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Abstract
The evaluation of precipitation extremes is a paramount challenging issue in climate sciences and
there is a need of both assessing changes in climate projections and comparing climatemodel simula-
tionswith observations. To address these needs, a non-parametric approach specifically designed for
extremes is here proposed. Themethod is tested and applied to observations andCMIP5 historical
simulations and future projections (under the high emission scenario RCP8.5) over the Euro-Medi-
terranean region. Results support the existence of a scaling relationship amongmodels and between
models and observations in terms of conditionalmean of the extremes. However, the rescaled tails of
models’ precipitation show significant differences when comparedwith observations. Concerning
future projections,models show an intensification of heavy precipitation (especially at the end of the
21st century) linked to a change in the conditionalmean of extremes.More complex changes in the
upper tails are not identified at themid-century, while a lack ofmodel agreement prevents drawing
definitive conclusions for the end of the century.

1. Introduction

Precipitation extremes represent a global threat,
especially in a climate change context where both their
frequency and intensity are expected to change
(IPCC 2012). Since exposure and vulnerability to
climate extremes are both dynamic and determined by
several socio-economic and political factors
(IPCC2012), also the impact of precipitation extremes
can significantly change. Recent studies (Kharin
et al 2013, Toreti et al 2013) have investigated the
behavior of those extremes in the next decades of the
21st century by analyzing global climate models
(GCMs) projections. These studies have shown an
intensification of return levels (e.g., 20, 25 and 50
years) almost everywhere in the world, but with
reliable and consistent results restricted to specific
seasonal-dependent areas over the mid-high latitudes
of both hemispheres (Toreti et al 2013). Those
findings, the large uncertainty still characterizing the
estimation of precipitation extremes (Hofstra
et al 2009, Trenberth 2011) as well as the identified
model issues (Min et al 2011, Sperber et al 2013), point
at the need of a better evaluation of climate model

simulations as well as of their projected changes.
Concerning the comparison of historical simulations
with the available observations, several issues arise
when the focus is on extreme precipitation (Randall
et al 2007). Previous studies have usually applied
Taylor diagrams (Taylor 2001) to return levels (Toreti
et al 2013,Wehner 2013); however, this approach does
not allow directly comparing observed and simulated
tails. Weller et al (2013) proposed and applied an
approach based on tail-dependence, while other
studies (Chan et al 2014) have compared the estimated
parameters of imposed extreme value distributions. As
for the assessment of the significance of the projected
changes, recent studies have usually focused on the
comparison of projected return levels with the return
levels estimated for the historical simulation by look-
ing at the obtained confidence intervals (Goubanova
and Li 2007) or by applying some classical statistical
tests not specifically developed for tail-comparison
(Kharin et al 2013). Finally, only few studies have dealt
with the inter-model comparison in terms of tails of
the distributions (Weller et al 2013, Chan et al 2014).

Here, we propose a statistical approach that can be
applied to address the aforementioned issues. The
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following section gives the details of the method.
Section 3 deals with the analysis of eight global climate
model runs done in the framework of the Coupled
Model Intercomparison Project Phase 5-CMIP5 (Tay-
lor et al 2012). Finally, the last section focuses on the
main conclusions and the discussion of some key
issues.

2. Themethod

Several statistical tests exist for the comparison of two
samples thought as realizations of two different (under
the alternative hypothesis) distributions, for instance:
Kolmogorov–Smirnov and Cramer von Mises
(Shao 2003). Those procedures mainly focus on the
central part of the distributions rather than on the tails.
Therefore, if the interest is on extremes (i.e., high
values above a certain threshold far from the central
part of the distribution) another approach givingmore
weight to the tails is needed. In a parametric frame-
work, Heo et al (2013) and references therein evalu-
ated the performance of several different tests against a
modified Anderson–Darling test (Ahmad et al 1988)
by imposing extreme value distributions. Here, we
propose a flexible and not dependent on some extreme
value theory (EVT) assumptions (e.g., being in the
domain of attraction of an extreme value distribution)
non-parametric two-sample testing procedure. The
proposed method has been inspired by the work of
Pettitt (1976) and it is based on a two-samplemodified
Anderson–Darling statistic. Let …X X X( , , , )n1 2 and

…Y Y Y( , , , )m1 2 be two continuous random samples.
The modified two-sample Anderson–Darling statistic
is:
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where F̄n andḠm are the survival empirical distribution
function of X and Y, respectively, and H̄n represents
their weighted average. The proposed procedure is
based on σ= − −T A A( ( )) A

1 (see the appendix and
the supplementary material for further details, avail-
able at stacks.iop.org/erl/10/014012/mmedia). The
null hypothesis of equal distributions can be rejected
when T is greater than the approximated critical value
at the chosen significance level (here 95%). The
method can be applied either to the entire set ofX- and
Y- values (e.g., all rainy days) or (when the interest is
only on extreme events) to the rescaled tails, that is, all
the excesses above high thresholds u and v (here, the
90th percentiles) conditional on >X u and >Y v:
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e. Here, μ X
0

e and μ Y
0

e represent,
respectively, the conditional mean of Xe and Ye:

