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Abstract
Aerosol–cloud interactions are central to climate system changes and depend onmeteorological con-
ditions. This study identifies distinct thermodynamic regimes and proposes a conceptual framework
for interpreting aerosol effects. In the analysis, ten years (2003–2012) of daily satellite-derived aerosol
and cloud products are combinedwith reanalysis data to identify factors controlling Southeast Atlan-
tic stratocumulusmicrophysics. Considering the seasonal influence of aerosol input frombiomass
burning, thermodynamic environments that feature contrastingmicrophysical cloud properties and
aerosol–cloud relations are classified.While aerosol impact is stronger in unstable environments, it is
mostly confined to situationswith low aerosol loading (aerosol index AI≲ 0.15), implying a satura-
tion of aerosol effects. Situationswith high aerosol loading are associatedwithweaker, seasonally con-
trasting aerosol-droplet size relationships, likely caused by thermodynamically induced processes and
aerosol swelling.

1.Motivation and aim

Atmospheric aerosols can alter cloud properties by
acting as cloud condensation nuclei, facilitating the
formation of cloud droplets. Assuming a constant
cloud water content, a higher concentration of dro-
plets leads to smaller droplet radii, a larger overall
droplet surface area and thus an increase in cloud
albedo (Twomey 1977). Cloud lifetime
(Albrecht 1989) and cloud vertical extent (Pincus and
Baker 1994) are also thought to be modified by
concomitant changes in precipitation susceptibility.
However, the level of scientific understanding con-
cerning aerosol–cloud interactions (ACI) is low (Bou-
cher et al 2013), as these processes are linked to many
factors like cloud regime (Stevens and Feingold 2009)
or meteorology (e.g. Loeb and Schuster 2008, Su
et al 2010), leading to a high process complexity.

This study focuses on the impact of aerosols on
stratocumulus microphysics in the Southeast Atlantic.
Stratocumulus clouds play an important role in the
Earth’s climate system not only because of their great
spatial abundance, but also because their shortwave
cloud albedo radiative effect is greater than their

longwave radiative effect, resulting in a net negative
radiative effect (Hartmann et al 1992). As the Earth’s
radiative budget is sensitive to themodification of stra-
tiform clouds (Randall et al 1984), elucidating their
interactions with aerosols is of particular interest. Past
studies (e.g. Klein and Hartmann 1993, Matsui
et al 2004, 2006, Chen et al 2014, Koshiro and Shio-
tani 2014) have shown that microphysical character-
istics of clouds, as well as the overall stratocumulus
amount are governed in part by lower-tropospheric
stability (LTS). Matsui et al (2004) found that aerosol
impact on cloud droplet radius is stronger in more
dynamic environments that feature a lower LTS and
argue that very high LTS environments dynamically
suppress cloud droplet growth and reduce ACI inten-
sity. In any of these environments, the loading of
atmospheric aerosols is an important factor, as Bréon
et al (2002) showed that on a global scale, aerosol
impact on cloud droplet size is saturated with high
aerosol loadings (aerosol index AI⩾ 0.15). In the
Southeast Atlantic, aerosol loading is largely con-
trolled by the biomass burning season (BBS) in Africa
(Kaufman et al 2005a). The burning of biomass
reaches a maximum intensity from July to September,
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with trade winds transporting a large portion of these
aerosols over the Atlantic Ocean (Anderson et al 1996,
Edwards et al 2006). However, these aerosols are often
transported above and well separated from the cloud
deck, physically limiting interactions between aerosols
and clouds (Keil and Haywood 2003, Labonne
et al 2007, Costantino and Bréon 2013, Painemal
et al 2014) while increasing uncertainty in the retrieval
of cloud properties (Meyer et al 2013). Further com-
plicating analyses, aerosols and cloud properties tend
to covary with similar meteorological variables (e.g. -
relative humidity (RH)). This covariation is caused by
aerosol swelling in humid environments (e.g. Hay-
wood et al 1997, Charlson et al 2007, Myhre et al 2007,
Jones et al 2009).

The goal of this study is to analyze aerosol impact
on cloud microphysics in the stratocumulus regime,
laying a specific focus on the influence of the suspected
key factors LTS, RH and aerosol loading. The novelty
of this study’s approach is the combined analysis of
ACI sensitivity to aerosol loading (Bréon et al 2002)
and LTS (Matsui et al 2004) in a regime based
approach as suggested by Stevens and Feingold (2009),
enabling a profound view into the aerosol-stratocu-
mulus-meteorology system.

