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Abstract
Tropical forests play an important role in the global carbon cycle, but knowledge of interannual
variation in the total tropical carbon flux and constituent carbon pools is highly uncertain. One such
pool, branchfall, is an ecologically important dynamicwith links to nutrient cycling, forest
productivity, and drought. Identifying and quantifying branchfall over large areaswould reveal the
role of branchfall in carbon and nutrient cycling. Using data from repeat airborne light detection and
ranging campaigns across a wide array of lowlandAmazonian forest landscapes totaling nearly
100 000 ha, wefind that upper canopy gaps—driven by branchfall—are pervasive features of every
landscape studied, and are seven timesmore frequent than full treemortality.Moreover, branchfall
comprises amajor carbon source on a landscape basis, exceeding that of treemortality by 21%.On a
per hectare basis, branchfall and treemortality result in 0.65 and 0.72MgCha−1 yr−1 gross source of
carbon to the atmosphere, respectively. Reducing uncertainties in annual gross rates of tropical forest
carbonflux, for example by incorporating large-scale branchfall dynamics, is crucial for effective
policies that foster conservation and restoration of tropical forests. Additionally, large-scale branchfall
mapping offers ecologists a new dimension of disturbancemonitoring and potential new insights into
ecosystem structure and function.

Introduction

Tropical forests play an important role in constraining
atmospheric CO2 concentrations. As the largest terres-
trial carbon sink in the world, tropical forests are
estimated to trap and store more than 1.19±0.41 Pg
carbon per year—equivalent to the annual emissions
of the European Union (Boden et al 2010)—that
would otherwise remain in the atmosphere as heat-
trapping CO2 (Pan et al 2011). While ecologists are
gaining ever-improving global information on tropi-
cal forest carbon stocks (Baccini et al 2012, Avitabile
et al 2016), sub-continental estimates are still highly
uncertain (Baccini and Asner 2013, Mitchard
et al 2013, Sexton et al 2015). Accurately estimating
changes over time in tropical forest aboveground
carbon stocks (or carbon density, aboveground carbon
density (ACD)) at sub-continental scales is crucial for

understanding the ecological and functional roles of

these forests in a global context.
While carbon emissions resulting from tropical

deforestation are better resolved (Harris et al 2012),
carbon fluxes from intact forests are just as important
but remain poorly understood.Multiple studies report
a net carbon sink in the tropics based on evidence from
repeated censuses of forest plots, remote sensing
observations, atmospheric inversemodeling, and eddy
flux towers (table S1). However, all of these estimates
are highly uncertain and subject to considerable
debate (Chambers et al 2009, 2013, Gloor et al 2012).
Current estimates range from marginal sink values
near zero to substantial sink values of up to 0.94 Mg C
ha−1 yr−1, with some reporting a carbon source in
individual years. There are myriad causes for the high
uncertainty surrounding estimates of ACD fluxes
(Marvin et al 2014), but a fundamental source of this
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uncertainty stems from the lack of large-scale, high-
spatial resolutionmulti-temporal data.

Although rarely quantified, branchfall is an impor-
tant ecological process that, when measured, can
improve estimates of ecosystem processes. Tree
crowns in tropical forests comprise approximately
one-quarter to one-half of the total aboveground
woody biomass (e.g., Higuchi et al 1998, Malhi
et al 1999, Goodman et al 2014). As these crowns frag-
ment over time they form an important biogeochem-
ical flux, returning both carbon and nutrients to the
soil beyond the standard flux from leaf litterfall or
whole tree mortality. While branchfall and partial
crown failures (i.e., non-fatal tree damage) are not
generally considered a meaningful part of gap dynam-
ics, they are sometimesmeasured as part of plot necro-
mass surveys (e.g., Palace et al 2008, Doughty
et al 2015, Malhi et al 2015), and are assumed to be
implicitly captured over long time scales as a result of
standard allometric scaling techniques. The ability to
explicitly quantify and map branchfall (and tree mor-
tality) over large areas will allow more accurate esti-
mates of ecosystem carbon and nutrient flux by
reducing uncertainties related to tree allometry and
mortality (Palace et al 2008) and spatial upscaling from
field plots/transects (Chambers et al 2013, Marvin
et al 2014).

