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Abstract
Land surfacemodels (LSMs)must accurately simulate observed energy andwater fluxes during
droughts in order to provide reliable estimates of futurewater resources.We evaluated 8 different
LSMs (14model versions) for simulating evapotranspiration (ET) during periods of evaporative
drought (Edrought) across sixflux tower sites. Using an empirically defined Edrought threshold (a
decline in ET below the observed 15th percentile), we show that LSMs simulated 58 Edrought days per
year, on average, across the six sites,∼3 times asmany as the observed 20 d. The simulated Edrought
magnitudewas∼8 times greater than observed and twice as intense. Ourfindings point to systematic
biases across LSMswhen simulating water and energy fluxes underwater-stressed conditions. The
overestimation of key Edrought characteristics undermines our confidence in themodels’ capability
in simulating realistic drought responses to climate change and haswider implications for phenomena
sensitive to soilmoisture, including heat waves.

1. Introduction

Droughts are major natural hazards with widespread
impacts on humans and ecosystems. Severe drought
events have been experienced in the last decade across
different regions of the world, including Australia (van
Dijk et al 2013), the Amazon (Marengo et al 2008,
Lewis et al 2011) and North America (Senevir-
atne 2012, Griffin and Anchukaitis 2014), with con-
sequences for water resources management and
ecosystem productivity (Dai 2011). The frequency and
magnitude of droughts are expected to increase
regionally in the coming decades due to climate-
change driven changes in precipitation and evapotran-
spiration patterns (Dai 2011, 2013, Sheffield et al 2012,
IPCC 2013, Orlowsky and Seneviratne 2013, Prud-
homme et al 2014). Due to the vulnerability of many
regions to drought, it is crucial that land surface

models (LSMs) correctly characterise these phenom-
ena as a first step to the provision of reliable
projections of future water availability across the land
surface.

LSMs have wide-ranging applications, varying
from providing the lower boundary for climate and
weather prediction models (Pitman 2003) to opera-
tional water resource monitoring (e.g. Crow
et al 2012). LSMs also underpin studies investigating
historical (Sheffield and Wood 2008, Wang et al 2009,
Dai 2011) and future (Burke and Brown 2008,
Dai 2013, Prudhomme et al 2014) changes in drought
and as such, are a key tool for understanding and
quantifying these extreme events. The capability of
LSMs to capture droughts has not been widely eval-
uated, with many model inter-comparison studies
instead focusing on seasonal to annual scale averages
(Henderson-Sellers et al 1995, Best et al 2015). Some
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recent studies have identified deficiencies in individual
LSMs in simulating carbon and water fluxes during
seasonal-scale droughts in a range of climates and eco-
systems (Prudhomme et al 2011, Li et al 2012, Powell
et al 2013, Tallaksen and Stahl 2014, De Kauwe
et al 2015, Ukkola et al 2016, Whitley et al 2016). For
example, the Community Atmosphere Biosphere
Land Exchange (CABLE; Wang et al 2011) LSM has
been shown to systematically underestimate site-scale
evapotranspiration (ET) during anomalous dry condi-
tions such as the 2003 European drought (De Kauwe
et al 2015) and regular dry seasons, such as those
observed in savannas (Whitley et al 2016). The Joint
UK Land Environment Simulator (JULES; Best
et al 2011) LSM has been shown to enter hydrological
(streamflow) droughts too slowly, whilst over-
estimating ensuing drought duration and severity.
JULES and several other LSMs, including ORCHIDEE
(Organising Carbon and Hydrology in Dynamic Eco-
systEms; Krinner et al 2005), have also been found to
overestimate the frequency of hydrological droughts
due to the over-sensitivity of models to short-term
precipitation variability (Prudhomme et al 2011, Tal-
laksen and Stahl 2014).

These findings have pointed to limitations in spe-
cific LSMs used for characterising the magnitude,
duration and frequency of droughts. However, pre-
vious studies have commonly relied on a single LSM
and as such, it is unclear if the biases identified in pre-
vious studies are systematic amongst LSMs, or rather
due to how individual models represent and para-
meterise key processes. We therefore evaluate eight
unique LSMs (and 14model versions in total) in simu-
lating ET during water-stressed conditions across six
flux tower sites with pronounced seasonal-scale dry
periods. In contrast to large-scale applications of
LSMs, flux tower measurements offer direct observa-
tions of energy and water fluxes at time scales ranging
from minutes to multiple years. As such, they offer
excellent opportunities for improving process-level
understanding of LSMs, whilst minimising uncertain-
ties in forcing and evaluation data that would other-
wise undermine our ability to reliably evaluate model
performance.