The guiding hypothesis of this study is:
The magnitude of aerosol impact on stratocumu-

lus microphysics is largely controlled by the atmo-
spheric aerosol loading and thermodynamically
induced processes.

2.Data andmethods

2.1.Data sets and preprocessing
Two different data sets are used in this study. Aerosol
and cloud data are based on daily level 3 collection 5.1
(L3 C5.1) products of Terra’s Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor (Plat-
nick et al 2003, Levy et al 2009). For information on
the atmospheric aerosol loading, the AI, the product of
aerosol optical depth (AOD, 0.55 μm; data set: Opti-
cal_Depth_Land_And_Ocean_Mean) and Ångström
exponent (0.55 and 0.865 μm; data set: Angstrom_Ex-
ponent_1_Ocean_Mean), is used (Costantino and
Bréon 2013). AI has been identified as a better proxy
for aerosol number concentration than AOD, weight-
ing the finemode stronger than AOD alone (Nakajima
et al 2001). Stratocumulusmicrophysics are frequently
represented by cloud droplet number concentration
(e.g. Quaas et al 2006). Here, MODIS cloud-top
droplet effective radius (CDR; data set: Cloud_Effecti-
ve_Radius_Liquid_Mean) is used, as the retrieval of
cloud droplet number concentration requires addi-
tional assumptions, leading to increased uncertainty
(Brenguier et al 2000).

As a quality filter on theMODIS data, L3 retrievals
that are based on level 2 pixels with a standard devia-
tion exceeding the mean are eliminated. To reduce

measurement artefacts due to cloud contamination of
aerosol retrievals (Grandey et al 2013), scenes with
cloud fraction (CLF) >0.93 were excluded from the
analysis. L3 retrievals with a mean cloud-top tempera-
ture <273 K are filtered out with the intention to
ensure that only liquid clouds are considered (assum-
ing no overlying thin clouds). For statistical analyses,
AI and CDR data are log-transformed and linearly
detrended, subtracting the mean of each data point, so
that the mean equals zero (Wilson et al 2001, Stier
et al 2005). In order to avoid computation errors dur-
ing the logarithmic transformation as consequence of
occurrences of the value ‘0’ (log(0) is not defined),
data is manipulated by adding a minuscule quantity
(10−6) to each data point (for information on data dis-
tributions see supplementary material available online
at stacks.iop.org/erl/10/024004/mmedia).

ERA-Interim data is applied in this study to pro-
vide large-scale information on RH and LTS. ERA-
Interim is themost recent generation of reanalysis data
produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF). It covers the period
from 1979 onwards and continues to be extended for-
ward in near real time (Dee et al 2011). The applied
products are available in horizontal resolutions of
0.75° × 0.75° at 37 pressure levels in time-steps of
6 hours (www.ecmwf.int/research/era/do/get/era-
interim. The 12:00 UTC time step is used as it is closest
to the daytime Terra observations in the study area
(approximately between 9:30 and 10:30 amUTC
(Hubanks et al 2008)). LTS is not a readily available
reanalysis product but can be computed as

Δθ θ θ= = − =p p( 700 hPa) ( SLP). (1)

(Klein andHartmann 1993), whereΔθ is the difference
in potential temperature between 700 hPa and the
surface. It can be interpreted as ameasure for inversion
strength or static stability of the lower troposphere
(Klein and Hartmann 1993). RH data are used from
the pressure level at 950 hPa, as ERA-Interim CLF is
greatest at this level. At an original spatial resolution of
0.75° × 0.75°, LTS and RH data are linearly interpo-
lated to fit the 1° × 1° MODIS grid. While this
relatively coarse spatial resolution impairs the analysis
of RH effects (sub-grid variability of humidity impacts
aerosol retrievals (Haywood et al 1997)), large-scale
humidity may still help to uncover tendencies of
aerosol swelling.

2.2.Methods
As stratocumulus clouds are the dominant cloud type
in the Southeast Atlantic (Klein and Hartmann 1993),
a more homogeneous time series of cloud properties
implies a stronger stratocumulus prevalence. The
coefficient of variation (standard deviation divided by
mean) of CDR, CLF, cloud-top temperature, cloud
liquid water path (LWP) and cloud optical depth was
used to estimate this cloud homogeneity in 1° × 1° grid
cells in the Southeast Atlantic. On this basis, the study
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area (10°S–20° S and 0° E–11° E) was delineated quali-
tatively. It is in good agreement with the stratocumu-
lus region used by Klein and Hartmann (1993), but
extends 1° further to the east.

