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Abstract
The long-term future of species composition in forests depends on regeneration.Many factors can
affect regeneration, including human use, environmental conditions, and species’ traits. This study
examines the influence of these factors in a tropical deciduous forest of Central India, which is heavily
used by local, forest-dependent residents for livestock grazing, fuel-wood extraction, construction and
other livelihood needs.Wemeasure size-class proportions (the ratio of abundance of a species at a site
in a higher size class to total abundance in both lower and higher size classes) for 39 tree species across
20 transects at different intensities of humanuse. The size-class proportions formedium to large trees
and for small tomedium-sized trees were negatively associatedwith species that are used for local
construction, while size class proportions for saplings to small trees were positively associatedwith
those species that arefire resistant and negatively associatedwith livestock density. Results indicate
that grazing andfire prevent non-fire resistant species from reaching reproductive age, which can alter
the long term composition and future availability of species that are important for local use and
ecosystem services.Management efforts to reducefire and forest grazing could reverse these impacts
on long-term forest composition.

1. Introduction

Tropical dry forests constitute 17% of currently
standing tropical forests (UNEP-WCMC Forest Pro-
gramme 2011), support large populations of forest
dependent people (Miles et al 2006), and provide
important ecosystem services such as watershed pro-
tection, biodiversity, climate regulation, soil fertility,
flood control, and provision resources such as timber
and fodder (for example: Maass et al 2005). Biophysi-
cal conditions such as climate and fire regime, and
human use of different species potentially alter the
long-term composition of these forests. Already, a
long history of human habitation and management of
tropical dry forests suggests that humans influence
structure and community composition even in forests
considered ‘natural’ (Heywood and Iriondo 2003).

The ability of these forests to provide ecosystem
services may change with altered forest composition.
For instance, conversion of tropical dry forests to
scrub is associated with poor soil characteristics
(Mehta et al 2008) and different species composition
in the same area is associated with lower infiltration
and evapotranspiration (Krishnaswamy et al 2013).
Variables such as soil nutrients (Siebert 1987), vegeta-
tion structure, and species diversity (Kumar and Sha-
habuddin 2005, Lefevre et al 2012, Nagendra 2012)
have been used to assess whether a forest has been
altered so that it can no longer provide ecosystem-ser-
vices or support livelihoods (Garcia-Fernandez
et al 2008). Yet, forests that appear sustainable using
these metrics may not be able to provide similar ser-
vices in the future either due to catastrophic tipping
points or trends of slow decline (Scheffer et al 2001,
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Heywood and Iriondo 2003). Human use may have
led to some changes (for example, reduced shade) that
could lead to a catastrophic tipping point (as species
that require shade during early growth cannot grow to
adulthood) or a slow decline (as the proportion of
shade bearer species that regenerate becomes lower).
Thus, the long-term composition of the forest may
already be altered due to impacts on regeneration and
demographics of different tree species. Consequently,
future forest composition may be very different from
the present.

This study assesses plant traits and human uses of
tree species associated with regeneration of forest spe-
cies in dry tropical forests in a study area in Central
India. We compare abundances of tree species in dif-
ferent size classes in sites with varying rates of human
use and similar environmental conditions and species
pool (Schmidt et al 2011). Agarwala et al (2016) con-
cluded that human pressure in the study area alters
forest biomass, composition and relative abundance
of species. This study examines which factors, includ-
ing site characteristics (e.g. population densities, live-
stock density, distance to market), types of human use
(e.g. species part used, whether species is used con-
sumptively, and whether a species is used for sub-
sistence or for commercial purposes), and plant traits
(e.g. shade tolerance, fire resistance) are associated
with transition of species from lower size class to
higher size class.

2.Methods andmaterials

2.1. Study area
The study was located in highly seasonal dry tropical
forests around Kanha Tiger Reserve in Mandla,
Balaghat and Seoni districts in India (figure 1). These
forests are representative of dry tropical forests as they
are highly heterogeneous with leaf fall concentrated in
the summer months. Dominant trees include sal
(Shorea robusta) and Terminalia species. Further, these
forests protect the upper reaches of the watershed as
they form the headwaters of the River Narmada (the
7th largest river system in India), provide important
migration routes for wildlife (Sharma et al 2013, Yum-
nam et al 2014) and support the livelihoods of local
populations (Saigal 2008).