2.Methods

Many definitions of drought exist, including meteor-
ological (precipitation (P)), hydrological (streamflow)
and ecological (soil moisture) drought (Sheffield and
Wood 2011, Van Loon et al 2016). Here, we use ET to
evaluate what we term ‘evaporative drought’ in LSMs
since (a) this is the water availability variable directly
measured by flux towers and, (b) it provides access to
simulations at a range of sites by many LSMs that took
part in the Protocol for the Analysis of Land Surface
Models (PALS) Land Surface Model Benchmarking
Evaluation Project (PLUMBER; Best et al 2015). The

use of ET also allows for the evaluation of the
contribution that LSMs can make to enhancing or
dampening drought characteristics that are imposed
by prevailing meteorological conditions. This ‘eva-
porative drought’ (Edrought hereafter) is not provided
as another formal definition of drought. Rather, we
use the term to encompass regularly occurring dry
seasons as well as anomalous dry periods as these both
serve as useful references for model performance
during water-stressed periods. As such, we do not rely
on existing evaporative drought indices (e.g. Narasim-
han and Srinivasan 2005, Anderson et al 2011, Hob-
bins et al 2016) but formulate an alternative index
based on similar principles.

We employ three metrics to quantify the duration,
magnitude and intensity of Edroughts. We define the
Edrought threshold (q15) empirically as the annual
15th percentile value of observed daily ET. Unlike
other hydrological variables commonly used to char-
acterise droughts, low ET does not necessarily result
from low water availability but can also follow from
low incident energy supply to vaporise water. To avoid
falsely characterising days with low radiation supply as
periods of drought, we use the ratio of actual to poten-
tial ET (PET) as an additional constraint. Low actual
ET (AET) compared to PET indicates water-limited
conditions whereby evaporative demand cannot be
met by available water supply.We standardise the eva-
porative ratio (ER) by annualmean daily PET (E ;p mm
d−1) to avoid characterising days with low PET (e.g.
during high latitudewinter) as drought:

=
+

+
( )

E E

E E
ER , 1

a p

p p

where Ea and Ep are the daily actual and PET (mm
d−1), respectively. We calculated daily PET using the
Priestley–Taylor equation (Priestley and Taylor 1972)
based on observed shortwave radiation and air temp-
erature following Gallego-Sala et al (2010). We also
repeated the analysis using the Penman PET equation
(Penman 1948), which also includes the effects of wind
and humidity, but our findings were robust to the
choice of PETmethod.

Edrought duration (D) was determined separately
for each model as the number of days with daily ET
below the q15 value and the ER below its observed
annual 15th percentile value at each site. Each Edrought
event was defined as a period of 14 ormore consecutive
Edrought days. We examined the impact of different
thresholds for q15 and ER; these did not qualitatively
impact our conclusions. Subsequently, Edrought mag-
nitude (M) was calculated separately for each event as
the cumulative sum of the difference between q15 and
daily ET (E)during theEdrought days (d):

å= - Î
=

[ ] ( )M q E d i j; , , 2
d i

j

d15

where i is the Edrought start date and j the end date.
We term this as the ‘cumulative deficit’ following
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Sheffield and Wood (2011). Finally, Edrought inten-
sity (I) was determined as the difference between q15
and the minimum daily ET during each Edrought
event:

= - Î( ) [ ] ( )I q E d i jmin ; , . 3d15

All metrics were determined separately for eachmodel
and each site. 14 day runningmean ET was used for all
analyses.

Model simulations for the 13 LSM versions were
acquired from PLUMBER (Best et al 2015) and we
added a version of the CABLE LSM (Decker 2015) for
this study. Themodels were forced with observed half-
hourly meteorology at each site, using an identical
spin-up protocol. The models were not calibrated
locally at the sites. Whilst calibration would likely
improve model performance, it may not necessarily
reflect the skill of LSMs when run at the larger scales
they are typically developed for. Instead, site calibra-
tion may mask significant deficiencies in LSMs and
lead to parameter values that perform well at the cali-
bration site, but are likely to be over-fitted for the
intended broad scale application. A full description of
the LSMs and modelling protocols is available in Best
et al (2015) but a summary of the participating LSMs is
provided in table S1. The PLUMBER archive has
simulations for 20 flux tower sites; we focus our analy-
sis on six of these sites with pronounced seasonal
drought periods during periods of high potential eva-
poration. For completeness, we provide results for the
remaining sites in figure S1. Note we exclude Sylvania
because precipitation forcing was erroneous and El
Saler 2 which is an irrigated site (Haughton et al 2016).
The droughtmetrics were calculated using all available
years, ranging from two to seven years for the selected
sites. The six sites discussed in detail provide a reason-
ably distributed global sample and cover a range of
vegetation and climate types (figure S2; table S2). They
also exhibit the key process-level strengths and weak-
nesses that can be identified in the overall PLUMBER
archive and therefore provide a good guide to model
performance across the whole 20 sites used in Best
et al (2015).