To investigate the roles of aerosol loading and LTS
on interactions between aerosols and cloud micro-
physics, the data sets are divided into two time periods
(July–September (BBS); other months (OM)) to
acknowledge the vastly different vertical structure and
chemical properties of aerosol plumes during the BBS.
Data is additionally split up into different environ-
ments by discriminating.

(1)Two LTS environments

(a) unstable environment: <25th percentile of
LTS data

(b)stable environment: >75th percentile of LTS
data(the 2nd and 3rd quartiles are excluded for
more clearly separated environments and
reduced intra-group LTS variability).

(2)Two aerosol environments based on the saturation
mechanism identified by Bréon et al (2002):

(a) low aerosol loading environment: AI⩽ 0.15

(b)high aerosol loading environment: AI> 0.15.

Data analysis is performed by binning the pre-
viously subdivided data of these environments into
equally sized bins, each bin containing one percent of
the considered data points.

3. Results and discussion

Figure 1 shows mean and interquartile range (IQR) of
CDR in equally sized AI bins during the BBS (left
panel) and the OM (right panel), for the two thermo-
dynamic environments described above. Each envir-
onment features 50 bins. The unstable regime in BBS

features ≈500 data points, all other regimes contain at
least 10000 data points. During both time periods,
mean droplet sizes in the unstable environment are
larger than in the stable environment (red color) at
low aerosol loadings (AI smaller than 0.15), and
smaller with high aerosol loadings, resulting in a
steeper overall slope. This suggests a stronger aerosol
impact on CDR in this environment, especially during
the BBS. In accordance with findings by Bréon et al
(2002) a clear saturation of aerosol impact with high
aerosol loading is apparent in the unstable environ-
ments. Cloud droplet response to changes in aerosol
loading is different in the stable environments, as
mean droplet sizes are not similarly sensitive to
changes in AI (slope is small in unstable environ-
ments). During the BBS, mean CDR even increases
slightly with high AI. While some of this weaker CDR
sensitivity to aerosols may be caused by more fre-
quently separated aerosol and cloud layers or a
reduced susceptibility due to smaller droplets, this
does not explain the tendency of increasing droplet
sizes with high aerosol loadings during the BBS. In
these situations, mean bin LWP (not shown) is
substantially higher, possibly due to reduced dry air
entrainment (Johnson et al 2004). Thus it seems likely
that the observed absolute differences in CDRbetween
stable and unstable environments are driven by cloud
dynamical effects (CDR and LWP are positively
associated (Painemal et al 2014)) or ambient meteor-
ology. It is unlikely that the observed CDR–AI
relationships can be ascribed to CLF based artefacts, as
bin mean CLF (not shown) does not show similar
patterns. Generally, a clear separation of the two
stability environments based on droplet sizes is not
possible as the internal variability is relatively high,
leading to a large overlap of the data points within the
IQR (shaded areas). Still, the behavior found in both
environments differs markedly, even when consider-
ing thewide IQRmargins.

Figure 1.Mean cloud-top droplet effective radius (log-scaled) as a function of equal-size bins of AI (log-scaled) in different
thermodynamic environments for the biomass burning season (left) and the othermonths (right). Shaded areas represent the
interquartile range. The stable environment is colored in blue, the unstable environment is colored in red. The dashed vertical line
represents the saturation point as identified by (Bréon et al 2002).
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Figure 2 illustrates log(AI)–log(CDR) correlations
in bins of LTS percentiles (top row) and RH percen-
tiles (bottom row) for both time periods. The bins
contain between 110 (BBS) and 700 (OM) data points
for the subdivided data sets and between 1000 (BBS)
and 3000 (OM) data points when considering the
entire data sets. The position and orientation of the
scatter gives information about the tendency of ACI
occurrences (position on the y-axis) and the magni-
tude of the impact of the meteorological parameter
(orientation/slope of the point cloud).While figures in
the left-hand column are based on the entire data sets
of each time period, data is subdivided into low aerosol
environments (AI< 0.15) in the center column and
high aerosol environments (AI> 0.15) in the right-
hand column. It is apparent that the statistical rela-
tionship between log(AI) and log(CDR) is dependent
on both LTS and RH and that this dependency is con-
nected to the property of the given meteorological
parameter and the aerosol environment.

