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Abstract
Surfacewater and surface water related floodmodelling at the city-scale is challenging due to a range
of factors including the availability of subsurface data and difficulty in deriving runoff inputs and
surcharge for individual storm sewer inlets.Most of the research undertaken so far has been focusing
on local-scale predictions of sewer surcharge induced surfaceflooding, using a 1D/1Dor 1D/2D
coupled storm sewer and surface flowmodel. In this study, we describe the application of an urban
hydro-inundationmodel (FloodMap-HydroInundation2D) to simulate surfacewater relatedflooding
arising from extreme precipitation at the city-scale. This approachwas applied tomodel an extreme
storm event that occurred on 12August 2011 in the city of Shanghai, China, and themodel predictions
were comparedwith a ‘crowd-sourced’ dataset offlood incidents. The results suggest that themodel is
able to capture the broad patterns of inundated areas at the city-scale. Temporal evaluation also
demonstrates a good level of agreement between the reported and predicted flood timing. Due to the
mild terrain of the city, theworst-hit areas are predicted to be topographic lows. The spatio-temporal
accuracy of the precipitation andmicro-topography are the two critical factors that affect the
prediction accuracies. Future studies could be directed towardsmakingmore accurate and robust
predictions of water depth and velocity using higher quality topographic, precipitation and drainage
capacity information.

1. Introduction

Surface water flooding occurs when precipitation
overwhelms the drainage system and the excess water
cannot be drained away. It is increasingly perceived to
be a widespread and frequently occurring type of
natural hazard in many regions around the world, and
possibly a manifestation of the intensified precipita-
tion cycle due to climate change and variability. It
proves especially problematic for developing and
emerging countries, where the capacity of the existing
storm sewer systems is often either myopically
designed in the first place or outpaced by the
magnitude of increased runoff associated with urbani-
zation. Indeed, surface water flooding may also pose
widespread problems for developed countries with
well-established sewer systems. For example, the
majority of the 2007 floods in the UK originated from

overloaded storm sewers in developed areas, and
among the buildings affected, around 25% were
constructed during the previous 25 years (Pitt 2008).
Although often associated with shallow water depth
compared with fluvial and coastal flooding, the impact
can be equally far-reaching and widespread. Apart
from inundating properties, traffic disruption and its
indirect consequences such as loss of productivity and
business opportunities are the foremost impacts a
surface water flood event can exert in urban
environments.

The advent of computational methods for simu-
lating both subsurface pipe flow within the urban
storm sewer system and surface runoff has enabled the
numerical modelling of surface water flooding in
recent decades (e.g. Hsu et al 2000, Dong and
Lu 2008). Various modelling approaches to surface
water flooding exist, including: (i) coupling a 1D
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storm sewer model with a 1D surface flow model
(Mark et al 2004, Maksimović et al 2009); (ii) repre-
senting storm sewer flow routing in 1D and surface
flow in 2D (e.g. Hsu et al 2000, Schmitt et al 2004); and
(iii) considering only 2D surface flow routing but
neglect or simplify the representation of the surface &
sewer flow interaction (e.g. Fewtrell et al 2011, Samp-
son et al 2013). Accordingly, these three types of mod-
els are termed as ‘1D/1D’, ‘1D/2D’ and ‘2D’
respectively in literature, with the first two often col-
lectively referred to as ‘dual drainage modelling’
defined by Djordjević et al (1991). A brief review of the
dual drainage modelling concept and its implementa-
tion is provided by Schmitt et al (2004). Key studies
related to this concept are further elaborated by Smith
(2006), along with a discussion on the role of GIS in
providingmodelflow and topographic inputs.

Whilst computationally efficient, the key limita-
tion of the ‘1D/1D’ approach is its representation of
the surface flow routing, which may be oversimplified
in situations where water is no longer confined within
streets and lateral spreading of flood water occurs. In
contrast, the ‘1D/2D’ approach represents surface
flow in a more intuitive way and it considers surface
flow routing in two dimensions. This approach has
been implemented in both the street(s) level (e.g.
Schmitt et al 2004, Leandro et al 2009, Seyoum
et al 2012) and at the city scale (e.g. downtown Taipei,
140 km2, Hsu et al 2000), using either a loosely-cou-
pled approach where the 1D and 2D models run in
sequence (e.g. Hsu et al 2000, Seyoum et al 2012) or a
tightly-coupled approach where the 1D and 2D mod-
els are solved simultaneously (e.g. Schmitt et al 2004,
Leandro et al 2009). The tightly-coupled approach is
hydraulically robust as the interaction between the
sewer and surface flow is fully accounted for in two
directions. However, the loosely-coupled approach
treats surcharge of the 1D model as non-returnable
flow on the surface due to its sequential treatment of
the sewer/surface interaction as mass gain and loss to
the 1D/2D models. In both methods, flooding caused
directly by surface runoff is not considered but treated
as inputs to the storm sewer model. Surcharge from
the storm sewer manholes is the only source of surface
flood. In addition, although it can be rightfully regar-
ded as the state of art in the current modelling of sur-
face water flooding at the local scale, in many
developing nations, the practical implementation of
the dual drainage concept is challenging due to a num-
ber of reasons, including: (i) the reliance on GIS pre-
processing to obtain overland flow pathways and
ponds; (ii) the (un)availability of storm sewer system
profiles, especially at the city scale; (iii) the complexity
and uncertainty of deriving hydrologic inputs to the
1D sewermodel in an urban environment; and (iv) the
lack of topographic data with adequate quality to
represent urban features. More recently, 2D surface
flow routing techniques have been used to simulate
the surface runoff originating from point sources (e.g.

manholes) with synthetic or model-derived flow
hydrographs (e.g. Mignot et al 2006, Fewtrell
et al 2011, Sampson et al 2013). In this approach, the
interaction between surface runoff and storm sewers is
considered as insignificant, with sewer surcharge as
themain source of surface waterflooding.

