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Abstract
Biomass burning plays a critical role not only in atmospheric emissions, but also in the deposition and
redistribution of biologically important nutrients within tropical landscapes.We quantified the
influence offire on biogeochemical fluxes of nitrogen (N), phosphorus (P), and sulfur (S) in a 12 ha
forested peatland inWest Kalimantan, Indonesia. Total (inorganic+organic)N, -NO3 –N, +NH4 –

N, total P, -PO4
3 –P, and -SO4

2 –Sfluxesweremeasured in throughfall and bulk rainfall weekly from
July 2013 to September 2014. To identify fire events, we used concentrations of particulatematter
(PM10) andMODISActive Fire Product counts within 20 and 100 km radius buffers surrounding the
site. Dominant sources of throughfall nutrient depositionwere explored using cluster and back-
trajectory analysis. Ourfindings show that this Bornean peatland receives some of the highest P
(7.9 kg -PO4

3 –P ha−1yr−1) and S (42 kg -SO4
2 –S ha−1yr−1) deposition reported globally, and thatN

deposition (8.7 kg inorganicN ha−1yr−1) exceeds critical load limits suggested for tropical forests. Six
major dry periods and associated fire events occurred during the study. Seventy-eight percent offires
within 20 km and 40%within 100 kmof the site were detectedwithin oil palmplantation leases
(industrial agriculture) on peatlands. Thesefires had a disproportionate impact on below-canopy
nutrient fluxes. Post-fire throughfall events contributed>30%of the total inorganicN ( -NO3 –N+

+NH4 –N) and -PO4
3 –Pflux to peatland soils during the study period. Our results indicate that

biomass burning associatedwith agricultural peatfires is amajor source ofN, P, and S in throughfall
and could rival industrial pollution as an input to these systems duringmajorfire years. Given the
sheermagnitude offluxes reported here, fire-related redistribution of nutrientsmay have significant
fertilizing or acidifying effects on a diversity of nutrient-limited ecosystems.

1. Introduction

Coupled changes in climate and land use are altering
fire regimes in tropical forest regions (Siegert
et al 2001, Cochrane 2003, Bowman et al 2009,Hansen
et al 2009, Margono et al 2014), with consequences for
global, regional, and local biogeochemical cycles
(Crutzen andAndreae 1990, Andreae andMerlet 2001,
van der Werf et al 2010). For example, over the past

two decades, Indonesia has transitioned from a
historically long fire-return interval regime (Gold-
ammer 2007) to become one of the most important
sources of biomass burning emissions worldwide (van
der Werf et al 2010). In 2015, carbon dioxide (CO2),
methane (CH4), and nitrous oxide (N2O)CO2-equiva-
lent emissions from Indonesian fires were estimated to
exceed Japan’s 2013 fossil fuel CO2 emissions (Global
Fire EmissionsDatabase 2015).
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Although fires in Indonesia are anthropogenic––
ignited during drier conditions primarily to clear vege-
tation for agriculture––these land-clearing fires and
associated wildfires have increased dramatically in
Sumatra and Kalimantan since the early 1990s as a
direct result of governmental land-use policies, parti-
cularly logging and forest degradation, economic
incentives for industrial agriculture, and government-
sponsored transmigration, among other factors (Sie-
gert et al 2001, Curran et al 2004, Dennis et al 2005,
Langner et al 2007, Murdiyarso and Adiningsih 2007,
Langner and Siegert 2009, Page et al 2009). El Niño
Southern Oscillation (ENSO) conditions exacerbate
dry season droughts and result in nonlinear increases
in fire activity (van derWerf et al 2008). Mounting evi-
dence suggests that fire regimes in Sumatra and Kali-
mantan are again changing; large severe fires can occur
following brief dry spells and during non-ENSO years
(Pittman et al 2013, Gaveau et al 2014). Moreover, an
increasing proportion of these fires occur within peat-
lands (Miettinen et al 2011a,Marlier et al 2015).

Indonesian peatlands (∼200 000 km2) comprise
∼5% of global peatland area and store an estimated
57 Gt carbon (C), ∼9.4–12% of the global peat C pool
(Page et al 2011). These ecosystems are highly sensitive
to reductions in precipitation––especially extended
ENSO-associated droughts (Field et al 2009)––that
lower the water table, thereby leading to peat desicca-
tion and enhancing peat flammability (Usup
et al 2004, Wooster et al 2012). Due to high rates of
forest conversion and peatland drainage associated
with industrial-scale agricultural expansion (e.g., oil
palm), peatlands have become increasingly vulnerable
to fire (Hooijer et al 2006, Miettinen et al 2011a,
Carlson et al 2013, Margono et al 2014, Turetsky
et al 2015).