Understanding changes in branchfall and struc-
tural damage over time also provides ecologically
important insights. Drought and other climate events
(van der Meer and Bongers 1996, Doughty et al 2015),
disease/pests, and mechanical stress from lianas and
epiphytes (Putz 1984) are a fewmechanisms that affect
the rate of branchfall and other non-fatal tree damage.
The resulting necromass produced by branchfall and
treemortality, as well as the increased light availability,
creates structural habitat for a variety of organisms
(e.g., Schemske andBrokaw 1981, Svenning 2000,Mac
Nally et al 2001). Moreover, branchfall plays an
important role in forest productivity (Chambers
et al 2001), seedling/sapling regeneration and
growth (Denslow 1987, Clark and Clark 1991), and
nutrient cycling (Vitousek and Sanford 1986). A lack
of branchfall data restricts the ability of ecologists
to better understand and predict many ecosystem
processes.

Here we examine 12 widely distributed landscapes
totaling nearly 100 000 ha of lowland western Amazo-
nian forest from a repeat airborne light detection and
ranging (LiDAR) campaign (figure 1(A); table S2). We
quantify full tree mortality (full canopy gaps,
figure 1(D)), branch-and partial crownfall (upper
canopy gaps, figure 1(E)) at 2 m spatial resolution, and
calculate the estimated gross carbon source to the
atmosphere of each gap type at 1 ha spatial resolution.
No study has explicitly measured and incorporated
branchfall as part of aboveground gross carbon losses
at the landscape scale (103–105 ha), due to the diffi-
culty of quantifying branchfall using field surveys

(Clark et al 2001a). We emphasize our measurement
of gross rather than net carbon flux, with gross flux
estimates (and gap formation rates generally) more
pertinent to full accounting of tropical forest carbon
dynamics. This study (1) investigates the difference
between branchfall and tree mortality in western
Amazon landscapes, (2) uncovers regional variation in
gap dynamics, and (3) explores the potential for high-
resolution measurement of gap dynamics to improve
estimates of ecosystemprocesses.

Methods

Study landscapes
We selected 12 landscapes distributed across a 1600
km longitudinal gradient of lowland tropical forests
from northwest to southwest Amazonia (figure 1(A);
table S2). Across all the landscapes, elevations ranged
from 135 to 402 m above sea level (2 m resolution
LiDAR digital terrain model (DTM), see below), mean
annual precipitation (Huffman et al 2007) ranged from
1951 to 3492 mm (∼25 km resolution), and mean
annual temperature (Hijmans et al 2005) ranged from
24.3 to 26.7 °C (∼5 km resolution). The geology of the
landscapes is erosional terra firme substrate on
elevated terraces, depositional floodplain substrate in
low-lying areas near rivers and streams, or a mix of
both. Dominant soil types (FAO-UNESCO 2005) in
each landscape were Oxisols and Ultisols. These land-
scapes were chosen to be outside the main areas of the
2010 Amazon basin drought. The 2010 drought
extended into the central Peruvian Amazon but was
not extensive enough to affect the chosen landscapes
mostly in the far SW and NE areas of Peru (Lewis
et al 2011, Saatchi et al 2013). For each landscape we
calculated mean dry-season (July–September) stan-
dardized precipitation evapotranspiration index
(SPEI) (Vicente Serrano et al 2010) values extracted
fromSPEIbase (Beguería et al 2010) (table S2). None of
the landscapes have a 2010 SPEI value below −1,
which is considered to be the threshold for drought
(Mitchell et al 2014).