One important area of research in surface water
flood modelling is the representation of the surface
runoff directly resulting from heavy precipitation at
the local scale. Aronica and Lanza (2005) found that
micro-topography may produce local flooding with
significant water depth and velocity in zones of flow
concentration. The dual drainage approach calculates
the lump-sum of the precipitation-induced direct sur-
face runoff as an input to the storm sewer model (e.g.
using the rational approach; Hamill 2010), assuming:
(i) no significant direct surface runoff occurs and
water accumulates only to storm drains; (ii) storm
sewer inlets are capable of collecting the entire runoff
(e.g. Leandro et al 2009); and (iii) storm sewer sur-
charge (e.g. at manholes) is the sole source of surface
runoff. However, in some situations, localized direct
surface runoff immediately following the precipitation
can be farmore significant than sewer surcharge, espe-
cially during extreme precipitation events such as
short-duration high-intensity tropical cyclones/
typhoons/hurricanes. Urban storm sewer systems
may not take in all the surface runoff during extreme
events and direct surface runoff can overpass man-
holes and accumulate to form ponding in topographic
depressions due to inlet efficiency (Aronica and
Lanza 2005). Sampson et al (2013) modelled surface
water flood at a local scale (0.5 km2) with a uniform
rainfall input followed by a synthetic culvert surcharge
using aflood inundationmodel (LISFLOOD-FP). This
study focused on: (i) developing methods for routing
rainwater from elevated features; and (ii) comparing
with commercial modelling packages to evaluate
model performance. Hydrological factors (e.g. infiltra-
tion and evapotranspiration) are not considered and
there were no observation data available for model
validation. Yu and Coulthard (2015) improved on this
and described the development of a surface water
flood inundation model (FloodMap-HydroInunda-
tion) applied with relatively high resolution (10 m and
20 m) to the City ofHull and evaluated the importance
of catchment-scale hydrological parameters for urban
surface water flood modelling. Yin et al (2016a)
applied the model with a street-level resolution of 2 m
to the inner-city area of Shanghai and focused on the
impact of land subsidence over decadal timescale on
surface water flood risks in the city. The modelling
results were compared with point-based depth gau-
ging records. Furthermore, the impact of urban sur-
face water flood risks on road transport disruption was
evaluated in the intra city of Shanghai by Yin et al
(2016b). These studies demonstrate the capacity of the
model for fine resolution street-level scale modelling
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of surface water flood risks at the local scale (e.g.
district).

At the city-scale, a recent study (Hénonin
et al 2013) simulates the July 2012 event that occurred
in Beijing, focusing on the use of multi-grid approa-
ches in a 2D commercial model (MIKE 21, DHI 2010)
whereby a sub-grid finer mesh is nested within a coar-
ser one (Yu and Lane 2006b, 2011). Due to data con-
strain, simulations were undertaken at selected five
sites rather than the whole city (1000 km2), with areas
ranging from 8.3 to 44.9 km2. Rainfall was applied as
direct boundary condition and hydrological processes
were not considered. Drainage capacity was applied as
a constant evaporation rate to the 2D model. The
multi-grid approach was found to produce more
detailed and realistic predictions at the local scale with
good computational efficiency. An earlier study by St
Domingo et al (2010) coupled a hydrological model
(MIKE SHE)with a hydraulicmodel (MIKE Flood) for
catchment scale flood inundation modelling and the
coupled model was applied to a small catchment
(6 km2). This provides a useful addition to the model-
ling methods currently used for urban surface water
flood modelling, in particular for places where land
hydrology and surface runoff affect directly surface
waterflooding in urban environment.

This study builds on themodel development in Yu
and Coulthard (2015) and describes: (i) the applica-
tion of the simplified modelling approach to identify
areas vulnerable to surface water flooding risks during
extreme precipitation events at the whole city-scale;
and (ii) the use of a unique crowd-sourced dataset for
model validation. Direct surface runoff is assumed to
be the primary source of surface flow during extreme
precipitation events. Rather than detailed flow rout-
ing, the focus of themodel is to derive, at the city-scale,
areas potentially at risks to surface flooding during
extreme precipitation events, considering the spatio-
temporal heterogeneity of precipitation, drainage
capacity and land use in the urban landscape. This
approach complements the existing approaches to the
evaluation of surface water flooding which typically
focus on sewer surcharge induced surface flooding at
localised locations.

2.Model description

The model (FloodMap-HydroInundation2D) was
developed based on the modified version (inertial-
based) of FloodMap (Yu and Lane 2006a), and
integrates surface flow routing processes with key
hydrological processes during an urban storm event,
including infiltration and evapotranspiration. The
model development has been described in Yu and
Coulthard (2015). Here we reproduce the main
structure of the surface flow routing and the way
infiltration and evapotranspiration are represented.

2.1. Surface runoff
The 2D inundation model takes the same structure as
the inertial model of Bates et al (2010), but with a
different approach to calculate time step. If we neglect
the convective acceleration term in the Saint-Venant
equation, the momentum equation for flow along the
x-axis becomes:
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Where q is the flow per unit width, g is the acceleration
due to gravity, R is the hydraulic radius, z is the bed
elevation, h is the water depth and n is the Manning’s
roughness coefficient. A similar formulation can be
written for flow along the y-axis. Discretizing the
equationwith respect to time produces:
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To further improve this, one of the qt in the friction
term can be replaced by qt+Δt and this gives the explicit
expression of the flow at the next time step:
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The flow in the x and y directions is decoupled and
take the same form. Discharge is calculated at the cell
edges and depth at the cell centre. In order tomaintain
model stability and minimize numerical diffusion, the
Forward Courant–Freidrich–Levy Condition (FCFL)
approach described in Yu and Lane (2011) for the
diffusion-based version of FloodMap is used in the
inertialmodel to calculate time step:
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where w is the cell size, di and dj are the effective water
depths, Si and Sj are water surface slopes, and i and j are
the indices for the flow direction in the x and y
directions, respectively.

2.2. Infiltration and evapotranspiration
Infiltration over saturation is represented with the
widely used Green–Ampt infiltration equation to
model infiltration to soil. It takes the following form:

j
=

+
+
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h

z
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f

Where Ks is the hydraulic conductivity of the soil at
field saturation, jf is the capillary potential across the
wetting front, ho is the ponding water on the soil
surface, and zf is cumulative depth of infiltration.
Therefore the rate of infiltration approximated by the
Green–Ampt equation is a function of the capillary
potential, porosity, hydraulic conductivity and time.
Hydraulic conductivity is used as a calibration para-
meter in this study. The value of capillary potential is
kept at a constant of 0.73meters.
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Evapotranspiration is approximated using a sim-
ple seasonal sine curve for daily potential evapo-
transpiration (Calder et al 1983) with the equation
below:

= + -⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )E E

i
1 sin

360
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90 6p p

Where Ep is the mean daily potential evapotranspira-
tion and i is the day of the year.

