate of S is known,
equation (2) can be used to predict dx. For simplicity

Figure 1.Map of the study region showing the location of theMcKenzie River Basin (122°24′10″W, 44°12′9″N) andUpperDeschutes
River Basin (121°39′35″W, 44°32′35″N)watershed boundaries,modeling domain boundaries, SNOTEL and SnowCourse
monitoring stations (http://wcc.nrcs.usda.gov/snow/), and elevation in the region.
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we adopt the notation:

( ) ( )=D S Td , 4

where D is a change in x that results from a change in
air temperature, Td , as predicted by an estimate of S.
In this study, we use a number of metrics for x,
described below.

We modeled S using the ‘delta’ method (Hay
et al 2000), where the historical daily air temperature
data were uniformly increased by +2 °C (T2) and
+4 °C (T4) and precipitation increased by +10%
(P10). The temperature increases represent the expec-
ted mid- to late 21st century average changes for the
Pacific Northwest (PNW) region from 20 global cli-
mate models and two greenhouse gas emissions sce-
narios (B1 and A1B) (Mote and Salathé 2010). For
precipitation, the magnitude and direction of pro-
jected 21st century change for the PNW is highly
uncertain (Safeeq et al 2016). Thus, a simple 10% pre-
cipitation increase was chosen to explore the effect of
increased P on S. The perturbed forcing data were
used as input to the model to develop time series of
SWE for each scenario, referred to as T2, T4, T2P10,
andT4P10.

For each scenario we computed the mean per-
pixel change in SWE (dSWE, m) and cumulative
snowfall (dSF, m) on each calendar day, the mean per-
pixel change in the date of peak SWE (dDPS, days), the
snow disappearance date (dSDD, days), and duration
of snow cover (dDSC, days), and the change in basin
snow-covered area (dSCA, m2) on the date of peak
basin volumetric SWE, relative to the reference period.
These quantities were in turn used to calculate basin-
scale area-weighted estimates of S for SWE, SF, and
SCA on the basin DPS and 1st April, normalized by
their reference period value and expressed as percent
change (% °C−1). For the timing metrics (DPS, SDD,
SCD), we express estimates of S as absolute change e.g.
dSDD/dT (days °C−1).

To compare model findings with statewide SWE
patterns during 2014 and 2015, we predicted statewide
SWE anomalies with equation (4), using a model-
derived empirical relationship between air temper-
ature and S. We selected the metrics peak SWE, DPS,
and SDD for this analysis. To achieve this, we binned
grid cells by their mean DJFM (defined here as the
snow accumulation season) air temperature, and com-
puted themean value of S for each 0.1 °C bin.We used
these values as look-up tables that defined S as empiri-
cal functions of mean DJFM air temperature for each
metric. We then computed the 2014 and 2015 PRISM
DJFM air temperature anomalies to approximate Td
and solved equation (4) for D ,SWE D ,DPS and DSDD for
PRISM grid cells with mean DJFM air temperature
<4 °C and total DJFM precipitation >15 cm (values
that bound the range of maximum DJFM air temper-
ature and minimum 1 April cumulative precipitation
computed from the SNOTEL data):

( )= ´D S Td , 52014 T2 2014

( )= ´D S Td , 62015 T4 2015

where S is the look-up table sensitivity for each metric
and Td is the PRISMDJFM air temperature anomaly.
To evaluate the robustness of the extrapolation,
predicted D was compared to observed 2014/2015
peak SWE, DPS, and SDD anomalies ( )Dobs for each
SNOTEL station in the state ofOregonwith a period of
record beginning 1981 or earlier.

Previous studies have used empirical methods e.g.
linear regression between interannual variations in air
temperature and SWE (‘temporal analogs’;Mote 2006,
Stoelinga et al 2010, Luce et al 2014), physically-based
model simulations (Sproles et al 2013), or a combina-
tion of the two approaches (Mote et al 2005, Casola
et al 2009) to estimate SWE temperature sensitivity in
the PNW region. Luce et al (2014) presented a third
method, termed ‘spatial analogs’ that used nonlinear
polynomial regression between spatial variations in air
temperature and SWE. These studies have led to some
disagreement (Mote et al 2008, Casola et al 2009, Luce
et al 2014), thus it is important to note that our
approach is both similar (e.g. the physical model) and
unique (e.g. the extrapolation procedure) from these
previous methods.We discuss similarities and distinc-
tions between ours and previous findings in section 5.
Luce et al (2014) provide a detailed discussion of pre-
viouswork on the topic.