Airborne LiDAR collection andprocessing
Depending on the landscape, LiDAR data were either
collected in 2011 and 2012, or 2011 and 2013 (table S2)
using the Carnegie Airborne Observatory-2 (CAO)
Airborne Taxonomic Mapping System (AToMS),
which is carried onboard a Dornier 228 aircraft (Asner
et al 2012). TheAToMSLiDAR is a dual laser, scanning
waveform system capable of operating at 500 000 laser
shots per second. For the data collection, the aircraft
was operated at speeds of up to 110 knots at an altitude
averaging 2000 m above ground level. The LiDAR
settings were maintained to sample a mean on-the-
ground laser spot spacing of 2 shots m−2, peaking at 4
shots m−2 in areas of flightline overlap. This level
of sampling ensured that the derived LiDAR
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measurements were highly precise in horizontal and
vertical space (Asner et al 2012), with a combined
between-flight uncertainty for top-of-canopy returns
of ±17.0 cm horizontally and ±15.6 cm vertically for
theseflights.

Following data acquisition, laser ranges from the

LiDAR were combined with embedded high resolu-

tion Global Positioning System-Inertial Measurement

Unit data to determine the 3D locations of laser

returns, producing a ‘cloud’ of LiDAR data (figure 2).
A DTM, digital surface model, and top-of-canopy

height (TCH) layer were produced for each landscape

and for each year. We masked out non-forested areas,

water bodies, and other anomalous landscape features.

Each resulting landscape has at least 1900 ha of sam-

pling area, with a total sampled area of 97 780 ha. See

SI methods for more detail on the airborne LiDAR

collection and processing.

Canopy gap determination
Traditionally studies of gap dynamics employ the gap
definition developed by Brokaw (1982), or a slight
modification thereof, who defined a canopy gap as an
opening ‘in the forest canopy extending through all
levels down to an average height of two m above
ground’. We find this definition to be overly simplistic
and unfit for landscape-scale studies of gap dynamics
using LiDAR-derived TCH data. Instead we define
gaps based on the difference in relative height from the
surrounding canopy. For each TCH layer, we created a
TCHmean layer using a mean smoothing filter with a
one ha kernel. The TCHmean was subtracted from the
original TCH layer, and divided by TCHmean to
produce a relative TCH layer. For all classified gap
types (see below) we computed the gap size-frequency
variable λ for static full, dynamic full, and dynamic
upper canopy gaps. We used the approach and R
syntax provided by Asner et al (2013) and described in

Figure 1.Overview of study area and gap types. (A)Mapof landscapes (1:1 scale) in Colombia and Peru used in the analysis. (B)Mapof
top-of-canopy height (TCH) for a single landscape (NP1)with inscribed square corresponding to zoomboxes containing 2-D raster
images of colored TCHwith static gaps in dark blue (C), greyscale TCHwith dynamic full canopy gaps in purple (D), and greyscale
TCHwith dynamic upper canopy gaps in red (E). Coloring in (B) is same as in (C), and spatial scaling in (D) and (E) is the same
as in (C).
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more detail by Marvin et al (2014). We calculated the
gap density (gaps ha−1) and the mean gap size per unit
area for all gap types.

Static anddynamic full canopy gaps
Static gaps (those present only at a single time period)
were classified as having a relative TCH of −0.7 to
−1.0, or 70%–100% below the mean forest height of
the surrounding 1 ha at each data collection time
period. This allows identification of gaps over short
timescales (1–2 years) using airborne LiDAR even
when tree fall debris, understory shrubs or small trees,
and/or rapidly growing pioneer species fill in the full
canopy gap above the 2 m Brokaw threshold. Other
thresholds considered yielded similar results (Asner
et al 2013).

Using the final static gap layers from the two sam-
pling years, we classified dynamic full gaps (those
newly formed during the sampling period) as only
those pixels that were not classified as a static gap in
Year 1, but met the static gap definition above in Year
2. To reduce gap false positives, only three or more
contiguous pixels (areas�12 m2) were retained as
static or dynamic full canopy gaps.

