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Abstract
Interventions tomitigate household air pollution (HAP) from cookingwith solid fuels often fail to
take into account the role of access to freely available woodfuels in determining fuel choice and
willingness to adopt clean cooking technologies, key factors inmitigating the burden ofHAP.We use
national-scale remote sensing data on land use land cover change, and population representative data
from twowaves of theMalawi Living StandardsMeasurement Survey to explore the relationship
between land use change and the type of fuel households use, time spent collecting fuel, and
expenditures on fuel, hypothesizing that land use dynamics influence household-level choice of
primary cooking fuel.We find considerable heterogeneity with respect to regeneration and
deforestation/degradation dynamics and evidence of spatial clustering.We find that regeneration of
forests andwoodlands increases the share of households that collect fuelwood, whereas deforestation
and degradation lead households to purchase fuelwood.We alsofind that a relatively large share of
land underwoody savannah or degraded forest (versus fully stocked forest) increases fuel collection
time. Areas with regeneration happening at broader scale experience increases in fuel expenditures.
Ourfindings have implications for the spatial targeting of interventions designed tomitigateHAP.

Introduction

Recent research on the health and climate change
impacts of household air pollution (HAP) has brought
renewed attention to the welfare implications of wide-
spread use of biomass fuels and traditional stoves for
cooking and heating in developing countries. HAP is
now considered to be a major threat to global health
(Lim et al 2012), affecting roughly three billion people
worldwide (World Health Organization (WHO) 2014).
At the same time, HAP has garnered attention as a
harbinger of black carbon,which is a known contributor
to regional climate change (Ramanathan and Carmi-
chael 2008). Women and children bear most of the
direct impacts of reliance on biomass fuels and tradi-
tional technologies; they are generally tasked with
collection of fuelwood, and cooking for the family (Foell
et al 2011). Policies and interventions designed to reduce
HAP have the potential to offer triple-win outcomes of
improving health and welfare for households in devel-
oping countries, andmitigating regional climate change.

Throughout much of sub-Saharan Africa (SSA),
use of traditional fuels and cooking technologies per-
sist due to slow development of markets for modern
fuels and clean cookstoves, and lack of information
about the individual and social benefits of switching
stoves and fuels (Masera et al 2000, Schlag and
Zuzarte 2008, Bailis et al 2015). With a variety of bio-
mass fuels available (e.g. fuelwood, charcoal, crop resi-
dues, and dung), few studies have explored supply side
factors affecting fuel choice (c.f. Rehfuess et al 2010,
Lewis and Pattanayak 2012, Jagger and Shively 2014).
GEA (2012) and UN DESA (United Nations, Depart-
ment of Economic and Social Affairs, PopulationDivi-
sion) (2015) estimate that the absolute number of
people in SSA dependent on biomass fuels will
increase through 2030, suggesting that policy makers
should be attentive to factors that influence the supply,
demand, and distribution of biomass fuels. Several
studies have noted the lack of information available
about fuelwood harvesting practices, geography, and
dynamics, specifically with respect to woody biomass
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availability within different land uses (Foley et al 2005,
Smeets and Faaij 2007, Hiemstra-van der Horst and
Hovorka 2009). While demand for biomass fuel grows
in SSA, rapid land use change is reducing the supply of
high quality biomass and leading individuals to shift
collection away from forests toward locations such as
farms and fields that typically yield much lower per
hectare quantities of biomass (Ahrends et al 2010,
DeFries et al 2010, Jagger and Shively 2014). Changes
in the supply of locally available biomass fuels have
implications for household fuel use and the exposure
of women and children to harmful gasses and particu-
late matter associated with the incomplete combus-
tion of low-quality biomass (Jagger and Shively 2014,
Das et al 2016). Insights into the combined spatial and
behavioral dynamics of woodfuel supply and demand
are needed (Masera et al 2006, Rehfuess et al 2010).