3. Results

Figure 1 shows LSM simulations for individual years
across the six sites and the associated observations for
ET and precipitation to illustrate typical LSM beha-
viour at these sites. There are clear deficiencies in
simulations of ET at most sites. At Amplero, most
models agree with observations in the early part of the
year but as rainfall declines, the LSMs diverge from
each other considerably. One model reduces ET
dramatically in June (ISBA-3L), others decline
strongly in July (e.g. Noah 2.7, ISBA-dif and CABLE-
2.0) while several models continue to closely match
the observations to the end of the year (CABLE-SLI,

CABLE-GW andMosaic). In September, modelled ET
ranges from near zero to ∼3 mm d−1. At Espirra and
Blodgett, a similar result is obtained, with a divergence
in the LSMs with ET again ranging from near zero to
∼3 mm d−1 and ∼4 mm d−1 in July, respectively.
Almost all LSMs underpredict ET compared to
observations in July at Howard Springs and Mopane.
At Palang some LSMs capture observed ET well, while
others show similar behaviour to Amplero.

We next quantify these qualitative descriptions of
LSM biases using all available years. Figure 2(a) shows
the Edrought duration simulated by each LSM. On
average, the LSMs simulated 58 Edrought days per
year across the six sites, compared to 20 d in the
observed ET flux data. Model estimates ranged from
22 (ORCHIDEE) to 103 (Noah 3.2) Edrought days per
year and, as such, all the participating LSMs over-
estimated Edrought duration when averaged across
the six sites. The largest error in Edrought duration
was simulated for the Palang site (on average 74 d
more than observed). The smallest error was simu-
lated inMopane (15 dmore than observed).

We then evaluated the LSMs for simulating
Edrought magnitude using the cumulative deficit
metric (figure 2(b)). The average simulated annual
total cumulative deficit was 37 mmcompared to 4 mm
observed, an overestimation of around 700%. This is
partly due to the LSMs overestimating Edrought dura-
tion.When averaged to daily Edroughtmagnitude, the
simulated mean magnitude was 0.39 mm d−1 com-
pared to the observed 0.20 mm d−1. As such, the LSMs
overestimated Edrought magnitude even after
accounting for biases in Edrought duration. Annual
LSM estimates ranged from 5mm (CABLE-SLI) to
70 mm (COLASSiB) averaged across the six sites. The
largest errors were simulated at Howard Springs and
Palang (82 mm and 68mm more than observed,
respectively). The range in simulated cumulative defi-
cit was also greatest at these sites, withmodel estimates
varying from an underestimation of 10 mm (CABLE-
SLI) to an overestimation of 143 mm (ISBA-dif) at
Howard Springs and from an underestimation of
7 mm (CABLE-SLI and ORCHIDEE) to an over-
estimation of 203 mm (Noah 3.2) at Palang. The smal-
lest average biases were simulated at Amplero,
Blodgett andMopane (varying between 5 and 7 mm).

All LSMs also systematically overestimated
Edrought intensity at most sites (figure 2(c)). On aver-
age, the simulated intensity was 0.55 mm and
observed intensity 0.32 mm, with model estimates
ranging from 0.27 mm (Mosaic) to 0.99 mm (COLAS-
SiB). Similar to Edroughtmagnitude, themodel errors
were largest in Howard (0.56 mm more intense than
observed), and varied between an underestimation of
7 mm to an overestimation of 0.26 mm at the other
sites.
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4.Discussion

On average, the LSMs examined here systematically
overestimate observed Edrought intensity, duration
and magnitude. We note that flux tower measure-
ments do include biases, notably errors in energy
balance closure (Leuning et al 2012). However, given
the systematic and large biases in LSM simulations
identified, observational uncertainties are unlikely to
explain the biases (Haughton et al 2016). Rather, we
suggest that these errors highlight key model deficien-
cies in the representation of processes needed to
correctly capture the impact of drought on carbon,
energy andwater fluxes.