Dynamic upper canopy gaps
We refine and extend the concept of upper canopy
gaps to be applicable to dynamic measurements of
forest gaps. Dynamic upper canopy gaps are newly
formed gaps during the sampling period resulting
from medium-to-large branch falls and partial crown
failures of trees that form the canopy layer of an intact
forest. These gaps are isolated to the canopy layer and
do not extend to the ground. For each landscape, Year
1 TCH was subtracted from Year 2 TCH, and divided
by Year 1 TCH to produce the relative TCH change
between the two sampling periods.We define dynamic
upper canopy gaps as a relative loss in canopy height
between the two sampling periods of 0.1–0.4, or a
10%–40% height loss below the mean forest height of
the surrounding 1 ha. This percentage range was
chosen to be equivalent to the full gap canopy
definition while remaining isolated to only the upper
canopy. Using a range of relative TCH change (as
opposed to a static length) allows flexibility in identify-
ing upper canopy gaps formed in anomalously short
and tall trees. We then filtered the data and only
retained areas as dynamic upper canopy gaps that were
(a) �90% of the mean forest height (from the one ha
mean smoothing filter) in Year 1 and (b) composed of

Figure 2. LiDAR3-D point cloud from example area in landscapeNP1 showing dynamic gaps. (A) LiDARderived top-of-canopy
heightmap at 2m resolutionwith coloring as in Fig. 1C. (B)Top view of LiDAR three-dimensional point cloudwith full (purple) and
upper (yellow) canopy gaps, and (C) isometric view of (B). (D)Zoom inset from (B) and (C) showing an isometric view of a large full
canopy andmultiple smaller upper canopy gaps. In (B-D) the green colored points are year 2 data, while gap colored points (purple
and yellow) are points that were present in year 1 but were not present in year 2. Gray points are those present in year 1 no longer
present in year 2 but did notmeet the dynamic gap criterion (seeMethods).
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three or more contiguous pixels. The 90% threshold
isolates the analysis to only the uppermost parts of the
canopy, and the three pixel minimum grouping
reduces the possibility that horizontal shifts in the
canopy between the two sampling periods (due to
wind, growth, or LiDAR co-alignment errors) could
result in upper canopy gap false positives. We con-
servatively chose the 10% threshold as an upper bound
because this begins to approach the LiDAR vertical
error of ±15 cm in the case of shorter stature trees.
Although we have high confidence that the LiDAR
sampling density was high enough to accurately
sample true ‘TCH’, an analysis of whether deciduous
vegetation leads to false-positive gap classifications
found that it did not (see SI discussion). Other studies
have utilized analyses of single-pixel changes between
two LiDAR time periods with data from an even earlier
model of the CAO LiDAR that was used in the current
study (Kellner et al 2011, Kellner and Asner 2014). We
are far more conservative in this analysis by limiting
gap detection to only groups of three or more
contiguous pixels that have dropped in height far
outside the LiDAR limits of uncertainty.

Allometric andACDcalculations
We calculate ACD at one-hectare resolution using a
plot-aggregate allometric approach, parameterized
with stem data from 166 western Amazon field
inventory plots (Asner and Mascaro 2014). Full and
upper canopy ACD layers were created separately
using different parameterizations of the plot-aggregate
allometry. For the full canopy ACD layer we used the
LiDAR-derived plot mean TCH from the western
Amazon plot network, and field-based BA, ρBA, and
ACD. For the upper canopy ACD layer (ACDcrown)we
used data from direct biomass harvests (Nogueira
et al 2008, Goodman et al 2014) that reported the
percent total ACD contained by the crown. The
percentage of carbon contained in the crowns of the
harvested tree dataset was used to convert plot ACD to
plot ACDcrown using a simulation that propagates the
uncertainty in tree crown dataset (see SI methods for
details).

We produced ‘gap-corrected’ACD layers by creat-
ing a map of height loss only within full or upper
canopy gaps at 2 m resolution, subtracting this from
the Year 1 TCH layer, resampling to one-hectare reso-
lution, and applying the same models and para-
meterizations as the initial ACD layer or ACDcrown.
Residual uncertainties from the ACD models were
propagated through to each gap-corrected ACD layer.
These gap-corrected layers isolate the effect of gaps on
ACD by holding forest growth to zero. By subtracting
these layers from their associated initial ACD layers,
we derive the amount of carbon lost due to each type
of canopy gap.