4. Results

4.1.Modeling and diagnosing sensitivity of SWE
metrics in the studywatersheds
Basin-wide modeled declines in peak SWE and the
concurrent loss of SCA for the four scenarios are
shown in figure 2. Peak basin-mean SWE decreased by
59% and 88%, and SCAon the basinDPS decreased by
40% and 69%, for the T2 and T4 scenarios, respec-
tively. The 10% increase in precipitation had a
relatively small effect on decreases in SWE and SCA,
but the effect was elevation (and thus temperature-
regime) dependent (figure 3). In our relatively warm
basins, the basin-mean SWE losses were nominally
offset by 7% and 2%, and SCA losses by 1% and 1%,
for the T2P10 and T4P10 scenarios, respectively.
Expressed as basin-mean sensitivities, =S 29%,SWE

T2

=S 26%,SWE
T2P10 =S 22%,SWE

T4 and =S 22%.SWE
T4P10

Shifts in timing metrics (DPS, SDD, DSC) were also
large and insensitive to increased precipitation
(table 1).

These modeled changes in SWE were primarily
controlled by shifts from snowfall to rainfall, both on a
basin-scale (table 1), and across the entire elevation
range (figures 3(a) and (b)). The largest relative decrea-
ses in SWE (figure 3(a)) occurred at low elevations
where absolute decreases (figure 3(b)) were small. The
largest absolute decreases occurred at elevations
between 1700 and 2500 m where the majority of SWE
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accumulated during the reference period. Changes in
cumulative snowmelt (figure 3(b)) appeared to be a
consequence of the reduced SWE as opposed to a
cause, as total snowmelt decreased at elevations up to

1700 m. Above 1700 m, snowmelt increased slightly,
but increased melt was small relative to the reduction
in snowfall. The strong dependence of these changes
on modeled shifts from snowfall to rainfall is

Figure 2.Maps ofmean peak SWE and SCA for theMRB andUDRB for the reference period, and for the T2, T4, T2P10, andT4P10
scenarios. Locations of SNOTEL stations and snow course transects within thewatersheds used in this study are shown as blue circles
and purple triangles, respectively.Monthlymeasurements of SWE at snow course transects provide a key source of information used
by theNRCS to develop summertime streamflow forecasts (http://wcc.nrcs.usda.gov/factpub/wsf_primer.html).

Figure 3.Themean (a) percent change in cumulative SWE and SF on theDPS, averaged over 100 m elevation bands (b) absolute
change in SWE, SF, and cumulative snowmelt on theDPS, averaged over 100 m elevation bands; (c) the partitioning of precipitation
into rainfall, SWE, snowmelt, and sublimation (canopy+surface), cumulative on theDPS; and (d) the distribution ofmeanmodeled
air temperature onmodeledwet days in the studywatersheds for the reference period and for the T2 andT4 scenarios. The rain–snow
partitioning temperature (1.75 °C) used in this study is shown as a vertical black line.With incremental warming, significant fractions
of snowfall events shift to rainfall events, but the area shifted diminishes with increasedwarming.
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demonstrated by the basin-scale mean wet-day air
temperature distribution (figure 3(d)). The non-
linearity of modeled S suggested by comparing basin-
scale ST2 to ST4 is at least in part explained by the step-
function shift toward warmer temperatures we apply
to this distribution, however the true effect will
depend on changes to the statistical moments of this
distribution in both space and time under future
climate.

4.2. Comparing the T2 andT4 sensitivities to
observations from2014 and 2015 at SNOTEL test
sites
During 2014 and 2015, the mean DJFM air temper-
ature anomalies at the four SNOTEL test sites were
+1.3 °C and +3.9 °C, respectively. Basin-averaged
PRISM air temperature anomalies were +1.0 °C and

+3.5 °C, respectively. Cumulative SNOTEL precipita-
tion for 2014 and 2015 on 1 April was 103% and 92%
of normal, whereas basin-averaged PRISM precipita-
tion was 97% and 90% of normal, respectively. These
unique meteorological conditions roughly mirror
what is expected for the region by mid- to late 21st
century (Mote and Salathé 2010) and thus motivate
our comparison between the modeled T2/T4 SWE,
measured SWE during 2014/2015, and corresponding
sensitivities (figure 4).

During 2014, the peak SWE anomaly was −40%,
DPS was 3 days later than normal (1 April), and SDD
was 39 days earlier than normal (3 June). The T2 peak
SWE anomaly was −53%, DPS was 24 days earlier (9
March), and SDD was 41 days earlier (1 June). During
2015, the peak SWE anomaly was −83%, DPS was 73
days earlier than normal (16 January), and SDDwas 82

Table 1.The basin-mean sensitivity of eachmetric for each scenario, and themeanmodeled sensitivity at
basin test sites compared to observed sensitivities for 2014 and 2015. Snowfall is notmeasured at the test sites
and snow-covered area is not a point-scalemetric.