Peatland fires not only turn peatlands from C sink
to source, but they also release large amounts of other
gases and particles to the atmosphere; peat emissions
are often orders of magnitude greater than those from
other land-cover types (Christian et al 2003, Iinuma
et al 2007, van der Werf et al 2010, Akagi et al 2011).
For example, peat combustion is a significant source of
biologically important nutrients, including nitrogen
(N), phosphorus (P), sulfur (S), and potassium (K)
(Andriesse 1988) that are often stored in peat for mil-
lennia (Weiss et al 2002). Emitted gases, particles, and
chemicals are eventually delivered to downwind eco-
systems, either dissolved in precipitation (wet or fog
deposition) or directly in dry form (dry deposition;
Weathers and Ponette-González 2011). After hitting
the forest canopy, exchange via uptake and/or leach-
ing can occur before nutrients are deposited to soils in
throughfall (Ponette-González et al 2014), resulting in
the redistribution of nutrients across the landscape
(Ponette-González et al 2010a).

Ombrogenous peatlands are particularly sensitive
to changes in atmospheric nutrient loading because
they derive nutrients exclusively from the atmosphere

and are also often nutrient limited (Tipping et al 2014).
Research in boreal and temperate peatlands indicates
that increases in atmospheric deposition can alter eco-
system C fluxes through effects on species composi-
tion, productivity, decomposition, and CH4 flux
(Gauci et al 2004, Bragazza et al 2006, Limpens
et al 2008, Frolking et al 2011).

Given the magnitude of peatland fire emissions
and the potential consequences of resultant deposition
for biogeochemical cycling, here we address the fol-
lowing question: what is the influence of fires on bio-
geochemical fluxes of three biologically important
plant nutrients (N, P, S) to adjacent, nutrient-limited
peatland ecosystems? Specifically, what is the magni-
tude of fire-related N, P, and S fluxes to peat soils and
what are the most important sources of N, P, and S in
throughfall?

2.Methods

2.1. Study site and climate
This study was conducted in Kubu Raya District, West
Kalimantan, Indonesia, ∼35 km from the coast in a
12 ha intact forested peatland (mean peat depth
3.5±0.1 m (±SE), range 2.6 –5.4 m; 0 °12′55″ S,
109 °25′38″ E). Based on vegetation mapping and
monitoring from 2005–2014, the density of woody
stems >10 cm dbh is ∼458 stems ha−1, while mean
leaf area index (LAI) under closed canopy is
3.4±0.69 m2 m−2. Mean tree basal area is
15±0.1 m2 ha−1, with aboveground biomass of
148±4.0 Mg ha−1. Large-scale oil palm plantations,
degraded forest fragments, government-sponsored
transmigration areas, open burned abandoned areas,
and smallholder agricultural fields surrounded the
sampling area in 2015 (figure 1(b)).

Climatic data compiled from Supadio Interna-
tional Airport in Pontianak (8 km from site) indicate
that mean annual rainfall (1960–2014) is
3197±481 mm (±SD), with considerable intra- and
inter-annual precipitation variability due to local
land-sea breezes, seasonal monsoons, and ENSO
events (Qian et al 2013). Total annual rainfall ranges
nearly two-fold, 2329–4912 mm, from strong dry El
Niño to strong wet La Niña years. Monthly rainfall is
highest during the onset of the northeast monsoon
(Oct–Dec: 314–359 mmmo−1) and lowest when the
southwest monsoon prevails (Jun–Sep:
186–250 mmmo−1). Fire events mirror these rainfall
patterns with few fires recorded during wet months
and peak burning during drier periods (Vadrevu
et al 2015).

2.2. Fire, land use, and air quality observations
TheMODISActive Fire Product (Giglio et al 2003)was
used to determine fire locations within 20 and 100 km
radius buffers surrounding the forested peatland. Fire
counts are likely underestimated with these MODIS
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data because clouds and smoke as well as forests with
high LAI obscure fire detection (Roy et al 2008). More-
over, smoldering fires typical of peatlands are impos-
sible to discern from flaming fires based on MODIS
data, and are likely to be undetectable if they occur
belowground (Elvidge et al 2015). Within 100 km
surrounding this site, we digitized provincial and
district agricultural oil palm lease records. Using
peatland distribution information from RePPProT
(1990) and Wetlands International (Wahyunto and
Subagjo 2004), we then compiled fire hotspots by: (1)
oil palm lease versus non oil palm lease; and, (2) soil
type (i.e., mineral or peatlands; figure 1(c)). Daily
observations of particulate matter concentration

<10 μm diameter (PM10) were obtained from the
government agency Badan Lingkungan Hidup Kota
Pontianak (23 km from site).