Carbon loss ratios were calculated by boot-
strapping ACD values from each landscape for each

gap type and calculating the ratio of upper to full gap
carbon loss. We performed this 5000 times for each
landscape, and used the mean and 2.5% and 97.5%
quantiles for the confidence interval. The uncertainty
in the sub-regional (NW and SW Amazon) and total
western Amazon regional carbon loss values were cal-
culated by summing the variance of each landscape
value, dividing by the number of landscapes, andmul-
tiplying by 1.96 to obtain the 95% confidence inter-
vals. See SI methods for more details on the allometric
calculations and assumptions, and the ACD and flux
calculations.

Results

Branchfall dynamics
In the absence of major drought-related tree mortality
and damage, we find that upper canopy gaps (branch-
fall) are far more frequent and pervasive than full
canopy gaps (treemortality) across all western Amazo-
nian landscapes studied.While each upper canopy gap
on average contains 32% of the LiDAR-measured
volume and 13%of the carbon compared to an average
full canopy gap, they are almost 700% as frequent
(figure 3, table 1). Moreover, at the hectare-scale
branchfall consistently occurs across at least 99.7% of
every landscape, while full tree mortality is more
heterogeneously distributed, covering anywhere from
41.9% to 99.4%of the landscape (figure 4(A)).

This disparity in both frequency and distribution
results in branchfall exerting an unexpectedly large
influence on the carbon dynamics of the westernAma-
zon: on a landscape basis branchfall represents 21%
more gross carbon loss than full tree mortality
(figure 4(B)). This is calculated from the average ratio
of total landscape upper canopy gap carbon loss to the
total landscape full canopy gap carbon loss, providing
a large-scale context of the influence of each gap type
on the carbon cycle. Alternatively, we calculate a per
hectare branchfall gross source of 0.65 (95% con-
fidence interval [CI95, 0.60–0.70]) Mg C ha−1 yr−1 to
the atmosphere across lowland western Amazonian
forests, with full tree mortality resulting in a 0.72 (CI95
0.67–0.76)MgCha−1 yr−1 gross source (table 2).

Regional variation
In the forests of the SW Amazon, upper canopy gaps
are a substantial portion (ca 60%–80%; figure 4(B),
table 2) of the total gross landscape carbon loss to the
atmosphere, primarily due to their larger size relative
to upper canopy gaps in the NW (figure 2, table 1). In
contrast, relative to full canopy gaps upper canopy
gaps inNWAmazon forests are a proportionally larger
carbon loss (ca 100%–240%; figure 4(B), table 2), but
smaller absolute carbon loss. More importantly, the
decrease in upper gap absolute gross carbon loss as you
move from the SW to the NW is small (ca 80%)
compared to the decrease in full gap absolute gross
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carbon loss (ca 300%). Branchfall remains remarkably
consistent among landscapes across the western Ama-
zon region compared to full treemortality.

Discussion

Our analysis of the dynamics of 2.7 million individual
gaps across ca 100 000 ha of tropical forest reveals the
critical role that branchfall plays in the carbon and
nutrient cycles of the western Amazon. The discovery
that branchfall is far more frequent and pervasive than
full treemortality, resulting in the release of 21%more
gross carbon at the landscape-scale, has numerous
implications for understanding the ecology of the
region. The methods developed here allow spatially
explicit monitoring of branchfall and full tree mortal-
ity across landscapes at high resolution. Branchfall
carbon losses have not previously been mapped and
calculated over such large scales, nevertheless our
findings are consistent with, although less variable
than, field plot-based gross carbon loss estimates of
branchfall and tree damage (0.1–3.2 Mg C ha−1 yr−1)
(e.g., Chambers et al 2001, Clark et al 2001b, Chave
et al 2003, Palace et al 2008, Chao et al 2009).