Malawi is a country deeply affected by the health, cli-
mate and socioeconomic impacts of HAP. HAP is that
nation’s largest risk factor for morbidity and mortality
(Institute for Health Metrics and Evaluation
(IHME) 2013), and Malawi is among the countries in
SSAmost vulnerable to climate change (Knox et al 2012,
López-Carr et al 2014). In rural areas women and chil-
dren are overwhelmingly responsible for fuelwood col-
lection, and do almost all of the cooking (Jagger and
Jumbe 2016). The confluence of the negative impacts of
HAPhave catalyzed theGovernment ofMalawi to foster
innovative and scalable interventions that reduce HAP.
Improved cookstoves have taken center stage in this new
policy dialogue as one of the most promising strategies.
In January 2013, the Government of Malawi launched
an initiative in partnership with USAID, Irish Aid, and
Concern Universal to get two million improved cook-
stoves into Malawian households by 2020, suggesting
that roughly half of Malawi’s households would adopt
improved cookstoves within the next five years. A
National Cookstove Steering Committee has been
formed to provide strategic inter-sectoral advice on how
to proceed with a large-scale roll-out of improved cook-
stoves. In 2016 the Government of Malawi piloted cou-
pling a voucher for an improved cookstove with its’
Social Cash Transfer Program improving access to
improved cookstoves for the 10% most vulnerable
households. The program is currently being rolled out
in eight districts in southern Malawi. Additionally,
values chains and markets for improved cookstoves are
being fostered by Concern Universal, Maeve, Total
Landcare and other non-governmental organizations,
with the aim of providing a diverse and robust market
for improved cookstoves for Malawian consumers.
Stoves are being promoted on the premise of reduced
fuel consumption and co-benefits for health, welfare,
and climate. In the targeting of such programs supply
side factors for biomass fuels are seldom taken into
account, and could be important factors determining
their success.

This study integrates remote sensing and house-
hold-level data at the national scale to explore how land

use and land use change are correlated with the main
type of fuel used by households, time spent on collecting
fuel, and cash expenditures on fuel in Malawi. Our
hypothesis is that the types of fuels households use, and
how much time and money they expend to obtain fuel
are spatially determined. We pursue this line of inquiry
with the aim of providing input to Malawi’s national
policy process focused on promoting improved cook-
stoves. Specifically we explore whether there is a correla-
tion between land use change and the primary type of
fuel used by households. We also consider the effect of
land use change on time and money spent collecting
fuel. We use this information to identify areas where
cleaner cooking interventions are more likely to be suc-
cessful, that is, geographic locations where there are
dynamics in land use and fuel markets, and where
households are most strikingly affected by increases in
time and expenditures related to reliance on biomass
fuels. Our expectation is that with better informed tar-
geting of interventions, the health, climate and welfare
effects of interventions aimed at mitigating HAP will be
more efficiently and effectively realized.

Methods

Data
Study population
Our analysis involves the integration of nationally
representative spatially identified socioeconomic data
on fuel use, and remotely sensed land use land cover
change data. We use data from the Malawi Integrated
Household Survey (IHS), IHS2 collected in 2004, and
IHS3 collected in2010, to characterize theprimary fuels
used by households, time to collect fuel, and household
expenditures on fuel. IHS2/IHS3 are nationally repre-
sentative household surveys that provide data for a wide
range ofmonitoring and impact evaluation indicators in
the areas of development, health, education, access to
public services, etc. Data are coded at the household
level. The 2004 data come from 11 280 households, in
564 enumeration areas spread over 27 districts and 4
urban areas in Malawi. The data for IHS3 come from
12 288households fallingwithin 768 enumeration areas,
covering the same districts. Enumeration area centroids
(i.e., geographic positioning system (GPS) coordinates
for the randomly offset center point in each enumera-
tion area) are provided for the dataset. Households that
failed to provide survey data on primary fuel type, fuel
expenditures, or collection time were excluded from the
analysis. The sample for this study includes a total of
9211 and 9914 households from 531 and 717 enumera-
tion areas in 2004 and 2010, respectively. Outcome data
on primary cooking fuel type at the household levelwere
aggregated to enumeration area-level counts for each
fuel type. Likewise, household-level data on fuel expen-
ditures and collection time were also aggregated to the
enumeration area-level using median values from
householdswithin enumeration areas.
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Land cover dynamics
To characterize land cover and land cover change we
use land cover type grids from theMODIS-MCD12Q1
product due to its potential for the rapid assessment of
land cover change, free availability, and performance
at 500 m resolution. Vintrou et al (2012) found the
MCD12Q1 land cover product achieved higher accur-
acy in mapping cropland compared with alternative
existing global land products (GLC2000 Africa,
GLOBCOVER, and ECOCLIMAP-II). Friedl et al
(2010) detail the decision-tree algorithm model
employed to classify land cover types and cross-
validation analysis for accuracy on a yearly scale. The
land cover product provides data that aggregate 8 d
values with 32 d averages and use a weighted averaging
procedure for quality assurance. This alleviates con-
cern for seasonal variation bias in the data, though
savanna and woody savanna lands are found to be less
accurate than the forest and cropland identifications.

After extracting land cover type data fromMODIS
land cover type grids at 500 m spatial resolution
(MCD12Q1 product), we reclassified the International
Geosphere Biosphere Programme (IGBP) classifica-
tions into seven broader categories to reduce uncer-
tainty. Thus, we regrouped the classifications into
forest, woody savannah, savannah, shrubland, grass-
land, cropland, and urban/built-up. Each classifica-
tion denotes a varied amount of biomass availability
for household fuel use. Through cross-validation ana-
lysis, overall classification accuracy in the MCD12Q1
product is estimated to be 75% (Friedl et al 2010).