2.2. Sample selection
From this landscape, we selected six representative
villages for sampling based on population density,
livestock density, available forest area, and distance to
town. We used cluster analysis to identify clusters of
villages which had similar values for these parameters,
and then randomly selected two villages to serve as
replicates from each of the three largest clusters
(details in Agarwala et al 2016). In each cluster, we
selected two villages that were located close to each
other and shared the same forest (see figure 1 as an

example). The clusters had different population den-
sities, forest cover, and distance to major towns (see
appendix A for values), but population density was the
most important predictor for differences in forest
biomass (Agarwala et al 2016). In selecting villages, we
also excluded those villages where the neighboring
forest compartment (where a compartment is a well-
defined forest management unit ranging in size from
0.1 to 5.3 km2, and with a mean size of 2.3±1.06
km2) had a history of logging and silviculture by the
Forest Department, to retain only those villages where
changes in forests would be natural or due to village-
level human use. We quantified forest use around
these six selected villages by tracking people and cattle
in the forest across two seasons in 2012, and used these
data to identify forest patches around the three village
clusters that had high use (used by both cattle and
people in both seasons), intermediate use (used by
either cattle or people in one season), or no known use
(no documented use by either people or livestock)
(figure 1; detailedmethods in Agarwala et al 2016). We
then surveyed forest vegetation in twenty sample plots
(each plot consisted of five 20 m ×20 m subplots)
across the three village clusters where we placed plots
in patches of high use, intermediate use and no known
use (see appendix A for distribution of plots across
village clusters).

2.3. Field surveys
For estimating tree population structure, we identified
allfloral species in four size classes: large trees (>10 cm
DBH), medium-sized trees (4–10 cm DBH), small
trees (<4 cm DBH and height >2.1 m), and saplings
(height <2.1 m) in five 20 m×20 m subplots in each
plot. In this design, four subplots were located 100 m
away from the central subplot in opposite directions.
We also measured understory biomass and canopy
cover using a spherical densiometer at two randomly
located 1mquadrats within each subplot. Species were
identified using a plant identification key (Bran-
deis 2007) and local residents with forest experience.
Finally, we recorded species with visual signs of
browsing in each sample (Seidl et al 2011).

2.4.Method to assess long-term forest composition
Long-term sampling required for calculating species
regeneration (Hall and Bawa 1993, Caswell 2001, Hey-
wood and Iriondo 2003, Schmidt et al 2011) is not
always possible (Feeley et al 2007). The coefficient of
skewness calculated from size distribution of trees
(Wright et al 2003) can predict the direction of change
for most species (Feeley et al 2007), but gives an
average value for the entire distribution of a species
and masks the impact on individual size classes at
which the drivers may operate. It also requires at least
25 individuals per site (Feeley et al 2007), which limits
the number of species that can be examined
(appendix B). Our study modified this method by
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collecting species abundance at size class intervals
(Herrero-Jáuregui et al 2012). We then calculated a
size-class proportion metric (henceforth referred to as
SCPM) separately for every species in each transect.
This is defined as the ratio of abundance of a species at
a site in a given size class to total abundance in that size
class and the size class below it.We calculate SCPMas:

( )( )

( )
=

+
+

+
C

F

F F
, 1ijk

ij k

ijk ij k

1

1

where Fijk is the abundance of species i at site j at size
class k.

SCPM quantifies the proportion of individuals in a
species that are present in a higher size class, which
represents the slope of the populationdistribution in the

size-class intervals between lower size class and higher
size class (figure 2). SCPM varies from zero (present in
lower size class but absent in higher size class at a sample
site) to a maximum value of one (present in higher size
class but absent in lower size class). Significantly differ-
ent SCPM values at sites used at a higher frequency than
at comparable sites with lower frequency of use where
environmental factors are constant would suggest that
human use is altering the proportion in higher size class,
although causality can only be inferred. Over the long
term, differences in SCPM would lead to differences in
species composition in heavily used forests, compared
with comparable sites used at lower frequency.