2.3. Throughfall chemicalfluxes
Across the 12 ha forested peatland, we measured
dissolved total N, -NO3 –N, +NH4 –N, total P, -PO4

3

–P, -SO4
2 –S, and Cl− in throughfall, water that flows

through plant canopies and carries nutrients and
pollutants from atmospheric deposition and canopy
processing to soils. Using a spherical densiometer, the
study site was stratified by canopy cover (0%–35%
open, 35%–65% intermediate, 65%–100% closed).
Six throughfall collectors were established randomly

Figure 1.Dramatic land conversion around the 12 ha intact forested peatland (black box) from (a) June 2004 to (b) July 2015 inWest
Kalimantan, Indonesia (map data: Google, DigitalGlobe). Burning and clearing isolated the site’s remaining forested peatlands. (c)
Within 20 kmof the site (black circle),fires detected from July 2013 to September 2014were concentratedwithin oil palm leases on
peatlands, which contained 78%of fires but only 49%of land area. Inset: location of study site inWest Kalimantan, Indonesia.
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within each canopy cover class, for 18 total collectors
(figure S1). Three bulk rainfall deposition collectors
(i.e., collectors that remain open between sampling
events) were established in an adjacent clearing with-
out canopy cover. Rainfall volume was recorded every
fiveminutes with a 20 cmdiameter tipping bucket rain
gauge (Rainwise, Rainew 111) connected to a HOBO
event logger (Onset, UA-003-64).

Throughfall and bulk deposition collectors were
constructed with a 15 cm diameter funnel set on a
PVC tube 1 m aboveground (afterWeathers et al 2006,
Ponette-González et al 2010b). Funnels were rinsed
with deionized water and connected to plastic tubing,
which drained into a 5 l plastic jug. A polywool filter
was placed inside the funnel to prevent sample con-
tamination. Water samples were collected weekly
from July 2013 to September 2014. After each sample
week (i.e., event), water volume was measured and a
300 ml aliquot was collected in a plastic bottle, wrap-
ped in aluminum foil, and immediately frozen. Frozen
samples were shipped to the Indonesian Institute of
Sciences Limnology Laboratory in Bogor, Indonesia,
where they were analyzed for total N (inorganic+or-
ganic N), -NO3 –N, +NH4 –N, total P (inorgani-
c+organic P), -PO4

3 –P, -SO4
2 –S, and Cl−

following standard protocols (APHA 1975, 2005,
2012, text S1).

Organic Nwas estimated as the difference between
total N and dissolved inorganic N (DIN, -NO3 –

N+ +NH4 –N) and organic P as the difference
between total P and -PO4

3 –P. Chloride was used to
determine the seasalt- -SO4

2 ( )- -ss SO4
2 fraction in

bulk rainfall using the average - -SO Cl4
2 ratio in sea-

water (0.14, Kroopnick 1977). Non-seasalt -SO4
2

(nss– )-SO ,4
2 an indicator of pollution, was calculated

as the difference between -SO4
2 and ss– -SO .4

2

Volume-weighted mean (VWM) bulk rainfall and
throughfall concentrations were computed for each
sample event (i.e., week) or overall:

( ) ( )*= S SVWM conc precip precip 1i i i

where i is the collector, conc is the solute concentra-
tion (mg l−1) and precip is the rainfall or throughfall
amount (mm). Bulk rainfall deposition and through-
fall chemical fluxes for each event were then calcu-
lated by multiplying VWM concentrations by water
volume (de Souza et al 2015). To compute the
weightedmean and standard deviation of constituent
concentrations across all weeks, as well as post-fire
and normal weeks, we used the SDMTools package in
R (VanDerWal et al 2014). From weekly VWMs, we
calculated overall mean and standard deviation,
weighting by the total volume across all collectors
each week. We applied weighted least squares regres-
sion to determine whether concentrations between
post-fire and normal weeks were significantly
different.

2.4. Chemical signatures and sources
Hierarchical cluster analysis was used to identify
groups of throughfall events with similar chemical
composition. Prior to analysis, non-normally distrib-
uted data were log-transformed and all data were
standardized by subtracting the mean and dividing by
the standard deviation of each variable (Templ
et al 2008). Cluster analysis was performed on -NO3 –

N, +NH4 –N, organic N, -PO4
3 –P, -SO4

2 –S, and
Cl− concentrations using Ward’s clustering method.
Organic P was correlated with -PO4

3 –P and thus
excluded to minimize redundancy. After clustering,
sources of elements in throughfall were explored using
various methods. We examined between-cluster dif-
ferences in molar ratios (N/P, -N SO ,4

2

- -SO NO ,4
2

3
+ -NH NO ,4 3

- -SO PO ,4
2

4
3 and

)- -SO Cl4
2 using Kruskal–Wallis tests with post-hoc

Steel Dwaas comparisons and within-cluster Pearson
correlation coefficients among variables. Significance
was set at p<0.05. Analyses were performed using
JMP v12 (SAS Institute, Cary, NC, USA). We also
applied NOAA’s Hybrid Single-Particle Lagrangian
Integrated Trajectory (HYSPLIT; Draxler and
Rolph 2015) model to compute 168-h backward air
mass trajectories for each throughfall event. Trajec-
tories were computed at the surface (100 m), within
the boundary layer (500 m), and above the boundary
layer (1500 m).