We defined transition classes using raster algebra
where a pixel of land that changed usage categories from
year t-1 to year t would join a newly created land cover
class; i.e., ‘Forest→Cropland’ identifies cropland that
had been converted from forest. These transitions were
created to measure deforestation (e.g., Woody Savan-
na→Cropland) and forest degradation (e.g., For-
est→Woody Savanna), and to distinguish them from
areas of limited or no change. Our analysis considered
relative changes in land cover type within the dataset for
accuracy and to avoid classification errors (Pfeifer
et al 2012). Land cover change was then reclassified as
either reflecting regeneration of woody biomass or
deforestation/degradation. Specifically, the following
land cover change types were classified as deforestation/
degradation: forest towoody savanna,woody savanna to
savanna, woody savanna to cropland, and savanna to
cropland. Conversely, the following land cover changes
were classified as regeneration: savanna to woody
savanna, cropland to woody savanna, and other to
savanna. In addition to calculating percent land cover
change (i.e., regeneration/degradation) of surrounding
10 km areas, we also calculated spatially lagged variables
for regeneration and degradation as an average of land
cover changes in neighboring IHS clusters within 50 km
of focal cluster locations. This lagged variable captures
changes in land cover in surrounding areas.

Covariates
We include a number of exogenous variables in our
models to control for variation in population density,
market access and baseline land cover conditions in our
models. Data corresponding to population density were
extracted from 2005 and 2010 AfriPop datasets using
10 km buffer means surrounding IHS cluster points
(www.worldpop.org.uk/). Previous work has demon-
strated that 10 km buffer means provide unbiased
estimates of raster-based covariates for randomly dis-
placed household cluster points fromDemographic and
Health Surveys (Perez-Heydrich et al 2016). Given that
the IHS2/3 GPS data followed a displacement scheme
similar to the DHS, the 10 km buffer size was deemed
appropriate to minimize displacement bias in raster-
based covariate definitions for the IHS data. Market
access was defined as the shortest distance (km) from an
IHS cluster to the nearest city along major roads, and
was calculated using the gdistance and fields packages in
R (Nychka et al 2014, van Etten 2014). The roads
shapefile used for these calculations was obtained from
DIVA-GIS (www.diva-gis.org/). Code for the construc-
tion of the market access variable is available upon
request. We also use data on rural/urban status and
percent of households below the poverty line. These data
are derived from the IHS2/3 datasets. Because our study
involves human subjects this research was reviewed and
approved by the Institutional Review Board at the
University of North Carolina at Chapel Hill. We have a
data use agreementwith theNational StatisticalOffice of
Malawi.

Analysis
Poisson regression models were initially fit to the data
to address the association between different types of
land cover change and use of a particular fuel type.
Specifically, counts of households within IHS clusters
for which (1) collected firewood, (2) purchased fire-
wood, (3) charcoal, (4) modern fuels, and (5) other
fuels were considered as primary cooking fuel sources
were used as dependent variables in regression models
that controlled for urban/rural designation, percent
poor, year (2004 or 2010), market access, population
density, and baseline forest and woody savanna cover.
Linear regression models using the above predictors
and log-transformed collection time and fuel expendi-
tures were also fit. In addition to traditional diagnostic
measures, residuals from the abovemodels were tested
for the presence of spatial autocorrelation via Moran’s
I tests. All regressions were associated with significant
spatial autocorrelation in residuals (p<0.05). To
investigate the nature of the observed spatial depend-
ence in residuals, geographically weighted regressions
(GWRs; Fotheringham et al 2002) were fit to the
residuals assuming a fixed bandwidth and a Gaussian
kernel. Bandwidths were optimized for each of the
seven models considered (one for each of the primary
fuel types, one for collection time, and one for fuel
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expenditures) by minimizing the values of the root
mean square prediction error. Specific bandwidths
used for the five models in the order listed above were
7.81, 301, 8.22, 911, 36.6, 13.3, and 911 km.

Descriptivemaps of residuals indicated the potential
for district-specific effects of land cover change on pri-
mary fuel source. Informed by the exploratory GWR
results (not shown), mixed effects models with random
intercepts for each district were then fit to the data.
Because collected firewood was overwhelmingly the
most dominant fuel type used by households, counts of
households using fuel types other than collected fire-
wood were zero-inflated. Mixed zero-inflated Poisson
(ZIP) regression models were fit using the aforemen-
tioned variables, but now incorporated random inter-
cepts associated with each of the 26 districts and 4 urban
areas. Mixed Poisson and ZIP models were fit using the
admbglmm package in R (Fournier et al 2012, Skaug
et al 2014) for the primary fuel outcomes.Highposterior
density intervals for parameter estimateswere calculated
using a Markov Chain Monte Carlo approach. Mixed
linear regressions were fit using the lme4 package in R
(Bates et al 2013) for outcome data corresponding to
log-transformed collection time and fuel expenditures,
respectively. Analyses corresponding to collection time
were limited to clusters in which at least one household
reported using collected firewood as a primary fuel
source. Similarly, analyses of fuel expenditures were
restricted to clusters containing households that repor-
ted spending any money on fuel. Ninety-five percent
confidence intervals were calculated for fixed effects
parameters using aprofile likelihood approach.