Unlike static life table methods that examine size-
class distributions at a single site (Wright et al 2003),

Figure 1. Study Area: six representative villages (three replicates) in study area. Inset shows layout of plots in a village replicate. For
more details, see Agarwala et al (2016).

Figure 2.Abundances (black bars) and size class proportionmetric SCPMs (red crosses) forTerminalia alata at (a) low frequency of
use, (b) intermediate-use frequency, and (c) high frequency of use.
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this study reduces the impact of variations in size dis-
tributions due to past events such as logging, pathogen
outbreaks, and droughts, by comparing size-class dis-
tributions at heavily used sites with locally situated
comparable sites with lower frequency of use within
the same village cluster. Although population density
was associated with differences in biomass and forest
structure in the study area, frequency of use was asso-
ciated with changes in species diversity and relative
abundance of species (Agarwala et al 2016). By com-
paring SCPM within and across clusters, we can iden-
tify factors within and across clusters that are
associated with species and trait-level changes in the
forest. Further, some species are necessarily absent in
certain size classes due to their natural growth form.
For grasses such as bamboo (Dendrocalamus sp.), we
only recorded survival in the lower two size classes
(height <2.1 m; height>2.1 m). Similarly, for species
that do not reach large sizes (>10 cm DBH), presence
for that size class was excluded from the analysis. This
method is limited because it does not account for seed-
ling germination and does not provide information on
direction of change, as a higher SCPM than the control
could be a result of both the higher proportion of
higher size class and lower abundance of lower size
class. Yet, given the presence of a germinated seedling
(if a species is present in lowest size class) and given
similar species pool, comparing SCPMs across differ-
ent sites allows us to identify and understand change.
Using SCPMmay also bias analysis as uncertainty will
be higher for SCPMs of those species with lower abun-
dances, but we addressed this by removing observa-
tions where total abundance of species in a transect for
a size class and the size class above it was less than one
standard deviation below the mean. Because our pre-
vious study examined factors associated with differ-
ences in relative abundance of species (Agarwala
et al 2016), we could remove abundance-related infor-
mation to focus on factors associated with transitions
of species to higher size classes.

2.5. Identification of factors associatedwith size
class transitions
We used Generalized Linear Mixed Models (GLMM)
to identify which factors are associated with differ-
ences in size class transitions based on a sample of 20
plots representing 39 species (see below). The response
variable was SCPM and predictor variables included
plant traits, biophysical conditions, and human use
characteristics (table 1).

2.5.1. Data for predictor variables
We collected data on factors associated with the site
that could impact regeneration due to human use
(livestock and human population per forest area,
distance to market and frequency of use) and site-
specific characteristics (canopy and understory cover,

species diversity, mean fire radiative power, precipita-
tion, temperature, elevation and slope) (table 1). We
also collected data on soil nutrients and pH but there
were no differences in these factors across sites
(Agarwala et al 2016).

Plant traits included in the model are those known
to influence size-class distribution (Wright et al 2003).
These traits are: shade tolerance, wood density, resist-
ance to fire and trampling, tolerance to planting den-
sity, and growth form (table 1). Shade tolerance has
been identified as the most important plant trait in
determining size-class distribution, and wood density
is used as a proxy for physiological andmorphological
traits (Wright et al 2003). Particularly, wood density
represents the growth strategy of a species, where spe-
cies with lighter wood grow faster (Wright et al 2003).
Data on plant traits were collected for as many species
as possible from existing literature (Troup 1983, Bran-
deis 2007). Overall, we collected information on 39
species out of 84 for most categories (see detailed data
sources in table 1 and detailed information for each
species in table S1 of supporting information). These
represent 91%of individuals in the sample plots.

We also included predictor variables for human
uses known to impact regeneration rates. Data were
compiled from field surveys, literature reviews and
250 interviews conducted in the study area (Agarwala
et al 2016). For example, predictors from interviews
included whether local people considered the species
to be important (percentage of time that respondents
recalled a species as important when asked about the
uses of the forest: Agarwala et al 2016), whether the
species was browsed (percentage of time that a species
was browsed relative to the number of times it was pre-
sent in the plot: Agarwala et al 2016), which species
part was used, whether use was consumptive, whether
the species was used for subsistence or for the market,
and the specific use of every species part (table 1; table
S1 in supporting information).