3. Results

3.1.Dry periods andfire
During the 15 month (65 week) study (July 2013–
September 2014), total rainfall was 2819 mm
(188 mmmo−1), well below the long-term monthly
average for this region (266 mmmo−1). Six dry
periods occurred that varied in duration and severity
(figure 2(a), table S1). These dry periods were asso-
ciated with fire pulses––defined here as two or more
weeks with�10 fire hotspots detected within 20 km of
the site––that also differed in magnitude, proximity to
the focal site, and land-cover source (figure 2(b),
table S1).

Total hotspots ranged 20-fold (10–196 hotspots)
within 20 km of the site, and seven-fold (138–968 hot-
spots) within 100 km of the site. Approximately 80%
of fires (20 km) and 53% of fires (100 km) were detec-
ted within oil palm leases, which covered 64% (20 km)
and 49% (100 km) of the land area. A disproportionate
number of fires was also detected within peatlands:
95% of fires versus 65% of land area within 20 km and
76% of fires versus 42% of land area within 100 km of
the site. Seventy-eight percent (20 km) and 40%
(100 km) of fires were located within oil palm leases on
peatlands. PM10 levels closely tracked the fire pulses
and exceeded 150 μg m−3, the Indonesian daily ambi-
ent air quality standard, during all fire events

4
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(figure 2(b)). Daily PM10 values ranged from
194–886 μg m−3, with 15 d> 301 μg m−3.

3.2. Throughfall N, P, and Sfluxes
From July 2013 to September 2014, a total of 44
throughfall events (i.e., weeks) were sampled. Average
VWM concentrations of all solutes measured in
throughfall over the study period were significantly
greater than in rainwater (p<0.005, Wilcoxon
signed-rank test). Orthophosphate–P showed the
most dramatic enrichment in throughfall concentra-
tion. Concentrations of -PO4

3 –P were 35-fold higher,
while total P and organic P were 13-fold and four-fold
higher, respectively, in throughfall than in bulk rainfall
(table S2). For total N, -NO3 –N, +NH4 –N,DIN, and

-SO4
2 –S, throughfall to bulk rainfall enrichment

ratios ranged 1.4–2.3, indicating increasing concentra-
tionswith passage of water through the forest canopy.

Throughfall water flux was 95% of incoming rain-
fall (2688mm). Notably, total P input, which averaged
0.024 kg P−1 ha−1 wk−1 in bulk rainfall (table S2), was
12-fold higher in throughfall, 0.29 kg P−1 ha−1 wk−1

(table 1). Dry deposition and/or canopy leaching
(throughfall—bulk deposition) comprised 92% of the
total P, 97% of the -PO4

3 –P and 76% of the organic P
flux to the soil. The form of P delivered in rainwater
differed markedly from that in below-canopy
throughfall. Orthophosphate–P increased from ~33%
of total P in rainwater to >78% of total P in

throughfall, indicating that -PO4
3 –P is deposited pri-

marily in dry form and/or that organic P is converted
to -PO4

3 –P after deposition (Tipping et al 2014).
Total throughfall -NO3 –N and +NH4 –N fluxes

were 117% and 110% higher (table 1), respectively,
than bulk rainfall deposition of these ions (table S2).
On average, mean DIN flux to soils was
0.25 kg ha−1 wk−1. Differences between throughfall
flux and bulk deposition were greater for DIN
(5.8 kg ha−1/15mos) than for organic N (4.7 kg ha−1/

15 mos), indicating higher dry deposition and canopy
exchange of DIN than of organic N. However, organic
N represented a greater fraction of total N thanDIN in
both bulk rainfall (69%, table S2) and throughfall flux
(60%, table 1).

Total -SO4
2 –S flux was two-fold higher than total

N flux. Bulk rain S deposition was 31 kg ha−1/15mos,
of which 45% was nss– -SO4

2 –S. An additional
22 kg S ha−1/15 mos were delivered in throughfall,
resulting in a total flux of 53 kg S ha−1 /15 mos to
peatland soils (table 1). Assuming a similar proportion
of nss– -SO4

2 –S in throughfall as in rainfall, 24 kg
nss– -SO4

2 –S ha−1/15moswere deposited to this site.