∣ > X X u( )e and ∣ > Y Y v( )e . The use of rescaled
tails enables to isolate the effect of simpler changes in

the conditional means and to focus on more complex
(and potentially increasing the risk associated with
extremes) changes in the tail behavior (e.g., longer
tails). To analyze the CMIP5 model simulations, the
latter approach was followed. Since each grid point
was tested separately, the significant values were
identified by using the approach of Genovese and
Wasserman (2004) to address the type I error issue of
multiple testing (see the supplementary material for
details). Additionally, since the proposed procedure
only estimates the absolute difference of two distribu-
tions, the sign (i.e., the direction of change) is assessed
by using the Kullback–Leibler direct divergence (here-
after, KLD-divergence):
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where fe and ge are the densities of μXe
X

0
e and μYe

Y
0

e,
respectively. This divergence can be non-parametri-
cally estimated as proposed by Naveau et al (2013) and
more details are given in the supplementarymaterial.

To better evaluate the proposed procedure, all
rescaled excesses were also analyzed by using the
approach proposed by Naveau et al (2013) fully based
on divergence (see the supplementarymaterial).

3. Results

3.1.Method assessment on simulated data
To assess the behavior of the proposed procedure in
critical conditions with two not too different tails (e.g.,
exponential versus heavy tailed), simulations similar to
the ones of Naveau et al (2013) were carried out.
Extreme value distributions represent the natural
theoretical environment for the statistical analysis of
extremes in the so called EVT (de Haan and Fer-
reira 2006). Since inEVT, excesses over a high threshold
can be modelled by using the generalized Pareto (here-
after, GP) family (Coles 2001), samples were generated
according to GP distributions which are characterized
by two parameters: σ and ξ. The latter identifies the
three different tails, i.e., bounded (ξ < 0), exponential
(ξ = 0) and heavy-tailed (ξ > 0). Several tests, with
sample sizes from100 to 10000, constant σ anddifferent
values of ξ, were performed. As shownby table S1 in the
supplementary material, if the sample size is small and
the shape parameters of the two samples are close, the
method tends to accept the null hypothesis of equal
distribution. This highlights an intrinsic feature in
discriminating between different tails. If one of the
distributions (of the two samples) is heavy tailed a large
sample is needed.

3.2. CMIP5model analysis
The proposed method was applied to winter (Decem-
ber to February) and autumn (September to Novem-
ber) daily precipitation data over the Euro-
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Mediterranean region generated by eight high resolu-
tion (spatial resolution higher than 1.5°) CMIP5-
GCMs (table S2). Model runs were remapped on a
common °1.5 grid by using a conservative remapping
scheme (Chen and Knutson 2008, Jones 1999). His-
torical simulations (1966–2005) and two future time
periods (2020–2059 and 2060–2099) under the high
emission scenario RCP8.5 (Taylor et al 2012) were
analyzed as well as the gridded daily observations of
the E-OBS dataset (Haylock et al 2008). Complemen-
tary to the test, the existence of a simple linear
relationship between the tail scaling factors (i.e, the
conditionalmeans of the excesses of themodels μ̂0

model

and of the observations μ̂0
obs) was investigated by

applying a Spearman-based spatial correlation analysis
in the period 1966–2005. Then, also the ratio of the
estimated models’ scaling factors for the two future
time periodsw.r.t. the historical periodwas computed,
μ μˆ ˆ0

scenario
0
hist, to identify changes in the climate

projections. The inter-model comparison and the
comparison of each model with the gridded observa-
tions in the historical period (1966–2005) reveal
interesting features (figures 1, 2, S1 and S2). In winter,
a simple linear relationship seems to hold between the
scaling factors of all models, but it is much weaker
when simulations and observations are compared
(figure 1). However, as shown in figure 1, better results
are achieved if the southern part of the domain is not
included in the assessment. This effectmight be caused
by some data issues affecting E-OBS in areas where not

so many stations are available. Similar results can be
observed in autumn (figure S1). A further look to the
model-observation comparison (figures 2 and S2)
shows that remarkable spatial differences as well as
similarities among models exist for the rescaled tails.
In winter, tails in the southern part of the domain are
over-simulated by all models, while the rest of the
domain shows under-simulated tails, with some local
exceptions such as in southern Spain and France
(figure 2). The same holds for autumn (figure S2).
Similar findings can be observed by replacing the
Anderson–Darling method with the divergence
method ofNaveau et al (2013) (not shown).