2.5.2.Model
We used GLMM to test which site-specific conditions,
species-specific plant traits and use characteristics
were significant in explaining differences in SCPM for
saplings to small trees (n=208), small trees to
medium-sized trees (n=190), and medium-sized to
large trees (n=96). The GLMMs were run separately
for each size class. The response variable was SCPM
for 39 species. Themodel included species identity and
village cluster as random effects and interactions that
we hypothesized as plausible, for example, interaction
of fire resistant species and fire radiative power at the
site (complete list of interactions tested in table S2 in
supporting information). The global model for this
analysis was:
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where B0=intercept, Bi=beta-coefficient for pre-
dictors representing ith site condition, Bj=beta-

coefficient for predictors representing jth species use,
Bk=beta-coefficient for predictors representing kth
plant trait, Bijk=beta-coefficients for interaction
terms where interaction may be between two or more
predictors.

To account for collinearity, only predictors with
correlations less than 0.3 were retained (correlation
matrices in table S3 in supporting information) and
used to construct alternative global models (table S2 in
supporting information). Each of our global models
included all the predictors that could be included

Table 1.Variables used as predictors in generalized linearmodels to predict size class proportionmetric (SCPM).

Predictor Source

Species traits:

Shade tolerance (categories: light demanding, light demanding but

some shade tolerated, requires shadewhen young, shade bearer)
Literature review (Troup 1983, Brandeis 2007)

Growth form (categories: tall tree with a crooked trunk, tall treewith a
short trunk, tall treewith a straight trunk,moderate sized tree with

a crooked trunk,moderate sized treewith a straight trunk, small

tree, shrub, other)

Literature review (Troup 1983, Brandeis 2007)

Resistance to fire (categories: no, somewhat, yes, yes when the plant is

older)
Literature review (Troup 1983, Brandeis 2007)

Resistance to trampling/cattle (categories: none, not at high inten-
sity, yes)

Literature review (Troup 1983, Brandeis 2007)

Resistance to planting density (categories: species growswell despite
competitions, species growth is improvedwith groundweeding,

species growth is improved by removal of overhanging vegetation

or local canopy competition)

Literature review (Troup 1983, Brandeis 2007)

Wooddensity (kg/cubic feet) Literature review (Troup 1983, Brandeis 2007)

Site Characteristics (values averaged for each plot; continuous variables standardized to themean ( ¯)å -xi x sd: ):

Frequency of use (categories: no recorded use= 0, intermediate

use= 1, high use=2)
Field surveys (details in: Agarwala et al 2016)

Livestock per Forest Area (livestock populations per 30m×30m
pixel)

Census data (Department of AnimalHusbandry 2012) and remote

sensing for forest cover (details in: Agarwala et al 2016)
Population per Forest Area (human populations per 30m×30m
pixel)

Census data (Wildlife Institute of India 2011a) and remote sensing

for forest cover (details in: Agarwala et al 2016)
Distance tomarket (km) VillageCensus (Wildlife Institute of India 2011a)
Canopy cover (proportion of canopy closure) Field surveys

Understory biomass (kgm−2) Field surveys

Elevation (m) (30m×30m resolution) ASTER-DEM (reverb.echo.nasa.gov)
Slope (m−1) Calculated from elevation

Species diversity indices (Shannon and Simpson diversity indices) Field surveys

Fire radiative power (mWm−2) (resampled from 1km resolution) MODIS 14A1 (reverb.echo.nasa.gov)mean (January–June:
2002–2012)

Precipitation (mmh–1 converted tommyr–1) (resampled from

0.25°×0.25°)
TRMM3B43 (trmm.gsfc.nasa.gov )mean (January–June:
2002–2012)

Temperature (Kelvin) (resampled from1 km resolution) MODIS 11A1 (reverb.echo.nasa.gov)mean (February–June:
2002–2012)

Human use characteristics:

Species browsed (proportion) Field surveys (Agarwala et al 2016)
Species named as important (proportion) Interviews (Agarwala et al 2016)
Species part used (categories: bole, branch and leaves, bark, sap, fruit,
flower)