3.3. Contribution offires to nutrient loading
VWM concentrations and fluxes were calculated
separately for the six post-fire throughfall events (14%
of all 44 events) and normal events (table 1). Concen-
trations of inorganic N and P in throughfall were most

Figure 2.Throughfall N, P, and Sfluxes (kg ha−1 wk−1) to a tropical forested peatland inWest Kalimantan, Indonesia from July 2013
to September 2014. (a)Weekly throughfall waterflux (mm); (b)MODIS-detected fires within 20, 50, and 100 km radius buffers
surrounding the 12 ha forested peatland andmaximumweekly PM10 concentrations (grey line); (c) localfires (�20 km from the site)
andweekly -NO3 –N fluxes; (d) localfires andweekly -PO4

3 –Pfluxes; and, (e) localfires andweekly -SO4
2 –Sfluxes.Hatched bars

indicate post-fire throughfall events (n=6; table S1). Horizontal dashed lines indicatemean fluxes over the sample period and black
arrows illustrate rain-driven enhancements in chemicalfluxes.
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Table 1.Volume-weightedmean (VWM) throughfall concentrations (mg l−1) and throughfall fluxes to soils for post-fire throughfall events (n=6, precedingweeks�10fires within 20 kmbuffer followed by rain), normal events (n=38),
and all events sampled from July 2013 to September 2014 in a rainfed forested peatland inWest Kalimantan, Indonesia. Contribution of post-fire and normal events to the total throughfallflux is shown over the entire 15 month sampling
period.Means±SD are shown forVWM.Asterisk (*) indicates significant differences inVWMbetween post-fire throughfall and normal events (p<0.05). Throughfall fluxesmay not add due to rounding.

Throughfall (mm)
VWM (mg l−1) Throughfallflux (kg ha−1)

Contribution to totalflux

(15 mos,%)

All events Total post-fire Total Normal Total all events Total post-fire Total normal Total all events Post-fire Normal

Total N 2688 1.2±0.39 0.95±0.36 0.99±0.37 6.7 21 27 25 75

DIN 2688 0.59±0.29* 0.35±0.17* 0.39±0.21 3.5 7.5 11 32 68

Ammonium–N 2688 0.22±0.22 0.15±0.15 0.16±0.16 1.3 3.1 4.4 29 71

Nitrate–N 2688 0.37±0.15* 0.20±0.080* 0.23±0.12 2.2 4.3 6.5 34 66

OrganicN 2688 0.59±0.19 0.60±0.28 0.60±0.27 3.3 13 16 20 80

Total P 2688 0.64±0.34* 0.42±0.20* 0.46±0.24 4.0 8.7 13 31 69

PO −3
4 –P 2688 0.50±0.26* 0.33±0.14* 0.36±0.18 3.1 6.8 9.9 31 69

Organic P 2688 0.14±0.09 0.09±0.07 0.10±0.08 0.9 1.9 2.8 31 69

Sulfate–S 2688 1.8±0.58 2.0±1.0 2.0±0.97 10 43 53 19 81
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elevated after fire, whereas organic N concentrations
were similar between post-fire throughfall and all
other events. Only -SO4

2 –S concentration was lower,
on average, in post-fire throughfall compared to the
other events.

Nineteen to 34% of the total throughfall chemical
flux over the 15 month periodwas accounted for by six
post-fire events (table 1). During these events, over a
third of ‘biologically-available’ nutrient deposition
occurred: -PO4

3 –P (31%), -NO3 –N (34%), and
+NH4 –N (29%). Post-fire events contributed 19% of

total throughfall S and an estimated 19% of
- -nss SO4

2 –S flux.
We also compared total N, total P, and S fluxes

sampled in throughfall during two water years (Octo-
ber 2012–September 2013, October 2013–September

2014; text S2)with similar rainfall but a three-fold dif-
ference in total annual fire counts �20 km from the
site (figure 3). Total P and -SO4

2 –S in throughfall
were two-fold higher, while total N was only slightly
greater, during the high-fire compared to the low-fire
year (figure 3). The slight increase in total N likely
reflects the prevalence of organic N in throughfall,
whichwas little affected by fire (table 1).

3.4. Chemical signatures and sources
Cluster analysis discerned five unique throughfall
event clusters (table 2). Cluster 1 had the lowest

+ -NH NO4 3 ratio and the highest - -SO Cl4
2 ratio.