Results

A total of 9211 and 9914 households located within 26
districts and 4 urban areas from the IHS2 (2004) and
IHS3 (2010) respectively were included in the analysis.
For both years, approximately 4% of households were
from urban areas, while 96% were from rural areas.
Collected firewood was the dominant source of
cooking fuel in both years, with 91% of households in
2004, and 94% of households in 2010 declaring it as
their primary fuel (table 1). This was followed by
purchased firewood, which decreased from 7% to 5%
between 2004 and 2010, and charcoal, which increased
from 0.2% to 0.9% between 2004 and 2010 (figure 1;
table A1). The other fuels category is dominated by
crop residues (primarily maize cobs), which are
seasonal, while overall use of other fuels did not
increase, we do observe increases in the other fuels
category in places with biomass scarcity, particularly
in the Southern Region (Openshaw 2010). The average
time household members over the age of five spent
collecting firewood was 0.59 h per day (95% CI:
0.58–0.61) in 2004 and 0.82 h per day (95% CI:
0.80–0.84) in 2010. For those who purchased fuel,
average household expenditures on fuel were 318

Malawian Kwacha (MK) per week (95% CI: 311–326)
in 2004 and 463 MK per week (95% CI: 435–493) in
2010 (figure 2; table A1). These expenditures are
roughly equivalent to 0.75 cents to 1$US perweek.

We also decompose the data by rural and urban
samples with the aim of highlighting divergent trends
in fuel use across the two samples (table 1). Overall we
note modest declines in purchased firewood and
corresponding increases in charcoal use in urban set-
tings.While collected firewood increased in rural areas
from 91% to 94%, it remained constant in urban
areas. Trends in fuel collection time and fuel expendi-
turewere similar for both rural and urban households.

Changes in fuel-related activities
We find that several districts, largely in the Southern
and Central Regions, experienced an increase in
collected firewood as the primary fuel source
between 2004 and 2010 (figure 1). Changes in the use
of purchased firewood also increased in several areas
throughout Malawi. Use of charcoal as primary fuel
increased mainly in the lakeshore region including
Nkohotakota, Ntchisi, and Salima Districts, and in
the southern region in Zomba District. Fuel collec-
tion times were highest in Mzimba and Rhumpi
Districts in the northern region, and in several
population dense districts in southern Malawi,
particularly in 2010 (figure 2). High fuel expendi-
tures were observed throughout the country in both
time periods and are generally clustered around
major urban centers including Mzuzu, Lilongwe,
Blantyre, and Zomba.

Land cover dynamics
We analyze land use and land use change for two time
periods: 2001–2004 and 2004–2010 within 10 km
buffers of Enumeration Area centroids. In both time
periods a significant share, approximately 63%, of land
in Malawi remained under the same land use classifica-
tion (for example, from 2001 to 2004 and 2004 to 2010,
32% and 40% of land cover remained as savanna,
respectively) (figure 3). Deforestation or degradation
processes, as we define them, accounted for 17%of land
use change between 2001 and 2004, and increased
significantly to 27% between 2004 and 2010. Conver-
sely, land use changes signifying regeneration accounted
for 18.7% and 8% respectively in the two time periods
within10 kmbuffers (figure 3; tableA2).

Spatial patterns of land cover dynamics
Figure 4 illustrates spatial patterns of regeneration and
deforestation/degradation.While the 2001–2004 time
period indicates clusters of regeneration in each of the
three major regions, regeneration is most pronounced
in the northern region between 2004 and 2010.
Deforestation/degradation is similarly more evenly
dispersed in the earlier time period, and more heavily
concentrated in the southern and central regions
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between 2004 and 2010. To further explore regional
patterns we tested for spatial autocorrelation between
districts by aggregating land cover change data from
the Enumeration Area to the district level. Significant

clusters, after correcting for multiple comparisons
using the false discovery rate approach (Benjamini and
Hochberg 1995), are highlighted in figure A1. We find
evidence of spatial autocorrelation (i.e., neighboring

Table 1.Primary fuel type used corresponds to percentages (95%CI); values associatedwith fuel expenditure and collection time
correspond tomeans (95%CI).