2.3.Drainage capacity
Another source of mass loss for urban storm water
runoff is the storm sewer system through which storm
water can be drained naturally or pumped. Drainage
capacity is represented by the unit-time amount of
surface-accumulated water (surface flow and rainfall)
that can be collected by the storm sewer system,
usually expressed as mm per hour and corresponding
to a certain return period of rainfall. For each time
step, the amount of flow loss to the urban storm sewer
systems can then be calculated by scaling the design
drainage capacity (mm/hour) for the time step. It
should be noted that the sewer hydraulic processes and
their effects on the inundation were not explicitly
represented by this model. Rather, the model captures
themass loss to storm sewer system based on its design
capacity. The model is particularly suited for applica-
tions in large-scale metropolitan area where the
numerical modelling of city-wide sewer system hydro-
dynamics is challenging due to the volumes of data
required at the city scale which typically involves
millions ofmanholes and drains.

In distributed models like the one presented
herein, whether surface flow will occur at a particular
dry pixel therefore depends on the rainfall intensity at
the point.When a pixel is wet already, if the total exist-
ing water depth plus the rainfall depth for a particular
time step is less than the drainage capacity (scaled for
the time step), no surface runoff will occur and vice
versus depending on local topography. The capacity
itself does not vary over time and is directly related to
the design standard of the storm sewer system (design
drainage capacity).

In the model, we assume that storm sewer system
drains water away at the maximum design drainage
capacity and no loss of capacity due to surcharge is
considered. However, the value can also be scaled to
represent the effect of blockage by debris or malfunc-
tion of the storm sewer system including pumping sta-
tions. Moreover, at the city scale, drainage capacity is
rarely uniform. Therefore, the model allows dis-
tributed drainage capacity to be incorporated on a cell
by cell basis.

3.Model applications: case study and data
availability

3.1. Study site
One of the surface water flooding hotspots in recent
years is the South and Southeast Asia, where surface
water flooding events, typically associated with
typhoon, are frequently recorded. China in particular
is one of the worst hit regions. The most devastating
surface water flood event in recent years occurred in
Beijing on 21 July 2012, during which 79 causalities
were reported. Although this is widely seen as an
extremely rare event, the lack of preparation (both
infrastructural and societal) to extreme flood events
are noted by many (Chin 2012, Xu 2012). Across the
south and southeast China, many cities appear to be
facing more surface water flooding in recent years
amongst the occurrence of more frequent high-
intensity precipitation events (Zhai et al 2005), coin-
cide with the rapid urban expansion which results in
decreased surface permeability and increased runoff.
The risk is further compounded by the perceived
impact of climate change and variability, which is
predicted by IPCC (2007) to result in an intensified
precipitation cycle.

The model was tested in the city of Shanghai,
China, a coastal megacity developed on the Yangtze
River Delta and Huangpu River floodplain (6340 km2,
figure 1). Its topography is characterized by a mild
sloped terrain. Notably, in the central districts, the
ground elevation is mostly less than 3.0 m, and the
lowest elevation is around 2.3 m. Surface water flood-
ing events are frequent in Shanghai and they are typi-
cally associated with typhoons which occur multiple
times on an annual basis. Shanghai has a modern
storm sewer system. The drainage capacity of the
storm sewer system is 36 mm h−1 in most urban areas
and 27 mm h−1 in relatively rural areas, equivalent to a
1 in 1 year and 1 in half year design standard. Only in a
very limited few places the design standard is
54 mm h−1. As a result, surface water flooding is
expected each year, demonstrated by an archive of
events since 1997 compiled by Wu et al (2012). With
the average tidal level during the flood season ranging
between 4.0 m and 4.35 m, the fastest rising sea level in
China (Yin et al 2013a, 2013b) and an alarming land
subsidence rate (nearly 2 meters in total between 1921
and 2007, and stabilized at 5 mm/year since 2010 due
to groundwater recharge), the risk of flooding from
surface water source appears to be increasing in recent
decades based on rainfall and event analysis (Wu
et al 2012). Despite the large-scale construction of
urban storm sewer systems, the problem of surface
water flooding still persists (Wu et al 2012) and
between 1980 and 1993, there were on average 251
road sections and 52 700 buildings suffering from
waterlogging every year (Yuan 1999). Traffic disrup-
tion and property damages are frequently reported by
the public.
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The surface water flood event modelled is storm-
induced and occurred on the 12 August 2011, during
which a total of 86 mm rain was recorded in the
Huangpu Park gauging station at the city centre within
6 h (6 am to 12 am), causing considerable traffic dis-
ruption in the morning rush hours and flooded
properties.

3.2.Data availability and processing
3.2.1. Topographic data
The topographic data available at the city-scale in
Shanghai is a 0.5 m contour line. This is processed to a
50 m Digital Elevation Model to represent the city’s
topography. In total, 3.7 million cells are used,
representing the top limit of the computational
resources available. Roughness is represented by
floodplain Manning’s n in the model for individual
pixels, where urban area, farmland, grasses, water
bodies and bareland are assigned a value of 0.01, 0.05,
0.06, 0.03 and 0.035, respectively.

3.2.2. Precipitation data
The precipitation inputs to distributed rainfall runoff
models are typically derived based on: (i) a single
rainfall gauging station if the catchment is sufficiently
small or data is limited; or (ii) interpolation of a
number of gauging station records if the catchment is
relatively large and the gauging network is of sufficient
density. Given the uncertainty usually associated with
gauging records and the spatial variation of rainfall,
interpolation of distributed rainfall gauging records is
often considered to be a more reliable approach to
represent rainfall spatial and temporal variation. For
Shanghai, the spatial and temporal resolution of the
rainfall gauging network (44 rain gauges recording at a

15 min interval) enabled the time series of distributed
rainfall to be derived. Precipitation rate was calculated
based on the kriging interpolation of the tipping
bucketmeasurements and used as rainfall inputs to the
model. It should be note that the spatial pattern (local
higher intensities)may be controlled by one single rain
gauge for some locations. Generally, radar rainfall data
such as Quantitative Precipitation Estimation (QPE)
can be used to improve interpolation accuracy
(Ochoa-Rodriguez et al 2015, Wang et al 2015), but it
is not available in the Shanghai. The time series of
rainfall distribution interpolated from the gauging
stations are shown in figure 2. Rainfall occurred first to
the west of the city and then the storm centremoved to
the inner city. It persisted over the city centre from
around the 2nd hour (8 am) and deposited a large
amount of rainfall in the inner city districts (figure 2).
The rainfall hyetographs of the two stations (Huangpu
Park and Jiangsu Road) with the highest amount of
recorded rainfall are shown in figure 2(b). The total
amount of rainfall in the Huangpu Park station is
around 80 mm, equivalent to a return period of 30–50
years based on historical data analysis.