Throughfall -SO4
2 and organic P concentrations were

significantly and positively correlated (r=0.62,
p=0.043), suggesting a biomass source. Cluster 1

Figure 3.Total N, total P, and -SO4
2 –Sfluxes in throughfall sampled during a high-fire (October 2012–September 2013) and low-fire

(October 2013–September 2014) year in a forested peatland inWest Kalimantan, Indonesia. (a)Total throughfall waterflux
(mm yr−1); (b) totalfire detections (�20 kmof the site); (c) totalN flux (kg ha−1 yr−1); (d) total Pflux (kg ha−1yr−1); and, (e) total

-SO4
2 –S flux (kg ha−1yr−1).
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contained three of six post-fire throughfall events,
with most samples collected during peak biomass
burning months in Indonesia and northern Australia
(July–September; figure 4). Backward trajectories con-
firmed prevailing southeasterly winds that originated
in northern Australia and then passed over southern
Kalimantan before arriving at the focal site.

For Cluster 2, the mean - -SO NO4
2

3 ratio was as
much as 14-fold higher compared to the other clusters
(table 2), and nss– -SO4

2 comprised 79% of -SO4
2 in

rainwater. Volcanic eruptions occurred in Southeast
Asia during five of seven throughfall events included in
this cluster (Global Volcanism Program 2013).

However, SO2mass over Java and western Borneo was
elevated during only two of these events, which fol-
lowed the eruption of Sangeang Api in May 2014,
coinciding with southeasterly airflow (NASA’s Ozone
Monitoring Instrument image database http://so2.
gsfc.nasa.gov/). Cluster 2 also had the highest

+ -NH NO4 3 ratio, an indicator of an agricultural N
source. These results suggest that volcanic and anthro-
pogenic pollution as well as agriculture were the domi-
nant sources inCluster 2 throughfall.

The - -SO Cl4
2 ratio in Cluster 3 was most simi-

lar, albeit depleted, to that in rainwater, and -SO4
2

and Cl− concentrations showed a strong positive

Table 2.Meanmolar ratios in throughfall for five clusters of throughfall events (n) and bulk precipitation sampled from July
2013 to September 2014 inWest Kalimantan, Indonesia. Letters indicate significant differences in ratios among clus-
ters (p<0.05).

Cluster n N/P -N SO4
2 - -SO NO4

2
3

+ -NH NO4 3
- -SO PO4

2
4

3 - -SO Cl4
2

1 11 5.1B 1.2AB 3.3B 0.29B 7.3A 0.22A

2 7 3.8B 0.75B 14A 2.3A 6.4AB 0.20A

3 9 9.6A 2.2A 2.9B 0.71AB 6.1A 0.053B

4 12 6.1AB 1.7AB 6.5AB 1.6A 7.0A 0.17A

5 4 4.6AB 3.6AB 1.2C 0.87AB 1.7B 0.036B

Bulk 44 52 1.4 6.0 0.98 151 0.11

Figure 4.Dominant sources ofN, P, and S in throughfall events sampled from July 2013 to September 2014 inWest Kalimantan,
Indonesia. Panels show airmass trajectories (500 m) forfive clusters of throughfall events dominated by: (1) biomass burning; (2)
pollution and agriculture (yellow triangle indicates location of Sangeang Api volcano); (3) seasalt; (4) biomass burning, pollution, and
agriculture; and, (5) biomass burning and seasalt. Bottom right: prevailingwinds for each cluster, includingNE (dark grey), SE
(mediumgrey),W/SW (light grey), and other (white). Along the x-axis, bar width represents the proportion of observations within
each cluster.
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correlation (r=0.74, p=0.024). Most events in this
cluster occurred during the wet season when north-
easterly winds prevail. Regardless of wind direction,
backward trajectories show that air masses lingered
over the ocean before their arrival at the focal site
(figure 4), indicative of a dominant marine source in
throughfall.

Similar to Cluster 2, Cluster 4 had a mean
+ -NH NO4 3 ratio>1 (table 2) and, as with Cluster 1,

throughfall -SO4
2 concentrations were strongly posi-

tively correlated with organic P (r=0.72,
p=0.0086). Sulfate concentrations were also corre-
lated with -PO4

3 (r=0.75, p=0.0053). Cluster 4
throughfall events were primarily influenced by south-
easterly winds and otherwise variable winds in Jan-
uary, April, and May (figure 4). All events were
temporally subsequent to two major fire pulses, sug-
gesting a mixture of burning (Cluster 1), pollution,
and agricultural sources (Cluster 2).

Cluster 5 contained two of six post-fire throughfall
events, including the largest post-fire event in March
2014, and was characterized by a low - -SO Cl4

2 ratio.
Throughfall events were affected by northeasterly and
northwesterly winds, whereby air masses lingered over
the ocean. This cluster had the lowest - -SO PO4

2
4

3

ratio and distances traveled by the air masses were
notably less than the other clusters, suggesting that
throughfall chemistry was influenced mainly by local
biomass burning rather than by long-range sources.