Full sample Rural Urban

2004 2010 2004 2010 2004 2010

Collectedfirewood 91.4 93.5 92.4 94.5 63.8 64.6

(90.8, 91.9) (93, 94) (91.8, 92.9) (94, 94.9) (58.5, 69) (59.4, 69.8)

Purchased firewood 7.4 4.7 6.5 4 31.6 25.2

(6.8, 7.9) (4.3, 5.1) (6, 7) (3.6, 4.4) (26.5, 36.6) (20.4, 29.9)

Charcoal 0.2 0.9 0.1 0.6 2.8 8.4

(0.1, 0.3) (0.7, 1.1) (0, 0.2) (0.5, 0.8) (1, 4.6) (5.4, 11.4)

Modern fuels/other 1.1 0.9 1.1 0.9 1.8 1.8

(0.02, 1.2) (0.6, 1) (0, 1.2) (0, 1) (1, 2) (0, 2.5)

Collection time (hours/day) 0.59 0.82 0.59 0.81 0.69 1.23

(0.58, 0.61) (0.8, 0.85) (0.57, 0.6) (0.79, 0.83) (0.59, 0.8) (1.03, 1.42)

Fuel expenditure (MK) 318 463 318 462 319 486

(312, 324) (453, 472) (312, 324) (453 472) (290, 348) (433, 540)

Figure 1.Percent change in household use of fuel by district 2004–2010.
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administrative units exhibited similarly high values of
land cover change) for regeneration in the northern
region in the 2004–2010 time period.

Association between land cover dynamics and fuel-
related activities
We report results of mixed regression models addres-
sing use of collected firewood and purchased firewood
rather than addressing use of charcoal, modern fuels,
or other fuels because of the infrequency with which
the latter three were used as the primary fuel in the
household (<1.0%) (figure 5). Biomass regeneration
within 10 km increased the odds of using collected
firewood (OR: 1.3%, 95% CI: 0.98–1.7) as a primary
cooking fuel source, and significantly decreased the
odds of using purchased firewood (OR: 0.11%, 95%
CI: 0.05–0.24). Regeneration was associated with
significant decreases in collection time (percent
change: −51.4, 95% CI: −74.2 to −7.8), and slight
decreases in fuel expenditures (percent change:
−2.6%, 95% CI: −34.2 to 44.6). Regeneration within
more distantly surrounding areas was not associated
with a significant change in the odds of using collected

firewood (OR: 1.04%, 95% CI: 0.7–1.77), using
purchased firewood (OR: 0.41%, 95% CI: 0.06–1.9),
or collection time (percent change: −45.9%, 95% CI:
−84.9 to 88.0). The percent change in fuel expendi-
ture, however, significantly increased with higher
levels of regeneration in distantly surrounding areas
(percent change: 205.4%, 95%CI: 38.6 to 578.8).

Deforestation/degradation within 10 km did not
significantly affect the odds of using collected firewood
(OR: 0.92%, 95% CI: 0.77–1.13), but did significantly
increase the odds of using purchased firewood (OR:
2.25%, 95% CI: 1.25–6.64). Deforestation/degrada-
tion was also not associated with changes in collection
time (percent change: −17.9.0%, 95% CI: −50.0 to
35.6), but was associated with marginally significant
decreases in fuel expenditures (percent change:
−23.7%, 95% CI: −44.0 to 4.0). We disaggregated
deforestation and degradation (results not reported)
to explore their independent effects on fuel choice and
collection time, and found that degradation decreased
collection time (percent change: −28.6%, 95% CI:
−60.8 to 30.0), but deforestation increased collection
time (percent change: 33.1%, 95%CI:−45.3 to 225.9).

Figure 2.Median collection time and fuel expenditures per household by district.
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Deforestation/degradation in more distant surround-
ing areas was associated with slightly increased odds of
using collected firewood (OR: 1.41%, 95% CI:
0.91–1.93), significantly decreased odds of using pur-
chased firewood (OR: 0.05%, 95% CI: 0.01–0.13), sig-
nificantly decreased collection time (percent change:
−71.8%, 95% CI:−89.7 to−24.6), and increased fuel
expenditures (percent change: 84.2%, 95%CI:−2.0 to
249.7). Results are further summarized in table 2.