3.2.3. Observed inundation
Observation data for the event simulated exists in two
forms, including: (i) point measurements of water
depth with digital meters, operated by the Shanghai
MunicipalWater Affairs Bureau and typically installed
underneath highway overpasses; and (ii) reported
localized flood incidents at the street or house level by
the public (‘crowd source’) and collated through a
web-based emergency incident reporting portal, oper-
ated by the government and accessible to the public.
Here we refer a flood incident as a logged report of an

Figure 1.Administrative districts overlainwith theDEMof Shanghai. Numbered districts are the inner-city districts.
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event by the web portal whereby the reporter is
affected directly by surface water flooding. The
monitoring points are the hotspots of surface water
flooding in Shanghai and strategically installed to
assess the impact of surface water flooding on traffic
disruption. The exact locations of the monitoring
points are not available due to various restrictions.
However, the roads where the monitoring points are
located have been obtained. This is shown in figure 3.
Flood incidents reported by the public can be extensive
and this usually contains the exact location of the
property/road affected, a description of its nature and,
in some cases, an estimate of the depth. However,
given the predictive focus of the model, and the
resolution & accuracy of the input data, including the
DTMs and rainfall distribution, model validation
using water depth is not considered in this application.
Rather, we focus on evaluating the general agreement
between the model predicted risky areas with both the

hotspots monitored and the ‘crowd sourced’ flooded
locations, i.e. a Boolean comparison of whether a
reported/monitored flooded site is predicted as
flooded. For the event considered, 490 localized flood-
ing incidents were reported through the information
portal. After removing the duplicate records and
records that are not related to surface water flooding,
298 records are retained and 250 points are located in
the inner city districts. The locations of the points
where incidents are reported are determined using the
Google Map service and geo-referenced in GIS. The
point locations are shown in figure 3, along with the
roads monitored by the Shanghai Municipal Water
Affairs Bureau.

3.3. Specification of drainage capacity
Distributed drainage capacity is used in the model to
represent its spatial variability. This is specified
according to the design capacity of the storm sewer

Figure 2. (a)–(d): spatial and temporal distribution of peak precipitation during theAugust 2011 storm event occurred in Shanghai;
(e) rainfall time series at the two gauging stations with the highest rainfall amount.
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system of 36 mm h−1 in most urban areas and
27 mm h−1 in relatively rural areas, and 54 mm h−1 in
isolated areas. Due to the mild terrain of the city,
Shanghai is largely drained by pumping stations rather
than natural drainage through gravity, discharging
pumped water directly to the river channels. There-
fore, the sewer hydraulic processes do not obviously
influence the surface inundation in Shanghai in most
cases and surface water flooding arises dominantly
from surface water runoff. When high tides occur, the
natural drainage is even more restricted and the city
can only be drained through pumping stations. In the
simulations undertaken, it is assumed that the storm
sewer system functioned fully during the flood event
simulated and there is no evidence suggesting
otherwise.

3.4.Model calibration and sensitivity analysis
3.4.1. Sensitivity to mesh resolution and roughness
parameterisation
It is recognized that a finer mesh would better
represent the topographic peculiarities and the pre-
sence of discontinuities on urban topography. Given
the size of the study area, if a 50 m DEM is used to
represent the topography, 3.7 million pixels are
required. This represents the top limit of the number
of pixels a high-performance desktop workstation can
handle for 2D modelling. A finer mesh is therefore
computationally infeasible for the whole site for
sensitivity analysis to mesh resolution. To evaluate the
model sensitivity to mesh resolution, we choose the
inner city area (the 9 districts shown in figure 1)where
DEMs of 20 m, 30 m, 40 m and 50 m are used.
Sensitivity analysis was also undertaken to evaluate the
model response to variation of hydraulic roughness. A
uniform roughness value (n) ranging from 0.01 to 0.1
with a 0.01 interval was used in the analysis. In

conjunction with mesh resolutions (20 m, 30 m, 40 m
and 50 m), 40 simulations were undertaken and the
results are presented in section 4.1.

3.4.2.Model calibration with hydraulic conductivity
Model calibration was undertaken to evaluate the
sensitivity of model prediction to infiltration, repre-
sented by the hydraulic conductivity ( )Ks parameter. It
should be recognized that determining soil hydraulic
conductivity is highly complex. Studies determining
the soil hydraulic conductivity values have either used
empirically-based correlation methods or through
in situ hydraulic laboratory measurements. The latter
is infeasible for urban catchments due to practical
constrains. We use the correlation methods to esti-
mate soil hydraulic conductivity for Shanghai. Such
methods typically associate Ks with soil properties (i.e.
texture, pore-size and grain size distribution) or soil
mapping units (Oosterbaan and Nijland 1994). How-
ever, such methods can be highly uncertain due to the
simplified and generalized nature of empirical deriva-
tions. The dominate type of soil texture in Shanghai is
silt loam, consisting of poorly drained soils that
formed in alluvium frommixed sources. The Ks value
for the study site is therefore determined based on the
lower range of the typical Ks suggested by Smedema
and Rycroft (1983) and through a calibration process,
during which the percentage of reported incidents
falling within the flood area is used as a criterion. The
values of saturated hydraulic conductivity are varied
between 1 to 10 mm h−1, with a regular interval of
1 mm h−1. This captures the range of infiltration
values associated with the soil type in Shanghai,
covering the lower range of the Ks values suggested by
Smedema and Rycroft (1983), and reflecting the
urbanized nature of the study area.