The stark contrast that we identify between the
forests of the NW and SW Amazon (figure 4, table 2)
expresses underlying differences in soil fertility,

geology, precipitation, and diversification rates that all
affect the floristic composition, wood density, carbon
stocks, and natural disturbance regimes of the two
sub-regions (Gentry 1988, Phillips et al 2004, Quesada
et al 2012, Baker et al 2014). Relative to the NW Ama-
zon, forests in the SW Amazon are characterized by
lower wood density, lower ACD, and faster tree turn-
over all resulting from higher soil nutrients and stron-
ger seasonality. We find that while the carbon loss
from full tree mortality decreases substantially
between the SW and NW, branchfall carbon loss
decreases only slightly (figure 4). This hasmajor impli-
cations for the central/eastern Amazon basin, which
has a two-fold decrease in the estimated rate of tree
turnover compared to the western Amazon (Phillips
et al 2004). Our results suggest that regardless of tree
turnover rate, branchfall exerts a substantial influence
on forest carbon dynamics and nutrient cycling across
the entire Amazon basin.

The heterogeneous distribution of full gap fre-
quency both within and among landscapes
(figure 4(A)) found by this study highlights the risk of
scaling field-based estimates of carbon flux to land-
scapes or regions (see Marvin et al 2014). A recent
simulation study of central Amazon gap dynamics
(Chambers et al 2013) found ca 9%–17% of tree mor-
tality events over time are missed by single hectare

Figure 3.Number of gaps per hectare in eachwestern Amazonian landscape for static gaps (A), dynamic full canopy gaps (B), dynamic
upper canopy gaps (C), and the dynamic gap area frequency distribution (D)with black vertical lines representing themean gap area
(m2). Note that for better visualization in (D) gap areas above 150m2 are not shown, but represent only 0.1-0.6%of the total gaps of
the landscapes.
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Table 1. Summary of gap results.

Static Year 1 Static Year 2 Dynamic Full DynamicUpper

Landscape Region Size (ha) # ha−1 area (m2) gapλ # ha−1 area (m2) gapλ # ha−1 area (m2) vol (m3) gapλ # ha−1 area (m2) vol (m3) gapλ

CO1 Colombia 10 438 3.1 40.5 1.41 2.1 40.1 1.41 1.2 32.8 480 1.45 16.0 21.9 123 1.49

CO2 Colombia 3815 2.1 36.6 1.42 1.5 33.6 1.43 1.0 25.8 370 1.47 16.5 22.6 136 1.48

CO3 Colombia 9494 2.8 40.0 1.41 1.7 36.9 1.42 0.9 28.9 400 1.46 12.7 20.5 119 1.50

CO4 Colombia 4740 2.0 41.4 1.42 1.4 41.7 1.42 0.8 25.4 364 1.48 13.2 18.2 108 1.51

CO5 Colombia 8517 2.6 37.5 1.42 1.4 38.4 1.42 0.6 32.7 488 1.46 11.7 19.2 108 1.51

NP1 N. Peru 6157 4.1 43.9 1.40 2.4 40.5 1.41 1.0 35.4 485 1.43 10.2 20.1 123 1.50

NP2 N. Peru 1966 4.6 52.2 1.39 2.6 42.3 1.41 1.0 30.3 429 1.46 8.7 19.3 123 1.51

NWAmazonmean 3.0 41.7 1.41 1.9 39.1 1.42 0.9 30.2 431 1.46 12.7 20.3 120 1.50

SP1 S. Peru 6039 3.1 53.2 1.40 3.3 44.5 1.41 2.6 31.8 424 1.44 12.5 26.8 179 1.46

SP2 S. Peru 10 631 3.1 54.0 1.38 3.7 59.3 1.38 3.6 38.2 462 1.42 15.8 28.8 173 1.44

SP3 S. Peru 15 229 3.3 57.1 1.38 4.0 55.3 1.39 3.9 32.9 426 1.44 16.1 30.0 182 1.44