Discussion

Our analysis of fuel use confirms that the vast majority
of households in Malawi rely on collected fuelwood as
their primary fuel, but that modest changes are taking
place. The overall decline in purchased fuelwood
during the time period of our analysis is unexpected
given perceived trends in fuel scarcity. We hypothe-
sized that collected fuelwood would be substituted
with purchased fuelwood in areas where deforestation
and degradation are taking place. While the decline in
purchased fuelwood is partially explained by increases
in the use of charcoal andmodern fuels, particularly in
urban and peri-urban areas, modest gains in use of
other fuels do not fully compensate for the decline in
purchased fuelwood. We note that our results mask a
potential shift towards use of multiple fuels. For
example, households may identify collected firewood
as their primary fuel, but use crop residues, purchased

firewood, and/or charcoal some of the time. The
percent change in real price of fuel was 37.1% between
2004 and 2010; households may rely on collected
fuelwood as much as possible to reduce the burden of
cash expenditures being allocated to domestic house-
hold energy. We do observe a correlation between
purchased firewood as primary fuel source and
whether a district engages in border trade, including
Chitipa District (borders Tanzania) in the northern
region, Kasungu in the central region (Zambia), and
both Ntcheu and Thyolo Districts in the southern
region (Mozambique). There may be more developed
fuelmarkets in these parts of the country.

We find evidence of significant land use changewith
approximately 37%of landwithin 10 kmbuffers under-
going either regeneration or deforestation/degradation
processes in each time period we consider. Our analysis
suggests considerable heterogeneity of land use change
at national scale, with surprisingly few spatially clustered
districts characterized by high deforestation/degrada-
tion.Wedofind that deforestation anddegradationpro-
cesses aremost pronounced in theCentral and Southern
Regions between 2004 and 2010 implying declining sup-
ply of above ground biomass. We also observe that
deforestation/degradation processes appear to be accel-
erating. Somewhat unexpectedly given current narra-
tives of land use change in Malawi we observe
regeneration of forest and woody savanna in Northern
Malawi. Our methodology and results correspond with
other land cover change analysis of East Africa that

Figure 3.Changes to land cover inMalawi between2001–2004 and2004–2010. Barplots demonstrate the overall proportionsofdifferent
landuse and land cover changes consideredwhen evaluating the effects of land cover change of primary fuel typeusedwithinhouseholds.
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found areal increases in savannah and woodlands in
Malawi and observed a net carbon increase from2002 to
2008 (Pfeifer et al 2012). The study found gains in bio-
mass stock for savanna andwoody savanna, especially in
northern Malawi. The areal increase in savanna and
woodlands offset the carbon emissions from forest loss
for Malawi in particular, representing a unique carbon
sink among sources in East Africa, and partially explain-
ing the surprising result of increased biomass. Pfeifer
et al (2012) also cite the prevalence of large areas of plan-
ted forest inMalawi to account for the changes.

To put the implications of observed land use
change data and its’ relationship to biomass avail-
ability in context we leverage analysis from the
National Biomass Study in Uganda (no such study
exists forMalawi). On a per hectare basis, tropical high
forest provides the highest density of available woody
biomass (224 tons ha−1). Degraded tropical high for-
est provides approximately half the per hectare woody
biomass (113.0 tons ha−1), savanna is estimated at
29.9 tons per hectare of biomass, and subsistence crop
land provides only 12.7 tons ha−1 (Turyareeba
et al 2001). Land use change from woody savanna to
subsistence cropland results in an order of magnitude
reduction in above ground biomass.

We explore land use change as a potential determi-
nant of primary fuel use testing the hypothesis that

household-level decisions about fuel use are driven, at
least in part, by supply side factors. Our results indicate a
clear relationship between regeneration of biomass and
fuel choice with two implications. The first is that areas
with significant regeneration taking place may be poor
locations to target fuel saving interventions. Improved
cookstove interventions are most successful when the
time use or monetary costs of fuel acquisition are
reduced through the use of more efficient technologies.
If firewood is easily obtained at little or nomarginal cost
to the household itmay be challenging tomotivate beha-
vior change. When households feel burdened by the
time involved in collecting fuel, or are experiencing
longer collection times, willingness to adopt improved
cookstoves may be higher (e.g., Jagger and Jumbe 2016).
The second and related implication is that there is a
potential paradox between relaxing financial and labor
constraints for households via afforestation/reforesta-
tion initiatives andwillingness to adopt technologies that
mitigate health and climate impacts. Afforestation/
reforestation activities that focus on biomass supply for
fuelwood have long been promoted as a strategy for alle-
viating the economic burden of reliance on fuelwood.
We caution that environmental policy that promotes
afforestation/reforestation programs may have the
unintended consequence of hindering adoption ofmod-
ern fuels and improved technologies (assuming they are

Figure 4. Land cover changes associatedwith regeneration and degradation 2001–2004 and 2004–2010.
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available), constraining the realization of collective bene-
fits for climate and environment atmultiple scales.