Concerning the projections for the 21st century,
figure 3 highlights that in winter and for both future
periods (2020–2059 and 2060–2099), a slight increase
(w.r.t. the period 1966–2005 and higher at the end of
the current century) characterizes the conditional
mean of the excesses (i.e., the estimated tail scaling fac-
tors), except for the inmmodel. As shown in figure 3,
large spatial variability affects themajority of themod-
els (e.g., HadES). Similar findings can be observed in
autumn (figure S3). The projections for the mid-cen-
tury (figures 4 and S4) do not show a significant signal
in the rescaled tails, expect over north-western Africa
mainly in the CMCC run (and the HadES run in win-
ter) and some local significant changes in the other
models (e.g., IPSL). The divergencemethod of Naveau
et al (2013) provides similar findings (not shown). At
the end of the century (2060–2099), a significant signal

Figure 1. Spearman-based spatial correlationmatrix of the tail scaling factors, estimated for the eight GCMs, μ̂0
model, and the gridded

observations E-OBS, μ̂0
obs, in thewinter period 1966–2005. The colors and the shape of the ellipses are associatedwith the correlation

values. The last column refers to the same analysis without the southern part of the domain (South of 38.25°North).
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emerges in some models (figures 5 and S5), however
with a lack ofmodel agreement. In winter, longer/hea-
vier tails are estimated over the central-eastern part of
the region for the CMCC run, more restricted to the

North for the IPSL simulation and to some specific
areas for the MIROC, HadES and HadCC simulations
(figure 5). While, almost no significant changes are
estimated for three models out of eight. The African

Figure 2.Rescaled-tail comparison ofmodel simulations during the historical winter period and E-OBS. Colors are associatedwith
the values of the two-samplemodifiedAnderson–Darling statistic with the sign given by the estimatedKLD-divergence. Blank areas
are associatedwith non-significant values.
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part of the domain seems to be affected by a significant
tail-reduction, but with remarkable inter-model dif-
ferences. Concerning autumn, similar results can be
observed in figure S5, with significant changes mainly
in the CMCC and IPSL runs (as in winter). The results
obtained with the method of Naveau et al (2013) show
similar patterns for the CMCC and IPSL runs; the
other models (especially CNRM, HadES andMIROC)
show more grid points affected by significant changes
but a larger spatial noise (not shown).

4.Discussion and conclusions

Evaluating precipitation extremes is a paramount
challenging issue in climate science. Here, we devel-
oped and proposed a non-parametricmethod to assess
differences in the upper tails of distributions without
imposing parametric distribution function. Statistical
simulations revealed the value of the procedure as well
as the classical issues (Naveau et al 2013). Good
performances are achieved when large samples (hav-
ing not so close associated shape parameters) are
tested. This may be related to an intrinsic property of
the extreme value distributions. Rare events mean
small samples and consequently a higher chance to
fail to reject the null hypothesis. From a practical point
of view, this implies that when no significant differ-
ences in the tails are detected nothing should be
concluded and high uncertainty should be assigned to
those cases.

The analysis carried out on the CMIP5-GCMs
over the Euro-Mediterranean region shows that a sim-
ple linear relation between the conditionalmean of the
excesses of models and observations seems to exist
(leaving out the southern part of the domain). But the
rescaled tails still have a significantly different beha-
vior characterized by an under-estimation (over-

estimation) in the northern/central (southern) part of
the region. As for the projections for themid-21st cen-
tury, almost all models show an increase of heavy pre-
cipitation due to an increase in the scaling factor, but
no significant changes in the tail behavior. At the end
of the century, heavy precipitation continues to
increase, as the scaling factors increase, but projections
are not consistent w.r.t. the tail behavior. These find-
ings seem to point at the role of the increased scaling
factors in the estimated and reported (Kharin
et al 2013, Toreti et al 2013) future intensification of
precipitation extremes, while higher uncertainty still
characterizes the tail behavior.
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Appendix

The statisticA can be derived as follows,
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equal the ith smallest value in the pooled sample.
Under the null hypothesis (i.e., X and Y have the same
distribution) thefirst twomoments ofA canbe derived
by noticing thatMi is hypergeometric distributed:
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Figure 3.Boxplots of the ratio between the estimated conditionalmeans of the excesses for the futurewinter time periods (2020–2059:
blue; 2060–2099: green) and the historical simulations, μ μˆ ˆ0

scenario
0
hist, derived for each grid point in the domain.
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Figure 4.Results of the rescaled-tail comparison of thewinter period 2020–2059w.r.t. the historical simulation (1966–2005). Colors
are associatedwith the values of the two-samplemodifiedAnderson–Darling statistic with the sign given by the estimatedKLD-
divergence. Blank areas are associatedwith non-significant values.
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Figure 5.As figure 4, but for 2060–2099.
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By applying by the same arguments of Pettitt (1976)
and Scholtz and Stephens (1987), it can be proved that
under the null hypothesis, the proposed statistic converges
in distribution to the same limiting distribution of the
modified Anderson–Darling statistic (Luceño 2006 and
references therein).Thus, thecritical values canbeapproxi-
mated by using the result of Sinclair et al (1990). Formore
details, the reader is referred to the supplementarymaterial.
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