4.Discussion

4.1. Forested peatlands receive highN, P, and S
deposition loads
At our peatland site, the magnitude of N, P, and S
fluxes was remarkably high compared to other tropical
systems where these fluxes have been measured
(Ponette-González et al in press, Das et al 2011). Of
major significance, -PO4

3 –P flux in throughfall was
7.9 kg ha−1yr−1. Such high fluxes rarely have been
documented, and only within lowland tropical forest
(e.g., 11 kg ha−1yr−1, Venezuela; Jordan et al 1980).
However, bulk rainfall -PO4

3 –P deposition levels fell
within the range of values for open field sites around
the world (e.g., 0.02–0.65 kg ha−1yr−1; Tipping
et al 2014). Comparison of bulk rainfall
(0.24 kg ha−1yr−1) and throughfall flux
(7.9 kg ha−1 yr−1) indicates that the vast majority
(97%) of inorganic P deposited to peatland soils was
the result of dry deposition, a finding similar to
observations from mature Neotropical dry forests
(Das et al 2011).

Although our measured throughfall flux of 8.7 kg
DIN ha−1 yr−1 agrees well with modeled estimates of
total (wet+fog+dry)DIN deposition for regions of
Southeast Asia (4–10 kg N ha−1yr−1; Vet
et al 2014a, 2014b), the proposed critical N load limit
for tropical forests is 5–10 kg N ha−1yr−1. Negative

effects on species diversity, soil N cycling, and stream-
water are expected beyond this limit (Pardo et al 2011),
especially on highly acidic peatland soils.

Total annual S flux to this peatland was also extra-
ordinarily high, totaling 42 kg S ha−1 yr−1, of which
we estimated 19 kg ha−1 yr−1 was nss– -SO4

2 –S.
Assuming -SO4

2 in throughfall is a robust index of
total (wet+fog+dry) atmospheric deposition in
this peatland site (Weathers et al 2006, Ponette-Gon-
zález et al 2010a), our sample site ranks among the
regions with the highest predicted total S deposition
globally (i.e., East Asia 20–50 kg S ha−1 yr−1; Vet
et al 2014a, 2014b). The S flux reported here is com-
parable to estimates for forests located in Southern
China’s ‘urban acid islands’, areas <67 km from large
cities where acid deposition exceeds critical loads (Du
et al 2015).

Major global shifts in geographic source areas and
ecosystem sinks for biologically important nutrients,
includingN, P, and S have occurred over the past three
decades (Fowler et al 2013, Vet et al 2014a, 2014b).
Emissions inventories and long-term network data
show reductions in SO2 and NOx in North America
and Europe with concomitant declines in the deposi-
tion of S and oxidized N (JRC/PBL 2011, Lehmann
and Gay 2011, Tørseth et al 2012, US EPA 2014). In
contrast, emissions and deposition of these com-
pounds are rising in many Asian regions due to rapid
urbanization, industrialization, as well as agricultural
intensification and expansion (Dentener et al 2006,
Vet et al 2014a, Du et al 2015). Although empirical
data on P deposition are patchy, Asian ecosystemsmay
become the new P deposition ‘hotspots’ (Wang
et al 2015). Our measurements highlight this geo-
graphic redistribution of nutrients and pollutants over
Asian ecosystems (Dentener et al 2006, Vet et al 2014a,
Wang et al 2015).

4.2. Fire drives the redistribution ofN, P, and S
Here, we show that fires have a disproportionate
influence on below-canopy loading of N, P, and S to
forested peatland soils. More than 30% of the inor-
ganic N and P and nearly 20% of the nss– -SO4

2 –S in
throughfall was deposited following major local and
regional fire pulses (table 1, figure 2), although these
throughfall events comprised only 14% of total
sampled events. Dissolved inorganic nitrogen, -NO ,3

and -PO4
3 were the solutes whose concentrations and

fluxesweremost enhanced in post-fire throughfall.
It is well established that tropical biomass burning

influences local and regional atmospheric chemistry
and deposition, particularly N and P (Lobert et al 1990,
Mahowald et al 2005). For example, experimental and
observational studies of Indonesian peat fires find that

-NO3 is a major component of peat smoke aerosol
(See et al 2007), while a dominant product of smolder-
ing peat is ammonia gas (NH3; Christian et al 2003).
Biomass burning is also an important source of
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rainwater and aerosol P (Maenhaut et al 2002,
Mahowald et al 2008). During major Indonesian bio-
mass burning periods in 1997 and 2006, rainwater
sampled in Singapore contained elevated concentra-
tions of -NO ,3

+NH ,4 and -PO4
3 compared with

non-biomass burning periods (Balasubramanian
et al 1999, Sundarambal et al 2010). Hsu et al (2014)
collected aerosols downwind of the June 2013 peat
fires in Riau Province; concentrations of total and
soluble P in these samples were four-fold higher than
in aerosol samples influenced by East Asian dust and
pollution outflows.