Considering the entire data sets, log(AI) and log
(CDR) are weakly associated (r : −0.09 in BBS, −0.16
in OM). However, this association is heavily depen-
dent on LTS in both time periods, as stable and
unstable environments feature contrasting log(AI)–
log(CDR) relationships that can be clearly separated in

both time periods. While the unstable environment
exclusively features negative associations, log(AI) and
log(CDR) are mostly positively associated in the stable
environment. In low aerosol environments
(figure 2(b)), a stronger overall correlation can be
identified, especially in the BBS (r : −0.25 in BBS,
−0.13 in OM). The stronger correlations in the BBS
may be explained by the high potential of biomass
burning aerosols (mostly black and organic carbon) to
act as CCN (Andreae and Rosenfeld 2008). The strong
effect of LTS on the log(AI)–log(CDR) relationship is
mitigated to some extent, as log(AI) and log(CDR)
associations are mostly negative, indicating that in
these situations, aerosols may be the main factor
impacting cloud microphysics, showing through the
meteorological background. The upward orientation
of the point cloud, though less distinct, indicates a
decreasing impact of aerosols with increasing LTS.
This may be linked tomore frequently separated aero-
sol and cloud layers in high LTS environments, as Pai-
nemal et al (2014) have shown that the distance
between aerosol and cloud layers is in part dependent
on LTS in this region. In high aerosol environments,
the weak and thus non-significant relationships no
longer indicate ACI, log(AI) and log(CDR) are even
positively associated in the BBS (r : 0.14 in BBS, −0.04

Figure 2.Bin-correlations of log(AI) and log(CDR) as a function of LTS in the top row (limits of stability environments are indicated
by vertical lines) and as a function of RH in the bottom row for the two time periods. The entire data sets are shown in the left-hand
column (a), low (AI < 0.15) and high aerosol loading environments (AI > 0.15) respectively are illustrated in the center (b) and right-
hand (c) columns. The dashed lines represent Pearson r for all seasonal data contained in each sub-figure. The shade of gray in the
center of each dot illustrates the probability value of the correlation (level of significance).
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in OM). While the weak associations in the OM are
likely due to the saturation of ACI, it seems plausible
that the observed positive associations in the BBS are
driven by meteorology, as large aerosol plumes from
biomass burning may lie well above the cloud deck,
not directly interacting with the clouds below. Absorb-
ing aerosol plumes above the cloud deckmay however
induce a semi-direct effect by increasing LTS, subse-
quently reducing the entrainment rate at cloud-top. As
Johnson et al (2004) state, this can increase moisture
and cloud liquidwater content.

Generally, the BBS is characterized by a more
stable troposphere than the OM (mean LTS is 2.3 K
higher in BBS). Comparing the point clouds in
figures 2(b) and (c), a slight shift along the x axis can
be noticed, as stable situations become more frequent
with high aerosol loadings (≈5%). These two observa-
tions may be linked to the effect of strongly absorbing
carbonaceous aerosol particles during the BBS on
atmospheric stability (Wilcox 2010, Costantino and
Bréon 2013), highlighting the interdependence of the
considered processes. However, the relationship
between aerosol loading and LTS may also be due to
the seasonal cycle of LTS (Klein and Hartmann 1993)
and atmospheric conditions that control the transport
patterns of biomass burning aerosols to the Southeast
Atlantic (Krishnamurti et al 1993, Garstang et al 1996).

Log(AI)–log(CDR) relationships are similarly sen-
sitive towards large-scale RH (bottom row of figures).
Relationships are mostly non-significant in situations
with RH smaller than 60%. It is unlikely that clouds
with such low grid RH represent a homogeneous stra-
tocumulus cloud deck but rather thin or broken
clouds. The observed weak relationships may thus be
due to cloud field heterogeneity or to erroneous aero-
sol retrievals (Huang et al 2011, Grandey et al 2013).
With RH> 60%, increases in RH tend to coincide with
an increase in the strength of negative associations up
to an RH of 80%, suggesting stronger ACI. In very
humid conditions (RH> 90%) an increasing effect of
RHon the relationship between log(AI) and log(CDR)
is noticeable, leading to weaker associations in the case
of a low-aerosol-loading environment and a distinct
peak of positive associations in a high-aerosol-loading
environment during the BBS. This apparent RH sensi-
tivity may be due to the swelling of aerosols at high
humidity levels and could thus be regarded as spurious
in the context of ACI. However, as pointed out above,
aerosols are thought to be frequently situated above
the cloud deck in these situations. It is questionable to
what extent large-scale information of boundary layer
humidity is a good proxy for the humidity in the
proximity of the aerosol particles.