Our results for land use change reflecting deforesta-
tion/degradation and its relationship to fuel use yield
less clear patterns. The ubiquity of collected fuelwood as
the primary fuel source, financial constraints for poor
households, and weak or missing markets for fuelwood
may be influencing our results. Given high levels of pov-
erty in Malawi, households may simply have no choice
other than to collect fuelwood even in the face of defor-
estation/degradation. Purchasing fuelwood may be
considered a luxury, particularly for households that do
not face labor constraints with respect to time spent on
fuel collection. In each of our models market access has
no significant effect, suggesting that markets do not
influence fuel decisions. Notably we do observe an
increase in odds of purchasing fuelwood in urban areas,
in tandemwith an increase in fuel collection times. This
may be a result of the opportunity cost of labor for
women, who in labor markets where some women can
earn more than the cost of buying fuel they may decide
to purchase fuel even if there is no supply side constraint
(Kelkar andNathan 2007).

In some of our models regeneration and deforesta-
tion/degradation spatial lags have significant effects
on our outcomes of interest. These neighborhood
effects validate that land cover change in areas
geographically contiguous with Enumeration Area cen-
troids influence outcomes. Deforestation/degradation

lags are associated with a decreased odds of purchased
firewood. This is an opposite effect to deforestation/
degradation within the Enumeration Area centroid.
This opposite effect suggests that land cover change in
the broader landscape has a strong negative effect on
the odds of purchasing fuelwood, but the direction-
ality is not what we hypothesized. The significance of
the deforestation/degradation lag for collected fire-
wood indicates that neighborhood level deforesta-
tion/degradation reduces collection time, this effect is
also unexpected and may be explained by households
that continue to collect biomass from nearby sources,
but switch to lower quality wood (Brouwer et al 1997,
Jagger and Shively 2014). Our results do not support
findings by Bandyopadhyay et al (2011) who found
that biomass scarcity has a small but positive effect on
collection time. We also note that most fuelwood col-
lection is undertaken on foot and carried as headloads.
People in general will not travel more than 4–5 km to
collect firewood unless they are facing a situation of
extreme biomass scarcity. The only expected result is a
neighborhood effect of an increase in fuel expendi-
tures all else equal when there is considerable defor-
estation/degradation. This finding suggests that areas
where people are purchasing fuel, and where defor-
estation/degradation at the neighborhood-level is sig-
nificant, may be strategic locations for interventions
that will reduce either the cost of fuel or the quantity of
fuel required by households. Figure A1 indicates that

Figure 5.Association between land cover change and fuel-related variables. Odds ratios and 95%highest posterior density intervals
are presented for parameter estimates associatedwithmixedZIPmodels for fuel type outcomes (i.e., counts of households using
collected firewood, and purchasedfirewood as primary cooking fuel sources). Results for linearmixedmodels, which use log-
transformed collection time and firewood cost as the outcomes of interest, are presented as percent change in the outcome attributable

to each variable ( -b )ˆ
e 1 . Ninety-five percent confidence intervals are presented as line segments in corresponding plots. Dashed lines

in all plots represent null values that indicate no association between predictor variables and corresponding outcomes.
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Table 2. Summary of results associatedwith the effects of land cover dynamics on fuel use activities.

Effect on fuel use activities

Land cover change Use of collectedfirewood Collection time Use of purchasedfirewood Fuel expenditure

Regenerationwithin 10 km Marginally significant increase in odds Significant decrease Significant decrease in odds NSE

Regeneration in surrounding 50 km NSE NSE NSE Significant increase

Deforestation/Degradationwithin 10 km NSE NSE Significant increase in odds Marginally significant decrease

Deforestation/Degradation in surrounding 50 km NSE Significant decrease Significant decrease in odds Marginally significant increase

NSE:No significant effect.
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spatial clustering of deforestation/degradation is not
common inMalawi.

Conclusion

Our analysis aims to put a spatial lens on land use and
fuel dynamics with the hope of providing guidance to
policy makers and implementers working on improv-
ing access to improved cooking technologies in
Malawi. Specifically we consider the role that land use
change between 2001 and 2010, both regeneration and
deforestation/degradation play in determining pri-
mary fuel choice, time to collect fuel, and expenditures
on fuel. We find considerable dynamism in land use,
with regeneration concentrated in Northern Malawi,
and deforestation/degradation processes concen-
trated in the Central and Southern Regions.We do not
find evidence of widespread change in primary fuel use
over the time period we consider, but do observe
trends indicating a move away from purchased fuel-
wood as a primary fuel source, and an increase in
collecting time and expenditures in general.

We emphasize three findings. First, geographic
areas with land use changes characterized as regenera-
tion are dominated by collected fuelwood, have lower
odds of purchased fuelwood as primary fuel, and have
lower fuel collection times. Taken in tandem these fac-
tors suggest areas with high levels of regeneration are
not ideal for targeting interventions aimed at reducing
biomass reliance. Second, we find that areas with loca-
lized deforestation/degradation and urban areas have
a higher odds of using purchased fuelwood as a pri-
mary fuel source.We also observe considerable increa-
ses in the real price of fuel between 2004 and 2010.
Areas where households are purchasing fuelwood and
face biomass scarcity are logical places to target inter-
ventions. Finally, we find evidence of a surprising level
of heterogeneity in regeneration and deforestation/
degradation processes throughoutMalawi.