It was notable that three alternativemodel versions
(two for CABLE and one for JULES) performed better

than their default versions and the LSMs as a group.
The default versions CABLE-2.0 and JULES-3.1 per-
formed similarly to the average across all the models
(58 d), simulating 65 and 85 dry days on average,
respectively. In contrast, CABLE-SLI, CABLE-GW
and JULES-altP simulated 23, 25 and 33 dry days,
respectively (figure 2(a)). Similarly, observed
Edrought magnitude (4 mm) was better captured by
the alternative configurations (5, 13 and 11 mm for
CABLE-SLI, CABLE-GW and JULES-altP, respec-
tively) than the default models (44 and 51 mm for
CABLE 2.0 and JULES-3.1, respectively; figure 2(b)).
We therefore explore differences between the alter-
native model formulations to identify those model
processes that improved the drought responses in
these alternate LSMs to offer guidance for the

Figure 1. Simulated and observed evapotranspiration during an example one-year period. The ET time series show the 14 d running
mean from January toDecember. The grey bars show 7 d precipitation totals.
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development of other LSMs. We first discuss soil
hydrological and hydraulic processes in the context of
CABLE-GW and JULES, followed by vegetation
drought responses in the context of CABLE-SLI.
Finally, we demonstrate the implications of over-
estimating Edroughts for other extremes sensitive to
soilmoisture.

4.1. Representation of soil hydrology and hydraulics
CABLE-GW differs from the default version in its
representation of soil hydrology. CABLE-GW simu-
lates groundwater storage and recharge and parame-
terises subsurface drainage differently (Decker 2015).
The default model assumes a free draining lower soil
boundary for solving vertical water flow, such that

Figure 2. Simulated and observed (a)Edrought duration (number of Edrought days per year), (b)Edroughtmagnitude (cumulative
deficit;mmyr−1) and (c)Edrought intensity (mm) at the six flux tower sites. Individualmodel estimates are shown as coloured bars,
observations as the dotted line and themean of allmodels as the solid line.
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drainage is constant for a given soil moisture content
and water becomes unavailable upon exiting the
bottom soil layer. Zeng andDecker (2009) showed that
this assumption leads to overly dry soil conditions in
many cases and requires unrealistically high precipita-
tion rates to maintain well-watered conditions
whereby vegetation can transpire without encounter-
ing water stress. By contrast, CABLE-GW allows for a
dynamic bottom boundary whereby drainage to an
unconfined groundwater aquifer can recharge soil
moisture stores during dry soil conditions and no
water exits the model system through downward flow
from the aquifer. Ukkola et al (2016) showed that
replacing the constant drainage assumption in the
default model with a physically based, dynamic
bottom boundary condition improved CABLE simu-
lations of drought through maintaining higher soil
moisture (and consequently ET) duringwater-stressed
periods. Whilst CABLE-GW has not been explicitly
evaluated against site-scale soil moisture observations
due to the scarcity and non-commensurability of soil
moisture observations across sites (particularly for soil
depths covering the root zone from which plants
extract water), it has been shown to compare favour-
able against Gravity Recovery andClimate Experiment
(Tapley et al 2004) water storage anomalies in global
offline simulations (Decker 2015).

JULES-altP differed from the default version
through a number of parameter changes and different
process representations (see Best et al 2015).We exam-
ined the sensitivity of these changes to pinpoint the
cause of the improved drought performance of
JULES-altP (figure 3). The main changes responsible
for the differences in the two versions of JULES, in
order, were (a) switching off the representation of sub-
grid scale heterogeneity in soil moisture, (b) switching
the numerical solution for the soil hydraulics from
Clapp and Hornberger (1978) to van Genuchten
(1980) and (c) turning off the prognostic phenology
scheme. The use of a sub-grid scale heterogeneity
scheme for soil moisture (Moore 1985, Best et al 2011)
is an attempt to represent horizontal site variations in
soil moisture. Instead of representing soil moisture
with a single uniform value across the grid cell, a prob-
ability distribution function is used. In theory this
should allow the model to transition less abruptly into
periods of drought as the surface has a more realistic
representation of wet and dry regions (see Entekhabi
and Eagleson 1989, Liang et al 1994). In reality, it
appears that this scheme reduces deep soil water drai-
nage due to increased surface runoff.