SP4 S. Peru 10 161 3.6 57.2 1.38 4.2 52.8 1.39 3.7 34.8 468 1.44 15.9 27.6 166 1.45

SP5 S. Peru 10 592 3.1 53.1 1.39 3.9 57.4 1.39 3.8 34.3 432 1.44 16.3 30.4 157 1.43

SWAmazonmean 3.2 54.9 1.39 3.8 53.9 1.39 3.5 34.4 442 1.46 15.3 28.7 171 1.49

Total 3.1 47.2 1.40 2.7 45.2 1.41 2.0 31.9 436 1.45 13.8 23.8 141 1.48

Vol (m3) is the LiDAR-measured volume loss from each gap type (area x mean TCH loss per gap). Gap λ is the gap size-frequency scaling parameter (see Methods), with values<2 indicating that large gaps are more dominant than small

gaps. SWAmazon landscapes have a two year repeatflight interval, but have been converted to annual rates.
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Figure 4.Carbon losses from each gap type. (A)Annual carbon loss distributions for full and upper canopy gapswith the landscape
mean plotted as a vertical line (distributions are clipped at the 95% confidence interval upper and lower bounds for better
visualization). (B)The ratio of total landscape upper gap carbon loss to total landscape full gap carbon loss, with error bars
representing the 95% confidence interval calculated from 5000 bootstrap samples of the ratio.

Table 2. Summary of carbon results

ACDLoss (MgCha−1)

Full Gaps UpperGaps

Landscape Region Size (ha)
Total ACDa

(MgCha−1)
CrownACDa

(MgCha−1) Mean CI− CI+ Mean CI− CI+

CO1 Colombia 10 438 106.8 47.3 0.45 0.21 0.69 0.61 0.37 0.84

CO2 Colombia 3815 125.5 55.0 0.31 −0.14 0.76 0.73 0.28 1.18

CO3 Colombia 9494 108.8 48.1 0.26 0.01 0.51 0.47 0.21 0.72

CO4 Colombia 4740 116.5 51.3 0.23 −0.16 0.62 0.44 0.05 0.83

CO5 Colombia 8517 111.5 49.3 0.24 −0.03 0.51 0.39 0.11 0.66

NP1 N. Peru 6157 107.1 48.5 0.41 0.12 0.70 0.42 0.10 0.73

NP2 N. Peru 1966 119.7 53.6 0.35 −0.26 0.96 0.37 −0.25 0.99

NWAmazonmean 113.7 50.4 0.32 0.25 0.39 0.49 0.41 0.57

SP1 S. Peru 6039 122.3 54.8 1.03 0.85 1.21 0.81 0.63 0.99

SP2 S. Peru 10 631 99.1 45.6 1.33 1.23 1.43 0.91 0.80 1.02

SP3 S. Peru 15 229 100.4 46.0 1.38 1.28 1.48 0.99 0.89 1.08

SP4 S. Peru 10 161 92.0 42.6 1.38 1.28 1.48 0.85 0.74 0.96

SP5 S. Peru 10 592 81.7 38.3 1.22 1.14 1.30 0.78 0.69 0.88

SWAmazonmean 99.1 45.5 1.27 1.26 1.28 0.87 0.86 0.88

Total 107.6 48.4 0.72 0.67 0.76 0.65 0.60 0.70

a Calculated from forested areas with average height�16m (seeMethods)
Confidence intervals aremean±SD*1.96. SD includes the propagatedmodel and spatial uncertainty. Sub-regional and regional means and

CIs are calculated from the landscape means with propagated uncertainty. SWAmazon landscapes have a two year repeat flight interval, but

have been converted to annual rates.