Basin-mean Test-sites

ST2 ST2P10 ST4 ST4P10 ST2 S2014 ST4 S2015

Peak SWE (%) −29 −26 −22 −22 −26 −33 −21 −22

1April SWE (%) −31 −27 −23 −22 −28 −35 −23 −25

Peak SF (%) −28 −25 −21 −21 — — — —

1April SF (%) −26 −24 −21 −20 — — — —

Peak SCA (%) −20 −19 −17 −17 — — — —

1April SCA (%) −25 −23 −21 −20 — — — —

DPS (days) −13 −13 −13 −13 −11 2 −11 −19

DSC (days) −34 −31 −31 −29 −28 −32 −24 −21

SDD (days) −25 −23 −23 −22 −21 −32 −19 −22

Figure 4.The 30 yearmeanmeasured precipitation and SWE compared to (a)WY2014 conditions and the T2 scenario averaged
across the four test sites and (b)WY2015 and the T4 scenario averaged across the four test sites. (c) and (d) Same but for air
temperature. The SNOTELDJFMprecipitation and air temperature anomalies are noted in blue and red text, respectively.
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days earlier than normal (21 April). The T4 peak SWE
anomaly was−85%, DPS was 39 days earlier (23 Feb-
ruary), and SDDwas 80 days earlier (23 April). Expres-
sed as sensitivities, SSWE

2015 (−22%)was strikingly similar

to our estimate for SSWE
T4 (−21%), but SSWE

2014 was under-

estimated by S .SWE
T2 The timingmetrics S ,DPS S ,SCD and

SSDD showed varying levels of agreement between
modeled and observed sensitivity but the modeled
SDPS was notably inconsistent with observations dur-
ing both years (table 1).

Further examination of figure 4 shows that tem-
poral SWE variability during 2014 and 2015 corre-
sponded to the sub-seasonal phasing of precipitation
and temperature anomalies (which the meanmodeled
sensitivities necessarily smooth out), shedding light on
the deviation between observed and modeled S ,DPS

S ,SCD and S .SDD This behavior was consistent across
sites during 2014, when early winter SWE was below
average but peaked 3 days later than normal on 1April,
and during 2015 when the opposite phasing occurred,
SWE peaked 73 days early on 16 January, and melted
out 82 days early on 21 April, as opposed to more
modest shifts predicted by SDPS and SSDD (table 1).
The effect of storm phasing was particularly strong in
2014 when a very cold and wet February boosted
record low January snowpacks and the resulting 1
April SWE was recorded as the 8th lowest in the 35
year period of record. Each site showed a pattern of
recovery that resulted in a normal DPS. Contrasting
behavior was observed during 2015 when early season
precipitation coincided with anomalously warm
temperature and the basin-wide temperature anomaly
remained above 3.4 °C from January through March,
with no recovery as in 2014. As a result, SWE peaked
on 16 January and the lowest 1 April SWE in 35 years
was recorded despite 90%-of-normal 1 April
precipitation.

4.3. Extrapolating basin-derivedmodeled
sensitivities statewide
These results demonstrate that 2014/2015 peak SWE
in our study watersheds closely resembled the T2/T4
peak SWE, but also that observed and modeled DPS
and SDD were less consistent in both absolute terms
and when expressed as S. Here, we show how the
basin-derived S predict observed D across a broader
geographic area during 2014 and 2015. We first note
that figure 3 suggests S strongly depends on elevation,
a result noted by many (Knowles and Cayan 2004,
Mote 2006, Tennant et al 2015). However, this
dependence is largely due to the dependence of air
temperature on elevation (Mote 2006). Thus, a more
general approach is to define S as a function of mean
air temperature during the snow accumulation season.
We use these relationships (figure 5), as opposed to the
basin-mean sensitivities, to extrapolate our estimates
of S across the state (figure S2), and to test the degree
to which observed conditions during 2014 and 2015

correspond to those predicted by the modeled
sensitivities.