Changing the soil hydraulics from Clapp and
Hornberger (1978) to van Genuchten (1980) explains
the majority of the remaining differences in evapora-
tion. However, if the change to the van Genuchten
scheme is made whilst the sub-grid scale scheme is
switched on, then in general the evaporation declines
more rapidly than the original default JULES simula-
tion during the drought periods, making the results

worse. Hence we do not claim that the van Genuchten
scheme performs better in JULES than the Clapp and
Hornberger scheme, but that changes to the amount
of water in the soil (through increased infiltration) and
how this water hydraulically moves within the soil is
important for an accurate solution. In the case of
CABLE-GW, the choice of soil parameter values
themselves has also been shown to be critical for accu-
rate drought simulation (Ukkola et al 2016), high-
lighting the need to carefully treat soil hydraulic
properties.

Finally, turning off the prognostic phenology
scheme within JULES increases the evaporation in the
early part of the growing season for two of the sites
(Amplero and Tumbarumba). The phenology scheme
does not develop the leaf area index (LAI) sufficiently
in this part of the growing season to sustain the eva-
poration obtained when using a fixed default LAI
value. However, the prognostic phenology gives eva-
poration that is in better agreement with the observa-
tions during the period of lower LAI values. This
suggests that improvements in the results for the
drought periods, from turning off the prognostic phe-
nology, are not necessarily being achieved for the cor-
rect physical reasons.

Results from both the JULES and CABLE-GW
models reinforce the conclusion that the way in which
the soil hydrology is represented within models is cri-
tical for capturing the correct response in evaporation
during sustained dry periods. LSMs have typically
been developed to capture seasonal- to annual-scale
hydrological processes and there is a clear need to bet-
ter represent short-scale extreme phenomena, as well
as to consider the uncertainty arising from soil
hydraulic properties in themodels.

4.2. Representation of plantwater stress
CABLE-SLI includes alternative representations of soil
hydrology, surface energy balance and plant water
stress. Haverd et al (2016) separated the effects of these
processes and demonstrated improvements to latent
and sensible heat fluxes simulated by CABLE-SLI
(relative to the default CABLE) at 19 globally distrib-
utedflux tower sites. These improvements were largely
attributable to the alternative drought response func-
tion and the dampening effect of leaf litter on soil
evaporation. Most LSMs (e.g. default CABLE and
JULES, ORCHIDEE and CHTESSEL) limit gas
exchange during drought following an empirical plant
water stress function (β) (Verhoef and Egea 2014).
Several limitations of this function have been noted.
The implementation of the β function in models has
generally been informed by limited or in some
occasions, no experimental data (Medlyn et al 2016). It
is also unclear how best to represent the effects of
vertical variations in soil moisture on plant root water
uptake for the calculation of β. De Kauwe et al (2015)
showed that models which weight soil moisture
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content by root biomass (e.g. JULES, CABLE, COLAS-
SiB and CLM) simulate a rapid depletion of soil water
due to the models extracting soil water predominately
from the top soil layers, which have a high root
fraction, but relatively low absolute soil water content.
The result of this weighting assumption is the rapid
onset of drought typically observed in CABLE and
many other LSMs in this study (figure 1).

CABLE-SLI uses an alternative approach for
weighting the available soil water content used in its
drought stress function. This scheme determines sto-
matal drought response using the soil water content of
the wettest soil layer that has roots present and a
drought response parameter, which controls the

steepness of the drought response with respect to soil
moisture (Haverd et al 2013). This is an attempt to
capture the ecological optimality hypothesis that evo-
lutionary selection pressures drive ecosystems towards
maximal utilisation of available resources (Rau-
pach 2005). This approach leads to improvements in
simulations of ET at the onset of and during Edrought
(figure 1). The drought response parameter could in
theory be varied to account for variable drought
responses amongst plant functional types, for which
there is experimental evidence (McDowell et al 2008,
Zhou et al 2013, 2014). However, in an assessment
against 19 flux sites, while the optimum drought
response parameter varied from site to site, there was