Figure 3.Roadswhere digitalmeters are installed by the government, and locations where local flood incidents were reported by the
public during the 12August 2011 event.

7

Environ. Res. Lett. 11 (2016) 124011



3.4.3. Evaluationmetrics
For both sensitivity analysis and model calibration,
three standard metrics typically used in flood model-
ling (e.g. Bates and De Roo 2000, Yu and Lane 2011)
are used to evaluate the model response, including the
total inundation area, Fit statistics (F) and Root Mean
Standard Error (RMSE). These are calculated over
time for a certain interval (5 min in this study for the
6 h event), with the F and RMSE calculated against a
reference simulation. The F statistic is commonly used
for evaluating the goodness of agreement between
predicted inundation extent and the reference (Bates
and De Roo 2000, Horritt and Bates 2001). It can be
defined as follow:

=
+ -

F
A

A A A
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whereAr is the referenced wet areas,As is the predicted
wet areas, and Ao is the overlap of Ar and As. F varies
between 1 for a perfect fit and 0 when no overlap
exists.

The RMSE is a useful metric for the comparison of
water levels (or depths) between predicted and
observed/referenced water depths, on a cell by cell
(point to point) basis in the case of flood inundation
modelling. Themetric is calculated by:
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where di
s and di

r are the predicted and referenced
water levels (or depths) respectively, i is the index of
the wet cells and n is the total number of wet cells in
the prediction and observation.

4. Results

4.1. Sensitivity tomesh resolution and roughness
parameterisation
Figure 4 plots the three evaluation metrics used in this
study to illustrate the model sensitivity to mesh
resolution and roughness specification over time,
including the total inundation area (figure 4(a)), Fit
statistic (figure 4(b)) and Root Mean Standard Error
(RMSE) (figure 4(c)), grouped according to the rough-
ness value for eachmesh resolution.

Table 1 compares, for each roughness value, the
percentage difference in peak inundation area between
the 30 m, 40 m and 50 mwith the reference simulation
of 20 m, therefore an evaluation ofmodel sensitivity to
mesh resolution.

To demonstrate the sensitivity to roughness speci-
fication for a specific mesh resolution, table 2 calcu-
lates the percentage of difference in peak inundation
area between a reference simulation with an n value of
0.01 and the simulations with other n values specified
in section 3.4.1.

Evaluation of: (i) the agreement between the inun-
dation extents (F, figure 4(a)); and (ii) the variation
between water depths (RMSE, figure 4(b)) is presented

in tables 3 and 4 respectively for the maximum F and
RMSE values obtained from each simulation.

The difference between the predicted maximum
water depths of the 50 m simulation is compared with
the 20 m, 30 m and 40 m to demonstrate the spatial
distribution of depth sensitivity infigure 5.

Figure 6 demonstrates the spatial sensitivity of the
model response to roughness parameter. The differ-
ence between the maximum water depth predicted by
simulations with n=0.1 and n=0.01 is calculated
on a cell by cell basis, demonstrating the spatial varia-
tion of depth prediction.

4.2. Sensitivity to hydraulic conductivity
Figure 7 shows the water depth difference between
simulationswith various hydraulic conductivity values
and the default simulation with a hydraulic conductiv-
ity of 0.001 m h−1. As expected, the depth difference
increases proportionately with the extent of Ks devia-
tion from the default value of 0.001 m h−1. There are
large areas with depth difference greater than 2 cm and
in some cases the difference exceeds 10 cm. Figure 9
shows the statistical analysis of agreement between
water depth and extent over time. Over the whole
simulation domain, global measurement of depth
difference Root Mean Standard Error (RMSE)
(figure 9(b)) suggests that, the model is insensitive to
Ks when the overall water depth is considered. How-
ever figure 8 shows that the difference can be localized
in topographic lows. This is confirmed by figures 8(a)
and (c) where both the total inundated area and the
spatial agreement between the predicted extents vary
to a large extent. For all simulations, over 90% of the
observed points in the inner city districts fall within
the predicted flooded area, with the highest percentage
(93%) associated with the reference Ks value of
0.001 m h−1. This is therefore used in the subsequent
analysis.

4.3. Time series offlooded areas
The predicted water depths across the city at discrete
time periods are plotted in figure 9. These demonstrate
the spatial and temporal evolution of surface water
flooding during the course of the storm event. Given
the mild terrain, surface flooding is locally originated
and synchronized with the timing and spatial distribu-
tion of rainfall. Extensive surfacewaterflooding occurs
in the city centre from around the 8:30 am, albeit
mostly with shallow water depth of less than 5 cm.
Shortly after the peak of the precipitation (~9:00 am),
predicted surface flooding reaches its maximum
extent (figure 10) and magnitude (figure 9). After-
wards, flood starts to recede, through infiltration,
evapotranspiration and storm sewer network.

4.4.Maximumdepth and extent predicted
The maximum water depth during the course of the
flood event is shown in figure 11(a) for the whole city
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and figure 11(b) for the inner city districts. We use
2 cm as the threshold for surface water flooding and
treat water shallower than 2 cm as sheet flow which
takes the form a thin film running continuously on the
surface and not concentrate to form channels or
accumulate in topographic lows. Results show that
extensive surface water flooding is predicted, both in
the inner city district to the west of the Huangpu River
and the newly-developed Pudong New District to the
east. Apart from the inner city districts, Jiading,

Qingpu andNanhui districts are also predicted to have
suffered from surface water flooding during the event.
In most of the flooded places, water depths are
between 2 cm and 15 cm (71%). Areas with depth
between 15 cm to 30 cm account for 28% of the total
flooded areas. Some of the areas are inundated with
water depth above 30 cm (0.3%) and in some topo-
graphic depressions, water depth reaches more than
50 cm (0.01%).

Figure 4. Sensitivity analysis of themodel tomesh resolution and roughness parameterisation (at the inner-city scale).
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Table 1.Percentage difference between the peak inundated areas associatedwith differentmesh resolutions (m.r.), compared for each roughness value. For each roughness value,m.r.=20 m is used as the reference simulation and the
difference is calculated therefrom.