Interviews (Agarwala et al 2016), literature review (Brandeis 2007)

Species use (categories: food,market, fodder, fuel-wood, construc-

tion, implements, other)
Interviews (Agarwala et al 2016), literature review (Brandeis 2007)
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without adding correlated predictors. Our alternative
global models used correlated predictors separately.
For example, if one global model included livestock
density, which is highly correlated with population
density, the other global model included population
density and not livestock density. Our other alter-
native models modified the global models by deleting
predictors. For models with interaction terms, we did
not include any other correlated predictors, but the
GLMM necessarily includes the individual predictors
in an interaction term as predictors in the model. We
used least AIC score to select the best model for each
analysis (Burnham and Anderson 2002) and used
ANOVA to test whether inclusion of interaction term
or predictor was significant. We also calculated p-
values for predictors in models by using R package
nlme (Pinheiro et al 2016).We used the same response
and predictor variables in a regression-tree (R package
randomForest: Liaw and Wiener 2002). Because ran-
domForest bootstraps the analysis by selecting a ran-
dom subsample of the dataset for each run of the
analysis, we expect that similar results might provide a
secondary check on the results.

3. Results

The variation explained (R2 values) by the best model
for SCPM from saplings to small trees was 0.36, for
SCPM from small to medium size trees was 0.49 and
from medium sized trees to large trees was 0.26.
Analysis using a regression tree (randomForest) pro-
vided similar significant predictors as the least AIC
method (figure C1, figure 3 shows only significant
predictors). Because regression tree analysis

bootstraps the observations, it reduces the impact of
influencing variables, and may be considered a com-
plementary analysis yielding similar results. However,
regression tree analysis does not allow inclusion of
interaction terms or random effects, and thus can also
be considered very different from GLMMs. Although
some predictors performed poorly in randomForest
(figure C1) and may be considered less dependable
than other predictors—such as use as sap for transi-
tions frommedium-sized trees to large trees—the fact
that themost important predictors using both analyses
were similar (fire resistant species and livestock density
for transitions from saplings to small trees, and growth
form and use for local construction for transitions
from medium-sized trees to large trees) lends further
credence to the results.

For SCPM of species from saplings to small
trees, higher SCPM was associated with fire resist-
ance and lower SCPM was associated with live-
stock per forest area (figure 3, table C1, table S2 in
supporting information). From small to medium-
sized trees, site conditions (intermediate frequency
of use and temperature) and species use (for local
construction) were associated with differences in
SCPM (figure 3). From medium-sized trees to
large trees, higher SCPM was associated with
higher human population density. Species that
were tall but had a short trunk (and were thus not
ideal for local construction) were also associated
with higher SCPM in comparison with tall trees
with tall trunks (ideal for local construction) and
small and medium-sized trees. Species that were
used for local construction and sap were also asso-
ciated with lower SCPM (figure 3).

Figure 3.β-coefficient estimates and 95% confidence intervals (bars) for factors associatedwith change in SCPM from (a) saplings to
small trees, (b) small tomedium-sized trees, and (c)medium-sized trees to large trees.
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Overall, SCPM from saplings to small trees is
lower with increasing livestock density. This trend of
negative influences of human activities is reversed for
transitions from medium-sized to large trees, for
which increasing human population density is asso-
ciatedwith higher SCPMs.

Human use of plant species is also significant,
from small to medium-sized trees and from medium-
sized to large trees. Consumptive use (where use
necessitates the extraction of the individual tree from
the forest) such as use of wood for local construction is
associated with lower SCPM, while non-consumptive
use of species for fuel-wood, fruit (for non-food pur-
poses such as sale or local uses such as poison) are not
associated with changes in SCPM. However, almost
all site conditions that are included in the final models
are influenced by human use (livestock and human
populations, frequency of use), which suggests that
alteration of site conditions due to human manage-
ment is also responsible for changes in species
composition.

The plant trait of fire resistance is the most impor-
tant variable explaining transitions from saplings to
small trees in the regression tree (figure C1). Conse-
quently, non-fire resistant species at sites with high
human pressures may be unable to propagate from
saplings to small trees.