Figure 3.Evapotranspiration as observed and simulated by different configurations of JULES during an example one-year period. The
time series show the 14 d runningmean and run from January toDecember. The grey bars show 7 d precipitation totals. ‘Default’ and
‘altP’ are the default JULES-3.1 and JULES-altPmodels, respectively. ‘PDM’ and ‘PHEN’ are simulationswith the probability
distributionmodel and interactive phenology turned off, respectively. ‘VG’ is a simulationwith the vanGenuchten (1980) soil
hydraulics scheme instead of the Clapp andHornberger (1978) scheme.
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no apparent relationship to aridity or plant functional
type (Haverd et al 2016). In contrast, De Kauwe et al
(2015) varied drought sensitivities from low in xeric
(dry) ecosystems to high in mesic (humid) environ-
ments in CABLE-2.0 and showed the model to better
capture observed ET during the 2003 European
drought. Furthermore, the study identified the need to
consider drought stress effects on both stomatal con-
ductance and photosynthetic capacity in line with
experimental evidence (Keenan et al 2009, Zhou
et al 2013). Currently, LSMs differ in how they repre-
sent plant water stress, either reducing stomatal con-
ductance or photosynthetic capacity or both (De
Kauwe et al 2013) and consideration of both processes
appears important (Keenan et al 2009, Egea et al 2011,
Flexas et al 2012, Zhou et al 2013). PFT-specific
drought responses may thus provide a further avenue
for improving LSM simulations of drought.

4.3. Implications for other extremes
Previous studies have highlighted key differences
amongmodels when examining runoff metrics (Prud-
homme et al 2011, Stahl et al 2011, Gudmundsson
et al 2012, Tallaksen and Stahl 2014). In addition to
errors in ET affecting soil moisture, errors in the
hydraulic properties of the soil and the infiltration
processes could both lead to differences in surface and
sub-surface runoff. However, data were not available
to evaluate these two runoff components from the
models, and so we could not analyse them in this
study. Clearly, future studies that evaluate all aspects of
the terrestrial water cycle simultaneously would be
ideal in order to examine these issues further.

There is another important implication of our
results that is not immediately obvious. A key role of
LSMs in climate models is to determine the partition-
ing of available energy into sensible and latent heat in
interaction with the atmosphere. During water-stres-
sed conditions, the latent heat flux is reduced and
more available energy is exchanged as sensible heat.
This land-atmosphere feedback has been shown to be
important in the evolution of extreme temperatures
including during the European heat wave of 2003
(Fischer et al 2007). Our results suggest that in site-
scale offline simulations, LSMs systematically under-
estimate latent heat fluxes during water-stressed con-
ditions and overestimate sensible heat flux at many
sites (figure S3). This overestimation is greatest during
periods of low rainfall and ET at many sites (see e.g.
Amplero, Espirra and Palang during July), and is con-
sistent with the finding by Haughton et al (2016) that
partitioning was the largest source of error in LSMs’
flux prediction in the PLUMBER experiment. These
biases in sensible heat fluxes have the potential to
affect the simulation of heat extremes, under the right
synoptic conditions and cause an overestimation of
heatwaves when these LSMs are running fully coupled.

5. Conclusions

Our results show that LSMs significantly overestimate
the duration, magnitude and intensity of evaporative
droughts (defined in this study as periods with low
actual evapotranspiration and evaporative ratio)when
evaluated against flux tower measurements of evapo-
transpiration. The 14 LSM versions analysed in this
study overestimated annual Edrought duration by
12%–429% and Edrought magnitude by 10%–1484%
across the six flux tower sites, pointing to large and
systematic biases. Despite recent model improve-
ments, the best performing model versions continue
to over-predict annual Edrought duration by
12%–24%.

Many model development efforts concentrate on
introducing new processes into LSMs. We suggest
there is equally a need to re-examine existing model
components in LSMs to improve simulations of water
and heat fluxes during evaporative drought. A com-
parison of alternative model formulations demon-
strated the importance of re-evaluating soil
hydrological processes and water-plant interactions in
LSMs, introducing mechanistic, data-driven para-
meterisations of fundamental land surface processes.
Specifically, the representation of vertical soil water
fluxes and plant water stress, together with a careful
treatment of soil hydraulic properties, were shown to
be important for determining evapotranspiration dur-
ingwater-stressed periods.

Most previous model evaluation studies have
focussed on the mean state. Indeed, the hydrology in
LSMs has been developed principally to capture
longer-term mean behaviour. Our study has eval-
uated the capability of LSMs to capture the duration,
magnitude and intensity of Edrought by focussing on
periods where the observations point to the occur-
rence of low actual evapotranspiration. By focussing
onmore water-stressed periods, our study has identi-
fied a systematic bias in LSMs. We suggest therefore
that there is an urgent need for more thorough eva-
luation of LSMs against extremes, for two associated
reasons. First, this would enable the development of a
better understanding of the limitations of current
LSMs and inform how to re-parameterise important
processes to improve the models. Second, this would
enable improved projections of future changes in
extremes. Since these include droughts and heat-
waves, improvements would increase the value of
LSMs and climate models in an area of direct socie-
tal need.
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