Difference in peak inundation (%) (ref. ism.r.=20 m) n=0.01 n=0.02 n=0.03 n=0.04 n=0.05 n=0.06 n=0.07 n=0.08 n=0.09 n=0.10

30 m −0.2 0.2 0.2 0.2 0.4 1.0 1.4 2.0 2.6 3.3

40 m −0.4 −0.1 −0.2 0.3 0.5 1.7 2.5 3.3 4.5 5.2

50 m −0.7 −0.3 −0.4 −0.1 0.4 1.6 2.6 3.6 4.8 5.8
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4.5. Comparisonwith the observation
The model predictions were evaluated using observed
data presented in figure 3. This is undertaken in two
ways. First, the monitored flood-prone roads and
reported flooded locations are compared with the
model predictions to evaluate the general performance
of the model simulation. Second, assuming that an
event is reported immediately or shortly after it occurs
by the public seeking for emergency support, we
evaluate the dynamic performance of the model by
considering the temporal dimension of the moni-
tored/reported flood locations, and comparing this
with themodel predicted time series shown infigure 9.

The model predicted maximum inundated area is
evaluated against the reported incident locations and
roads where digital meters are installed in figure 12.
Overall, 91.6% of the reported incidents fall within the
predicted regions with a water depth greater than
2 cm, and 54.7% in the region of water depth greater
than 5 cm. In particular, there is a good match
between the predicted flooded areas and the clustering
of incidents in the inner city districts (indicated with
black circles). However, there is an overestimation of
the inundated areas to the southeast of the river, and
an underestimation to the northeast.

The point locations shown in figure 12 are segre-
gated into different time periods based on the time
that the incidents were reported. Figure 13 shows the
number of reported incidents during the course of the

day. This agrees well with the rainfall
hyetograph (figure 2) in which the precipitation peaks
at around 8:30 am. Incidents reported after 12:00 pm
are likely to be residual incidents when rainfall has
ceased.

The temporal distribution of the reported inci-
dents is shown in figure 14, overlain with the max-
imum water depth reached till the
corresponding time.

5.Discussion

5.1. Evaluatingmodel sensitivity tomesh resolution
and roughness specification
The evaluation of model sensitivity to mesh resolution
reveals some interesting findings. Previous studies in
fluvial floodmodelling found diffusion-based (Yu and
Lane 2006a) and inertial-based models (Ozdemir
et al 2013) are rather sensitive to mesh resolution.
From this set of simulations in this particular site, we
can conclude that the model is relatively insensitive to
mesh resolution (figure 4 and table 1) when the total
inundated area is considered. There is a relatively
minor difference in the peak inundation between the
20 m and 50 m simulations (<6%) for all roughness
values. With the increase of roughness, the difference
becomes more pronounced, for example, increasing
from −0.2% to +3.3% for the 20 m simulations with
an n value of 0.01 and 0.1, respectively. The overall

Table 2.Percentage difference between the peak inundated areas associatedwith different roughness values for eachmesh resolution. For
eachmesh resolution, n=0.01 is used as the reference simulation and the difference is calculated therefrom.

Difference in peak

inundation (%) (ref.
is n=0.01) n=0.02 n=0.03 n=0.04 n=0.05 n=0.06 n=0.07 n=0.08 n=0.09 n=0.10

20 m 1.8 4.5 5.5 6.2 6.3 6.3 6.2 6.1 6.0

30 m 2.1 4.8 5.9 6.8 7.4 7.8 8.3 8.7 9.2

40 m 2.1 4.7 6.2 7.1 8.3 9.0 9.7 10.5 11.0

50 m 2.1 4.7 6.1 7.2 8.4 9.2 10.1 11.0 11.7

Table 3. F statistics calculated for different roughness values in eachmesh resolution. The simulationwith n=0.01 for each resolution is
used as the reference simulation.

F (%) n=0.02 n=0.03 n=0.04 n=0.05 n=0.06 n=0.07 n=0.08 n=0.09 n=0.10

20 m 90.99 80.6 74.2 67.32 63.69 60.82 58.54 56.44 54.73

30 m 89.23 79.8 72.79 67.01 63.65 60.87 58.54 56.66 54.84

40 m 88.64 78.89 71.49 67.07 63.7 60.92 58.67 56.65 54.92

50 m 86.52 77.56 71.75 67.39 64.07 61.15 58.78 56.82 55.2

Table 4.RMSE for different roughness values in eachmesh resolution. The simulationwith n=0.01 for each resolution is used as the
reference simulation. Unit ismeter.

Maximum

RMSE (m) n=0.02 n=0.03 n=0.04 n=0.05 n=0.06 n=0.07 n=0.08 n=0.09 n=0.10

20 m 0.0076 0.0114 0.014 0.0159 0.0174 0.0187 0.0197 0.0205 0.0212

30 m 0.0079 0.0119 0.0146 0.0166 0.0181 0.0192 0.0202 0.021 0.0218

40 m 0.0081 0.0122 0.015 0.0169 0.0184 0.0195 0.0205 0.0213 0.022

50 m 0.0083 0.0125 0.0152 0.0172 0.0187 0.0198 0.0208 0.0216 0.0223
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difference in the predicted water depth over time is
also notably minor (RMSE in figure 4(c) and table 4).
However, when the spatial distribution of inundation
is considered, the model becomes more sensitive to
mesh resolution, evidenced by the Fit statistics shown
in figure 4(b) and table 3. Table 3 also shows that, as
the roughness value increases progressively, the spatial
sensitivity diminishes. This is also reflected in the
spatial distribution of maximum depth difference
shown in figure 5, where the difference between the
50 m simulation and 40 m, 30 m and 20 m are
compared.

In contrast, the model response is more sensitive
to roughness specification compared to mesh

resolution. In particular, the model response becomes
increasingly sensitive to roughness with the coarsen-
ing of resolution (figure 4 and table 2). This is demon-
strated by all three metrics. Comparing against the
reference simulation of n=0.01, the peak inundation
difference of n=0.02 and n=0.1 increases from
2.1% to 11.7% for the 50 m simulation (table 2). The
sensitivity is also demonstrated in the spatial agree-
ment between the inundation extents obtained from
simulations with different roughness values
(figure 4(b) and table 3). Spatial difference of the pre-
dicted maximum water depths between the simula-
tions with n=0.1 and n=0.01 for each mesh
resolution shown in figure 6 suggests that, with a step

Figure 5.Difference in themaximumdepth predicted by simulationswith differentmesh resolution.
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increase of roughness value, there can be big difference
between the maximum water depth predictions at the
local level although globally the RMSE is small. For
fluvial flood modelling, the net impact of increased
roughness is slowed surface runoff locally. This,

however, does not necessarily result in increased water
depth locally. For hydro-inundation modelling, the
response is more complex and depends on the local
topography, rainfall intensity and parameters

Figure 6.Difference inmaximumwater depth predicted by simulationswith n=0.1 and n=0.01 for eachmesh resolution.