Overall, these results suggest that direct human
use in the form of use for local construction as well as
changes in site conditions due to human use in the
form of livestock intensity are associated with changes
in long-term forest composition, and that some spe-
cies traits (lack of fire resistance) may be particularly
vulnerable to these changes.

4.Discussion

Human management of forests alters forest composi-
tion either because disturbances create conditions that
cause increases in abundance of some species or
because forest users increase abundance of species that
provide useful products by selectively removing other
species (Crook and Clapp 1998). This study supports
both of these pathways of human impacts on forest
composition, as both direct and indirect uses were
associated with changes in SCPM. For direct use,
differences in SCPMoccur for those species with direct
consumptive use for local construction but not for
those species for which only specific parts are
harvested (e.g. whereDiospyros melanoxylon leaves are
extracted for the market, or Madhuca indica flowers
are extracted for themarket or for local consumption).
For indirect use, this study provides evidence that the
distribution of some species is influenced by distur-
bance. In particular, SCPM for saplings to small trees
is higher for fire resistant species. Increase in survival

of species that are resistant to fire may be an indirect
impact of disturbance such as burning forest unders-
tory to augment production of non-timber forest
produce. Livestock populations are also negatively
associated with transitions from sapling to small trees.
Both cattle use and fire can damage saplings, alter rates
of tree establishment and change the successional stage
of the forest. Species that may be able to defend
themselves via specific traits such as their phenology,
resistance to disturbance or sapling defences against
browsing (Seidl et al 2011) will grow at the expense of
others. Since cattle grazing and fire prevent affected
species from growing past sapling stage and reaching
reproductive age, these speciesmay bemost vulnerable
to local extinction, and may be potentially more
harmful than impacts at higher size classes.

Overall, this study demonstrates that human activ-
ities can create disturbances that may alter long-term
forest composition, as species that are resistant to
human usemay increase their proportion in the forest.
Over the long term, other species may further reduce
in frequency, become extinct locally and lead to
shortages for local people. These changes could also
reduce species and ecosystem diversity (Crook and
Clapp 1998).

The study also highlights the importance of multi-
species analysis to examine the long-term impact of
human use on forest composition. Most research on
impact of harvest and forest use for sustainable for-
estry is restricted to a few species that are known for
their commercial value (Schmidt et al 2011). This
study extends the analysis to other forest species by
incorporating plant traits as a factor affecting long-
term forest composition (Amatangelo et al 2014).
Given the species diversity and heterogeneity in tropi-
cal deciduous forests, examining a large number of
species better represents the forest than examining
only the most abundant species (>25 individuals
per site).

5. Conclusions

This study suggests that direct human use of
tree species as well as indirect human alterations
of the forest are altering long-term forest composition
in the study region’s tropical dry forests. For instance,
fire and livestock grazing may have greater long-
term impact, as they alter transition from saplings
to small trees and change the probability of
reaching reproductive age, than direct human
use for fuel-wood, construction and commerce.
While changes in the composition of large tree
species suggest changes in forest structure and func-
tion, they do not alter the reproductive potential of
species.
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Results suggest possible interventions that may
prevent local extinctions or reduced abundance of
some species. For instance, managing fire and cattle
grazing would maintain present forest composition
more effectively than restricting use for fuel-wood,
which does not appear to impact size class transitions,
or construction, which only impacts size class transi-
tions to large trees.

This study has implications over a broader geo-
graphical area, particularly dry tropical forests in Asia
and Africa, which comprise a highly threatened eco-
system due to high human population densities and
continuous use. An understanding of the patterns and
impacts of human use and their interactions with
environmental conditions, as demonstrated in this
paper, will be important to understand the future of
forests and the services they provide as human usemay
reduce abundance of certain species over long time
scales. This study utilizes an approach to identify pro-
cesses that lead to change in forest composition in
these forests that can be applied in other forests similar
to the study area.
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AppendixA

Details of population densities, distance to town and
forest cover in sample villages in the study’s village
clusters are listed in table A1. Distribution of plots in
forest patches that had high, intermediate and no
recorded use intensity across three village clusters in
the study area is given in table A2. Village cluster
names are coded to protect the identity of villagers
who provided sensitive information in return for
confidentiality. Multiple attempts were made to
increase number of plots with no known use, but it
was not logistically possible.