Statewide, DSWE
2015 predicted by SSWE

T4 corresponded
reasonably well to observed anomalies during 2015
(r2=0.52; figure 6(d)) when winter conditions were
unusually warm (+3.3 °C at >1000 m) and precipita-
tion relatively normal (−1% at >1000 m), with mini-
mal spatial variability throughout the state (figure S3).
During 2014, precipitation variability (−17% at
>1000 m) likely contributed to the underpredicted
peak SWE anomalies (r2=0.39; figure 6(a)). In gen-
eral, there was much more variability in the observed
response to conditions in 2014 and 2015 than the
mean sensitivity functions predicted (figure 6). Only
peak SWE showed similar spread across the observa-
tions as the extrapolated predictions. The timing
metrics DPS and SDD were particularly scattered.
These results are consistent with the plot scale analysis
where the phasing of precipitation appeared to deter-
mine the temporal character of SWE, which likely dif-
fered from phasing across the state. Further, the 1σ
spread in the sensitivity functions (figure 5) suggest
substantial uncertainty across relatively narrow cli-
matic bands, especially at warmer locations and for
greatermagnitudes of warming.

When averaged across all sites, the 2014 statewide
mean peak SWE anomaly was −36%, DPS was 9 days
earlier than normal on 13 March, and SDD was 52 days
earlier than normal on 19 April. Mean values predicted
by ST2 were−30%, 17days, and 27days (for comparison
see yellow squares, figure 6). The 2015 mean peak SWE
anomaly was −67%, DPS was 56 days earlier than nor-
mal on 26 January, and SDD was 101 days earlier than
normal on 1March. Mean values predicted by ST4 were
−68%, 40 days, and 64 days. The cool temperatures and
late precipitation during spring 2014 resulted in a DPS
later than predicted, but the SDD occurred 25 days ear-
lier than predicted. The early precipitation and warmth
duringwinter 2015 resulted in aDPS 26 days earlier than
predicted, and the SDD 37 days earlier than predicted.
Expressed as sensitivities for the Oregon SNOTEL net-
work, SSWE

T2 =29% °C−1, SSWE
2014 =30% °C−1, SSWE

T4 =
20% °C−1, and SSWE

2015 =20% °C−1.

5.Discussion

While a+4 °Cwarmingmay seem extreme in the near
future, it is well within the bounds of the 1.3 °C–5.1 °C
warming projected by mid- to late 21st century for the
PNW (Dalton et al 2013). The warm winters of 2014
and 2015 in Oregonmay provide a cautionary glimpse
of winter temperature conditions in this maritime
region, but our results suggest these winters are not
ideal analogs for all metrics of the direct SWE
temperature sensitivity presented here.

Peak SWE sensitivities were similar to the
22–30% °C−1 reported in previous physically-based
modeling studies of basin-scale 1 April SWE sensitivity
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in this region (Casola et al 2009, Sproles et al 2013),
and showed some predictive ability especially when
aggregated to mean values. However, empirical

findings suggest temperature sensitivity is nonlinear
both with elevation (temperature regime) and degree
of warming (Luce et al 2014). Thus, the SWE

Figure 5.Themodel-derived empirical relationships (look-up tables) betweenmeanDJFMair temperature and (a)peak SWE
sensitivity S ,SWE (b) the snow-disappearance date sensitivity ( )S ,SDD (c) the date of peak SWE sensitivity ( )SDPS and (d) the duration of
snow cover sensitivity ( )S ,DSC for the T2 andT4 scenarios. The SSWE sensitivities ‘saturate’ at 50% and 25% for the T2 andT4
scenarios, respectively, indicating that pixels above the corresponding ordinate temperature become snow-free (100% loss). The
S ,SDD S ,DPS and SDSC truncate at these same temperatures as there is no snow to compute a change (only the T4 curve saturates within
the range of temperatures in the study region).

Figure 6.The predicted peak SWE,DPS, and SDDanomalies ( )Seff compared to observed anomalies ( )Sobs at each of the 69 SNOTEL
stations shown infigure 1. The bestfit line andmean Seff versusmean Sobs are plotted as dashed line and yellow squares, respectively.
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sensitivity of individual watersheds will depend on
both the hypsometric distribution of air temperature
(Tennant et al 2015) and the degree of regional warm-
ing, which may be amplified by elevation-dependent
warming trends (Mountain Research Initiative EDW
Working Group 2015). In the PNW, uncertainties for
projected changes in precipitation may outweigh the
temperature sensitivity of SWE. The reader is advised
to consult figure 11 of Luce et al (2014) to con-
textualize the temperature-regime from which our
results are derived.