Figure 7.Difference inmaximumwater depthwith different hydraulic conductivity (>2 cm).
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associated with infiltration, evapotranspiration and
drainage.

Results demonstrate the complex interplay
between mesh resolution and roughness specification
for hydro-inundation modelling. With the considera-
tion of hydrological processes, the surface flow routing
suggests various degrees of model sensitivity to mesh
resolution and floodplain roughness when evaluated
against different metrics. Therefore, the model sensi-
tivity is two-fold. On one hand, it is comparatively
insensitive to varying mesh sizes, when the flood area
is considered. On the other hand, the spatial metrics
(i.e. F and RMSE) demonstrate greater spatio-tem-
poral variability in the prediction than the global
metric (i.e. total inundated area), suggesting that the
model is relatively sensitive to mesh resolution and
roughness specification.

5.2. Spatial and temporal evaluation ofmodel
prediction
Overall, given the spatial scale of prediction, the
complexity involved in the urban topography and
assumptions made in the modelling processing, the
results are encouraging when considering the degree
of agreement between the prediction and observation.
The simplified model simulates the inundated areas
reasonably well and reproduces areas that could have
been flooded during the event with a good degree of
predictive skill. The majority of the flooded areas are
predicted to be within the inner city districts. This
agrees well with the description of the event in the local
media. In the inner city districts, surface flooding
hotspots predicted by the model agrees well with the
major clusters of crowd-sourced incidents (figure 12).

Figure 8. Sensitivity analysis to hydraulic conductivity. Figures show the comparison of (a)fit statistic, (b) rootmean standard error
and (c) total inundation area over time. For F andRMSE, the reference simulation iswith a hydraulic conductivity value of
0.001 m hour−1.
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Given the mild terrain of the inner city areas, sur-
face water flooding tends to be locally-originated.
Figure 15 shows the 0.5-meter contour lines plotted
on top of the predicted flooded areas with a water
depth of over 5 cm. This demonstrates thatmost of the
worst hit areas are topographic lows, with ground ele-
vation ranging between 2.5–4 meters. Reported inci-
dents also tend to cluster in these areas.

An assessment of the temporal performance of the
model is undertaken using reported incidents, assum-
ing that an incident is reported shortly after it occurs.
This is a reasonable assumption given the duration
and magnitude of the storm event. Temporal

comparison in figure 14 demonstrates the capacity of
the model in predicting the dynamics of surface water
flooding. In all the time periods considered, over 90%
of the points are within the predicted water depth
reached by the respective time point.

However, discrepancies between the model pre-
diction and observation data are also noted. There are
incidents reported in topographic highs where surface
water flooding is not expected and vice versa. The dis-
crepancies may arise from a number of sources,
including the simplified nature of themodel, quality of
the input data and accuracy of the reported incidents.
First, the model involves a number of structural

Figure 9.The predictedwater depth greater than 2 cmduring the storm.
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Figure 10. 15 min rainfall total in theHuangpu Park Station, and total inundation area (>2 cm) over time.

Figure 11.Maximumwater depth predicted by themodel: (a) at the city-scale; and (b)within the inner city districts.

Figure 12. (i)Roadswheremonitoring points are located (red lines); and (ii) reported flooded locations; overlainwith the predicted
flood areas. Red crosses are the points wherewater depth and velocity are analyzed.
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assumptions. A major one is that surface runoff is the
dominant source of flooding, thus surcharge is not
considered. Due to the very mild terrain of Shanghai,

sewer surcharge is known to be rare during flooding
events, including the one simulated. However, in
other environments, sewer surcharge may occur in

Figure 13.Number of incidents reported during the course of the day.

Figure 14. Spatial and temporal distribution of the reported incidents, overlainwith themaximumwater depth predicted till the time
point. The percentage of points within the predicted inundation for (a)–(d) is 100%, 92.6%, 89.5%, 90.3, 91.3% and 91.5%,
respectively.
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places where surface runoff is not present, or com-
pound the effects of surface runoff. In such situations,
underestimation is likely to occur and a dual drainage
model should producemore robust results.Moreover,
the model assumes a uniform mass loss for individual
pixels to simply represent the drainage capacity. A
similar method is used in Mignot et al (2006) used a
similar method to treat the effect of storm sewer in an
urban site. Distributed drainage capacity is used in the
simulation. Although the bulk sum of the mass loss to
storm sewers is expected to be reasonably well repre-
sented, the temporal capacity of the sewer system
might be simplified as the interaction at the surface/
sewer boundaries (manholes) has not been considered
in themodel. Due to the intensity of the storm event, it
is expected that the drainage capacity has been reached
early in the simulation. Therefore, the simulation
might have overestimated the amount of mass loss to
urban sewer system.

Second, the quality of the input data also con-
tributes to the accuracy of the model predictions.
Rainfall distribution is expected to be an important
factor to consider. The relatively dense rain gauge net-
work (44 stations) in Shanghai presents a good basis
for the simulation. Given the degree of agreement
between the predicted extent and observed data, the
spatio-temporal distribution of precipitation appears
to have been adequately represented by the gauging
data, including the inner city. However, the dis-
crepancies between model prediction and observation
to the southeast of the Huangpu River (figure 12) are
likely due to the poor quality of the rainfall data
derived for the region. Model predicts a rather exten-
sive area of flooding for the region. However, there are
only a few reported incidents in this area. Precipitation
might have been overestimated for the region during
interpolation, where the gauging stations in the inner
city are givenmore weighting due to their proximity to
the site (figure 2). Therefore, the overall pattern of

flooded areas might be correctly predicted but local
predictions could be refined with a more accurate
rainfall representation. Studies have investigated the
effect of spatial pattern of precipitation on hydro-
logical predictions (e.g. Obled et al 1994), including
comparison with the use of weather radar (e.g. Cole
and Moore 2008). Future research could be directed
towards this area. Another source of input data uncer-
tainty is related to the DEM. Urban topography can be
complex due to the presence of manmade structures.
This study used a 50 m DEM derived from a 0.5 m
contour line dataset. Although the main topographic
characteristics are expected to be represented in the
dataset, local topographic complexities are unlikely to
be adequately represented. The sub-grid treatment of
DEM in city centre could be a solution to deal with this
issue in future studies.