While we cannot evaluate the relative contribution
of biomass burning versus dust to our measured P
fluxes, we note that soil dust may contribute to P load-
ing during fire events. Three potential sources include:
(1) dust emissions from biomass burning (Andreae
et al 1998); (2) long-range dust transport from arid and
semi-arid regions in East Asia (Lin et al 2007); and, (3)
long-range dust transport from Australia (McGowan
and Clark 2008). We are unaware of any study that has
quantified the contribution of fires to atmospheric
mineral dust emissions in Indonesia. Dust outflows
from East Asia are most prevalent during the north-
easterly monsoon (December–March), when only one
of the fire events in this study occurred, and their
influence on the southern South China Sea is thought
to be minimal (Lin et al 2007). However, dust trans-
port from Lake Eyre, Australia, to Borneo (June–
August) is coincident with the peak biomass burning
period in Southeast Asia (McGowan and Clark 2008).
Therefore, it is possible that some of the P we mea-
sured in post-fire throughfall was derived fromdust.

Because several studies report elevated -SO4
2 in

rainwater and aerosol during peat fires (Ikegami
et al 2001, See et al 2007), we were surprised to find
that S concentrations were not enhanced in post-fire
throughfall events. Two potential explanations
include high local or regional S emissions from non-
peat sources, and variability in fire emissions chem-
istry. First, fossil fuel and volcanic S emissions may
have masked the influence of peat burning on atmo-
spheric S fluxes. In Pontianak, the provincial capital of
West Kalimantan (23 km from site), oil combustion
was found to be the most important source influen-
cing aerosol chemistry (Maenhaut et al 2002). Second,
atmospheric emissions from flaming and smoldering
fires differ in their chemical composition (Lobert
et al 1990). In this study, we used MODIS Active Fire
data that cannot distinguish between flaming and
smoldering fires (Elvidge et al 2015). Smoldering fires
are the fire type associated with high S emissions.
Therefore, our correlations between fire detections
and throughfall S concentrations possibly reflect the
chemistry offlaming rather than smoldering fires.

Around our study site, land use––particularly
industrial-scale agriculture––was a dominant driver of
peatland burning. Fires were concentrated within oil
palm leases on peatlands within 20 km (78% of fires

versus 49% of land area) and 100 km (40% of fires ver-
sus 19% of land area) of the focal site. Yet, our data
suggest that long-range transport of fire emissions
from southern Kalimantan and northern Australia
also influenced deposition at this site (figure 4). Land
clearing and burning for oil palm plantation develop-
ment are the dominant fire source not only in our
study region, but also across Kalimantan and Sumatra
(Curran et al 2004, Miettinen et al 2011b, Carlson
et al 2012, 2013, Gaveau et al 2014, Marlier et al 2015).
Atmospheric emissions from these activities are pro-
jected to increase over the next decade (Carlson
et al 2012, 2013,Miettinen et al 2012).

The enhanced N, P, and S fluxes we documented
in associationwith agricultural peatfires during a non-
ENSO year indicate that emissions from larger and
more severe fires typical of strong ENSO years (figure
S2) could result in dramatically increased deposition
to adjacent ecosystems. Our results showed that a
three-fold increase in detected fires resulted in a two-
fold increase in annual total P and S flux to peatland
soils (figure 3). We also captured the influence of a
severe fire pulse from January toMarch 2014 (196 fires
�20 km from the site) on throughfall fluxes (table S1).
Following this single fire event, 13% of DIN, 16% of

-PO4
3 –P, and 8% of -SO4

2 –S measured over the
study period was delivered to peatland soils as
throughfall flux (figure 2).

5. Conclusions

In this study, we show that biomass burning in tropical
peatlands plays a largely unrecognized yet critical role
in the redistribution ofmajor limiting nutrients within
tropical landscapes. Our estimates indicate that as
much as 30% or more of the annual load of inorganic
N and P to Bornean peatlands occurred following fire
events and that fire-emission-deposition of S could
rival that of industrial pollution during high-fire
strong ENSO years. As such, biomass fires may have
significant fertilizing or polluting effects on recipient
ecosystems, thereby altering the contribution of peat-
lands to climate change (Frolking et al 2011). While
the ecosystem effects of biomass burning deposition
remain uncertain in tropical regions, the sheer magni-
tude of the fluxes measured here indicate that fire-
driven nutrient redistribution may have unforeseen
consequences across a diversity of ecosystems, includ-
ing forested peatlands as well as agroecosystems,
wetlands and streams, oligotrophic ocean waters, and
coral reefs.
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