Our study provides evidence that 2014 and 2015
are reasonable climate analogs for peak SWE sensitiv-
ity, but not necessarily for the DPS or SDD. Such find-
ings provide insights into the spatial distribution and
climatic causes of snowpack sensitivity, yet it remains
difficult to relatemodel coefficients, response surfaces,
and model output to conditions from individual years
that are hypothesized to resemble warmer futures.
While it may be attractive to use individual years to
visualize a warmer future, care must be taken to
understand the limits to such an approach. Peak SWE
may work reasonably well as an analog metric because
it integrates the effects of individual storms over the
course of the winter whereas DPS and SDD can be
strongly influenced by individual storm events and are
not likely to represent any sort of future average condi-
tions. At the same time, the common practice of pre-
senting the potential impacts of climate change on
water resources in terms of mean shifts in variables of
interest (e.g. the sensitivities presented here) may not
represent any sort of future actual conditions.

The ability to diagnose sensitivity based on chan-
ges to water balance partitioning for a specific eleva-
tion range or spatial scale is a key strength of spatially
distributed models such as SnowModel that may be
useful to guide management and research directions.
For example, our results suggest that warming may
lead to large decreases in mid-winter snowmelt,
increased rainfall, and earlier snow disappearance,
which may change the amount and timing of soil
water available for evapotranspiration in forested
basins such as the study region, with unknown con-
sequences for forest productivity (Garcia and
Tague 2015, Harpold 2016). From amanagement per-
spective, our results suggest that on average, 70% of 1
April SWE accumulates above the SNOTEL station
network in theMRB, compared to 40% for the UDRB,
due to higher elevation network coverage in the
UDRB. With a 2 °C and 4 °C warming, the modeled
snowline shifted upward such that 94% and 99% of 1
April SWE accumulated above the MRB network,
compared to 57% and 90% for the UDRB. In either
case, as climate warming proceeds, the vast majority of
SWE will likely accumulate where there are no histor-
ical measurements, rendering the predictive capacity
of ourmonitoring networks obsolete.

The results presented here are derived from a sin-
gle hydrologic model employing a widely used, but

relatively simple, temperature-based snowfall para-
meterization. The lapse rate-based temperature inter-
polation does not capture the effects of inversions and
storm-scale lapse rate variability. Our climate scenar-
ios ignore dynamical changes to the climate-snow sys-
tem that are expected to result fromwarming (Mankin
and Diffenbaugh 2014). These are important sources
of uncertainty in our estimate of temperature sensitiv-
ity, and future work should focus on constraining this
uncertainty. In particular, in addition to precipitation
magnitude variability, there is a critical need to under-
stand how stormphasing and associated freezing levels
may respond to climate warming in order to anticipate
changes to the timing of SWE accumulation and
ablation.

The extrapolation procedure was based on temp-
erature, ignoring other variables such as topography
and vegetation that influence SWE through modifica-
tion of surface mass and energy fluxes. The 1σ spread
in figure 5 demonstrates large variability across rela-
tively narrow climatic bands in our study watersheds.
This uncertainty is underscored by the simplistic
representation of forest cover used in this and most
hydrologic model studies. We do not explicitly model
the conditions of 2014 and 2015, nor do we use future
climate scenarios, weather generators, or other ensem-
ble-based techniques (e.g. Mankin et al 2015) to force
the model and quantify our results in terms of statis-
tical likelihoods. These results are not a critique of the
sensitivity approach in a general sense, but instead
highlight the limitations of the approach as well as the
utility of extreme events for anticipatingmean changes
in snowmetrics.

6. Conclusion

Is the recent snow drought an analog for winter
warming sensitivity of Cascades snowpacks? In terms
of peak SWE accumulation the snow drought was well
approximated by the mean temperature sensitivity
presented here. However, mean sensitivities may not
be relevant at the seasonal scale for metrics such as the
DPS, SDD, and DSC, and therefore may have less
utility as planning tools. Future work should test the
robustness of this finding over longer time periods as
opposed to a single extreme event, and within the
context of ensemble simulations and/or internally
consistent future climate simulations. Nevertheless, in
as far as our modeled sensitivity is representative of
future mean conditions, we find that for each 1 °C of
warming, there is a 28% shift from snowfall to rainfall,
SWE decreases up to 30%, the DPS advances by up to
twoweeks, and the SDD advances by over three weeks;
however, these basin-scale values are temperature-
regime dependent. With a 2 °C warming, low- and
mid-elevation snow is virtually eliminated. The impli-
cations of these findings will differ based on stake-
holder needs, for example flood control and irrigation

9

Environ. Res. Lett. 11 (2016) 084009



timing, hydropower generation, and snow dependent
habitat, and highlight the critical role that elevation
plays in controlling the sensitivity of water resources to
warming inmountainous regions.
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