Third, there are inherent uncertainties in the
reported incidents, in terms of the nature, timing and
location. Most of the incidents have a house number
or business address associated. However, street-level
GIS maps with house numbers in Shanghai are not
available to this study. The locations are determined
based on the interpretation of GoogleMap service and
geo-referenced in GIS. As a result, the locations of the
incidents may contain errors. Similarly, the time when
a site is flooded can be highly uncertain. This intro-
duced uncertainty into the temporal evaluation. The
number of incidents reported is also a factor to con-
sider. We used 298 point incidents and segregated the
points into a 30-minute and 1-hour interval. A larger
number of points should allow a higher temporal reso-
lution hence amore robust evaluation.

5.3. Evaluating hydraulic variables predicted
In addition to the inundated area, water depth and
velocity are two variables that determine the magni-
tude of a surface water flood event, in particular at the
local scale. The predictions of water depth and velocity

Figure 15.Predicted flooded areas and reported incident locations with the contour lines.
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at 8 points where incidents were reported (figure 12)
are shown infigure 16.

Time series of water depth and velocity for the 8
points demonstrate the capacity of the model in simu-
lating hydraulic variables. Depth and velocity profiles
capture the rising and recession phase of the flooding
for individual points. Due to the local topographic
configurations, the magnitude and pattern of the pro-
files differ from each other. Due to the lack of observa-
tion data, the model is not evaluated in this aspect.
However, it is recognized that, although the general
pattern of response is expected to agree with what hap-
pens in reality, the predictions of depth and velocity, in
particular their timing, may not be sufficiently accu-
rate due to the uncertainties in the input data and sim-
plified nature of the model. The simulations are
computationally stable in all cases. The variations
noted in the velocity profiles are associated with sur-
face flow runoff and often in synchronization with the
intensity of rainfall.

6. Conclusion

The application of a simple surface water flood model
for modelling city-scale surface water flood risks are
described. Surface runoff, infiltration and evapotran-
spiration are the key processes represented in the
model. The interaction between surface runoff and
storm sewer systems is simplified. Drainage through
storm sewers is treated as mass loss, linearly inter-
polated through time and assumed to be uniform over
time for individual pixels but distributed across the
simulation domain. The application demonstrates the
capacity of the model for deriving the broad areas
vulnerable to surface water flood risks at the city-scale,
and during extreme flood events when surface runoff
is significant compared to sewer surcharge.

The model was applied to hindcast surface water
flooding during an extreme storm event occurred in
Shanghai on 12 August 2011. Results are compared
with the spatial and temporal distribution of the inci-
dents reported by the public through a web-based
emergency system. A good degree of agreement is
reached and over 91.6% of the reported incidents fall
within the predicted inundated areas (2 cm+). A pre-
liminary assessment of the model’s dynamic perfor-
mance using the temporal information in the crowd-
sourced data also demonstrates a good level of agree-
ment. However, limiting the analysis to a single histor-
ical flood event can be restrictive, a larger number of
pluvial flood cases could be analyzed to arrive at more
robust conclusions.

One key advantage of the model is the minimum
requirements for the information regarding the storm
sewer systems, the role of which is simplified using a
bulk value that represents the drainage capacity at dif-
ference areas. This is particularly advantageous for the
city-scale study where subsurface storm sewer data
might not be available. On the other hand, the accur-
acy of distributed rainfall and urban topography are
the two key datasets that influence model predictions.
The model application demonstrates that, with a rea-
sonable coverage of rainfall data and an adequate
representation of urban topography, a good level of
prediction can be reached.

While water depth is not the predictive focus for
the application, a refinement of the model and the use
of more robust data should allow improved predic-
tions of distributedwater depth. In terms of floodplain
topography, buildings are not represented in the DEM
used in this study. However, given the scale and focus
of the modelling, this is considered to be adequate.
Theoretically, the model could be applied at a local
scale with a finer resolution. However, at a local scale,
if the focus is detailed prediction of hydraulic

Figure 16.Time series of predictedwater depth and velocity at 8 incident points (figure 8), with various peakwater depths and
velocity.
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variables, a finer topography that directly represents
buildings adequately is required and the effect of
building representation has been investigated for flu-
vial flood modelling (Schubert and Sanders 2012).
Alternatively, literature has seen approaches to repre-
sent buildings in coarse mesh resolution using the
multi-layer approach (e.g. Chen et al 2012). Therefore,
further studies could be undertaken to evaluate whe-
ther the model can be used to reproduce the spatial
and temporal variation of water depths, at a local scale
andwith the representation of buildings.

The validation of predicted flow variables for sur-
face water flooding is a challenging area of research
due to its sudden and fast-developing nature. There-
fore, validation data is often obtained on an opportu-
nistic basis. Recent research has seen novel approaches
to the derivation of flow variables, including the use of
video recordings to estimate velocity and water depth
(Aronica et al 2014). Advances in remote sensing tech-
nologymay also provide validation data in near future.

The predictions obtainedwith the simplifiedmod-
elling approach could be useful to decisionmakers as a
first-stage evaluation of the places potentially vulner-
able to surface water flood risks at the city-scale. If
combined with rainfall forecasting (e.g. Quantitative
Precipitation Forecast), the model presented here
could provide a preliminary city-wide flood inunda-
tion prediction which can help for emergency
response and warning. A scenario-based approach
could be undertaken to evaluate potential risks under a
range of precipitation, drainage improvement and
urban development scenarios. Subsequent work could
be conducted in the vulnerable locations (e.g. north
part of the city centre) to guide robust adaptationmea-
sures (structural or non-structural measures), assisted
by more detailed hydraulic modelling (e.g. the dual
drainage approach), considering the role of storm
sewer systems. Results can also be used to assess vul-
nerabilities of the city to surface flooding in terms of its
critical infrastructure, including, e.g., transport, com-
munication and energy supply network/nodes (e.g.
sub-stations) under a changing climate.
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