8

Environ. Res. Lett. 11 (2016) 094027



plots due to the temporal heterogeneity in large multi-
tree deaths. Moreover, field-based estimates of carbon
flux may need to be corrected for branchfall carbon
losses depending on the methodology underlying the
specific allometric scaling equation that is employed.
Whether or not undamaged trees (i.e. no missing
branches or partial crowns) were harvested and
weighed to parameterize the allometric equation
determines if a branchfall correction is needed (see
Chambers et al 2001 for an in-depth discussion of this
issue). These potential sources of error require further
investigation by the forest carbon research
community.

There are limitations to this study that must be
considered in the context of branchfall detection and
carbon loss. Not all trees that die immediately form a
full canopy gap, and similarly some branchfall events
may originate from these standing dead trees. Trees
with low wood density may have a higher rate of
branch breakage (but may also more easily snap at
trunk level), and trees with higher wood density may
uproot easier. Both of these factors would under-
estimate carbon losses from full tree mortality and
overestimate carbon losses from branchfall. On the
other hand, branchfall and partial crown failure events
that leave an opening extending down (or close) to the
forest floor would be counted as a full canopy gap,
having the opposite effect on carbon loss partitioning.
There is also a lack of data on the partitioning of crown
and trunk biomass in harvested trees. We used the
only published datasets from Amazonia that sepa-
rately reported crown and trunk biomass to para-
meterize our crown ACD allometric equation. It is
unknown whether this dataset is representative of the
true distribution of crown carbon, and could result in
either an over- or underestimation of branchfall car-
bon loss by this study. Finally, further study is needed
before airborne LiDAR can be utilized for estimates of
short-term forest growth and subsequent estimates of
net forest carbon flux, rather than the gross carbon
source fromgaps described here.

Conclusion

Considerable uncertainty in the ecosystem processes
of tropical forests remains (e.g., Schimel et al 2015),
with substantial repercussions for the understanding
and prediction of the global climate system (Bodman
et al 2013). Our finding that gross carbon losses from
branchfall on average exceed that of full tree mortality
reveals the importance of large-scale, high-resolution
measurements of tropical forests in space and time.
Reducing the uncertainty of one variable in the
carbon balance equation (in this case, gross carbon loss
from tree mortality and damage) will lead to better
estimates of yearly net carbon flux. The power of forest
carbon monetization policies (such as REDD+) to
mitigate climate change—through increased forest

conservation and restoration—ultimately relies on
our ability to precisely estimate carbon flux. Reduced
uncertainty should lead to lower carbon market
volatility and higher economic benefits for countries
and landowners (Newell and Stavins 2000, Köhl
et al 2009).

More broadly, our results demonstrate that the
dynamics of intact Amazon forests are heterogeneous,
further highlighting the need for spatially resolved tro-
pical carbon and nutrient fluxes at sub-continental
scales. Such data can be combined with targeted field
surveys to increase the accuracy of net carbon flux,
decomposition, and nutrient cycling estimates.
Dynamic global vegetation models (DGVMs) need
better representation of these ecosystem processes
within forested biomes (Moorcroft 2006, Medlyn
et al 2015). Estimates of these processes can be input to
forest individual-based models that can be used to
improve DGVMs (Purves and Pacala 2008, Shugart
et al 2015). To achieve these goals, there is a crucial
need for (a) vastly improved spatial and temporal
field-based measurements of carbon and nutrient
cycle components, and (b) pantropical airborne
LiDAR sampling able to resolve landscape carbon het-
erogeneity and the subtle but important fluxes of car-
bon from tree damage. Both avenues of research can
jointly work to shrink the level of uncertainty in tropi-
cal forest ecosystem processes, resulting in increased
predictive accuracy and climate-change mitigation
efficacy.

The ability to map individual branchfalls, in addi-
tion to full tree mortality, across landscapes over time
provides ecologists with a new dimension of dis-
turbance monitoring. Monitoring branchfall may
reveal subtle and immediate ecosystem responses as
these damage mechanisms may not be sufficient for,
or result in delayed, full-treemortality. Both the causes
and consequences of ecosystem-level branchfall can
then be assessed. Themethods developed here to iden-
tify and quantify branchfall at landscape scales can
provide new insight into ecosystem structure and
functioning.
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