As shown above, in addition to the seasonal com-
ponent of ACI, there seem to be two distinct thermo-
dynamic regimes controlling ACI intensity and thus
cloud droplet size. Figure 3 proposes a conceptual fra-
mework summarizing possible and known mechan-
isms in the aerosol-stratocumulus-meteorology

system in two contrasting thermodynamic environ-
ments (stable versus unstable). In each case, three
pathways through which LTS, and in extension turbu-
lent mixing, might affect cloud microphysics and ACI
are illustrated:

(1)Cloud droplet growth dynamics (Matsui
et al 2004). ACI susceptibility depends on droplet
size (Platnick and Twomey 1994, Coakley and
Walsh 2001).

(2)Mixing of aerosol and cloud layers, enabling ACI
(Costantino andBréon 2013, Painemal et al 2014).

(3)Dry air entrainment at cloud top and connected
changes in RH (e.g. Johnson et al 2004, Kaufman
et al 2005b, Tanré et al 2008).

In the proposed aerosol-stratocumulus-meteorol-
ogy system, these mechanisms are controlled by the
thermodynamic conditions (i.e. intensity of turbulent
mixing). In an unstable environment, more turbulent
mixing leads to increased mixing of aerosol and cloud
layers (Painemal et al 2014), as well as increased ACI
susceptibility due to larger cloud droplets (Platnick
and Twomey 1994, Coakley and Walsh 2001), caused
by dynamic droplet growth (Matsui et al 2004). These
mechanisms increase ACI intensity, leading to the
observed decrease in droplet size. Due to saturation,
aerosols do not seem to have the same effect with high
aerosol loading. Under these conditions, meteorology
may be the main factor determining cloud micro-
physics. In the BBS, situations with high aerosol load-
ing tend to feature larger droplets in the stable
environment, possibly due to weaker dry air entrain-
ment and water vapour that may be trapped beneath
the inversion. These factorsmay lead to higher humid-
ity levels, a higher LWP and thus larger droplets (John-
son et al 2004, Painemal et al 2014). This systemwould
be in accordance with our findings, as aerosol impact
on cloud microphysics seems to be practically con-
fined to low aerosol loadings. When aerosol loading
exceeds the point of saturation, meteorological fac-
tors, e.g. RH, gain importance. During the BBS, such
situations with high humidity levels feature marked
positive log(AI)–log(CDR) associations (figure 2(f)).

4. Conclusions

The aim of this study was to elucidate to what extent
the magnitude of aerosol impact on cloud microphy-
sics is controlled by the atmospheric aerosol loading
and thermodynamics. Aerosol impact on cloud dro-
plet size is highly variable as summarized in figure 3
and features a seasonal component due to the BBS.
However, clear patterns for ACI can be identified
under specific conditions: low-aerosol environments
display pronounced negative associations between
aerosols and cloud droplets and thus represent the

5

Environ. Res. Lett. 10 (2015) 024004 HAndersen and J Cermak



scientific understanding of ACI. In these situations,
the impact of thermodynamics and RH is noticeable;
still, cloud microphysics seem to be dominated by
aerosol effects. In low-aerosol environments, relation-
ships are stronger in the BBS, possibly due to the high
potential of the biomass burning particle species to act
as CCN. In high-aerosol environments, aerosol impact
on droplet size is hardly quantifiable, meteorological
influences on cloud droplet sizes predominate, espe-
cially in the BBS, where the large aerosol plumes are
thought to bewell separated from the cloud deck.

The thermodynamic state seems to influence
cloud droplet size and ACI. While there is good evi-
dence for ACI in unstable environments, thermo-
dynamically induced processes might impede ACI
under stable conditions by variousmechanisms. Addi-
tionally, the presented relationships may be indicative
of aerosol swelling and cloud droplet growth in very
humid conditions (starting at 80% RH, dominant
with RH > 90%), possibly leading to the observed
marked changes in aerosol–cloud droplet relation-
ships, especially in the BBS. However, this finding
needs further investigation as boundary layer humid-
ity may not be representative of the humidity in the
vicinity of the biomass burning aerosols. Based on
these results, it may be possible to more fully under-
stand the links between processes partaking in the
aerosol-stratocumulus-meteorology system, ulti-
mately reducing some of the uncertainties associated
withACI in this cloud regime.
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