Our analysis has several limitations. We are con-
strained by the Integrated Household Survey instru-
ment which only collects data on primary fuel used by
households. Collection of secondary and tertiary fuels
used by households would improve our ability to
understand fuel use dynamics, and to understand
where substitution of one type of fuel with another is
taking place. We are also limited with respect to our
ability to characterize how the quality of fuelwood is
changing over time, a variable that though subjective
would provide some insights into whether people
trade-off quality for time spent collecting fuel. Addi-
tionally, we definedmarket access on the basis of road-
based distance to nearest population center because no
such data was collected from the surveys. Our analysis
is also limited by the fact that the IHS2/3 are not panel
surveys, but rather serial cross-sectional surveys. We
are able to characterize trends at the Enumeration
Area level, but we do not track changes in household

behavior over time. Finally, given that the units of
observation used for our analyses were IHS clusters,
rather than individual households, ourmodels did not
include variables associated with household demo-
graphic and socioeconomic characteristics.

Future research could leverage panel data for a
representative set of households in Malawi collected by
the National Statistical Office as part of the LSMS Inte-
grated Survey onAfrica Program. Environmental degra-
dation could potentially impact the cost and availability
of biomass fuels in surrounding areas. In our current
analysis, the effects of regeneration and degeneration/
degradation within adjacent areas were considered as
spatial lag terms in regression models; however, this
could be expanded upon. Specifically, futurework could
investigate the spatial extent of these spillover effects to
describe how widespread impacts associated with land
cover change are. Replicating this analysis in a country
with more variation in primary fuel use would allow us
to draw broader conclusions about the changes in fuel
use patterns relative to land use change and biomass
availability. A country making the transition to charcoal
andmodern fuels including electricity and liquid petro-
leum gas would be of interest (e.g., Kenya and Tanza-
nia), as would consideration of Zimbabwe, where
households previously using modern fuels have been
forced to revert to biomass fuels in the wake of land
reformand economic crisis.
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Appendix

The plot highlights districts for which regeneration
and degradation/deforestation patterns were locally
clustered, according to Local Moran’s I tests (Anse-
lin 1995). Districts highlighted in red indicate loca-
tions where neighboring administrative units
exhibited similarly high values of land cover changes,
whereas those highlighted in blue indicate locations
where neighboring administrative units exhibited
similarly low values of land cover changes. Only
significant clusters, after correcting for multiple com-
parisons using the false discovery rate approach
(Benjamini andHochberg 1995), are highlighted here.
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Figure A1. Spatial autocorrelation of land cover change patterns at district-level.

TableA1.District-level percentage of households using each category of fuel as its primary source.

Collected

firewood

Purchased

firewood Charcoal Modern fuels Other

Total

households

Urban 2004 2010 2004 2010 2004 2010 2004 2010 2004 2010 2004 2010

Blantyre city 30.8 57.1 46.2 14.3 23.1 21.4 0.0 4.8 0.0 2.4 13 42

Lilongwe city 69.7 72.5 25.0 23.5 1.3 2.0 2.0 0.0 2.0 2.0 152 51

Mzuzu city 59.6 59.8 37.6 37.4 2.8 2.8 0.0 0.0 0.0 0.0 109 107

Zomba city 63.3 66.4 34.7 18.7 2.0 13.1 0.0 1.9 0.0 0.0 49 107

Rural districts

Northern region

Chitipa 99.1 96.2 0.9 3.3 0.0 0.3 0.0 0.0 0.0 0.3 216 365

Karonga 77.8 94.8 22.2 4.6 0.0 0.3 0.0 0.0 0.0 0.3 189 346

Mzimba 97.3 98.9 2.5 1.1 0.0 0.0 0.2 0.0 0.0 0.0 474 367

Nkhata Bay 99.6 98.6 0.0 1.1 0.0 0.3 0.4 0.0 0.0 0.0 236 367

Rumphi 98.6 96.8 1.4 2.6 0.0 0.6 0.0 0.0 0.0 0.0 210 340

Central region

Dedza 88.7 94.7 9.6 3.9 0.0 0.0 0.0 0.3 1.7 1.1 406 361

Dowa 93.4 95.6 2.4 4.1 0.2 0.3 0.0 0.0 3.9 0.0 410 342

Kasungu 95.7 89.8 3.6 9.7 0.0 0.3 0.0 0.3 0.7 0.0 444 352

Lilongwe 89.7 91.5 8.7 8.1 0.0 0.2 0.0 0.2 1.6 0.0 860 482
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