Appendix B

Eighty-four total species (including trees, shrubs,
climbers and grasses) were recorded in the study
region in which 105 species have been recorded
previously (Wildlife Institute of India 2011b). Of these,
details on plant traits and human use characteristics
could be collected for 39 species, which represented
91% of individuals. For comparison with methods
using coefficient of skewness, we calculated howmany
species we could have examined using coefficient of
skewness. One pre-condition for analysis using coeffi-
cient of skewness is a minimum of 25 individuals per
plot (Feeley et al 2007), which left us with 16 species of
which only five species occurred more than twice
(figure B1). Further, comparison across sites required
that the species be present at multiple sites within a
cluster (which had the same species pool). This meant
only four species could be compared in two clusters,
and two species could be compared in one cluster
(table B1).

TableA1.Details on villages selected, based on data collected byWildlife Institute of India (total population, distance to town), Department
of AnimalHusbandry (cattle and buffalo populations) andGIS (Agarwala et al 2016).

Village cluster Village ID Total population Cattle+ buffalo Dist. to town (km) Forest cover (km2within 2 km radius)

DH Village1 1007 500 7 1.75

DH Village6 846 519 12 4.53

HA Village5 881 373 15 2.40

HA Village3 781 588 14 4.42

DU Village2 403 737 21 7.94

DU Village4 755 670 41 8.41

TableA2.Number of plots at different intensities of use in different
village clusters.

Village cluster No knownuse Intermediate use High use

DH 1 2 3

DU 3 3 2

HA 1 2 3
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AppendixC
Table B1. Site conditions for whichmore than 25 individuals per
species were present. Bold represents those species where species
were present atmultiple sites within a village cluster.

Village cluster DH DU HA

Frequency of use 0 1 2 0 1 2 0 1 2

Anogeissus latifolia 1 1 1 2 1 1 0 0 1

Chloroxylon

sweitenia

0 0 0 2 1 0 0 0 0

Buchanania latifolia 0 1 0 0 0 0 0 0 1

Buteamonosperma 0 1 0 0 0 0 0 0 1

Carissa carandas 0 1 0 0 0 0 0 0 1

Casearia graveolens 0 2 0 1 2 2 0 2 1

Diospyros

melanoxylon

0 2 0 1 3 2 0 0 2

Eunonymus

hamiltonius

0 1 1 0 0 0 0 0 0

Miliusa tomentosa 0 0 0 0 0 0 0 1 0

Lagerstroemia

parviflora

0 0 1 3 3 1 0 1 2

Lantana sp. 0 0 0 0 0 2 0 0 0

Schleichera trijuga 0 0 0 0 0 0 0 1 0

Shorea robusta 0 0 0 0 0 0 1 1 0

Terminalia arjuna 0 0 0 0 0 0 0 0 1

Terminalia alata 1 2 1 3 2 2 0 0 2

Ziziphus xylopyrus 0 1 0 0 1 0 0 0 0

TableC1. Significance (p-values) of predictors.

Factor

p-valuewhere

models were

compared using

ANOVA

p-value

using

nlme

Saplings to small trees

Interaction (fire
resistance× frequency of use)

0.14 0.13

Fire resistance 0.007 0.0016

Frequency of use 0.21 0.12

Elevation 0.02 0.009

Livestock per Forest Area 0.0001 0.0003

Small trees tomedium-sized trees

Temperature 0.02 0.001

Intermediate frequency of use 0.009 0.008

Use for local construction 0.05 0.05

Medium-sized trees to large trees

Use sap 0.02 0.05

Use for local construction 0.05 0.05

Population per Forest Area 0.03 0.04

Growth form 0.0003 0.0025

FigureC1. Importance of predictors for SCPM from (a) sapling to small trees, (b) small trees tomedium-sized trees, and (c)medium-
sized trees to large trees. Results obtained using randomForest’s regression tree.

Figure B1.Number of sites wheremore than 25 individuals of each species were present.
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