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Abstract
Peatland open-water pools, a common feature on temperate to subarctic peatlands, are sources of
carbon (C) to the atmosphere but their contribution to the net ecosystem carbon dioxide exchange
(NEE-CO2) is poorly known; there is a question as towhether peatlandswith pools are smaller sinks of
atmospheric C, or evenC-neutral, compared to other peatlands.We present growing seasonNEE-
CO2measurements using the eddy covariance technique in a peatlandwith pools.We found the
maximumphotosynthetic uptake and ecosystem respiration rates at 10 °C to be in the lower range of
the published data. The lower total vegetation biomass, due to the presence of pools, reducedCO2

uptake during day and the autotrophic component of ecosystem respiration. The lowCO2 uptake
combinedwith reducedCO2 loss resulted in the site being a net sink for CO2 of a similarmagnitude as
other northern peatlands despite the inclusion of pools.

1. Introduction

Peatland open water pools are autogenic features that
form through interaction between the biotic compo-
nents of the ecosystem. The water bodies are, as
opposed to the vegetated portions of peatland sites, net
sources of carbon (C) to the atmosphere
(23–419 gCm−2 yr−1) (Hamilton et al 1994,Wadding-
ton and Roulet 2000, Repo et al 2007, McEnroe
et al 2009, Pelletier et al 2014). This release of C is due
to peat decomposition at their bottom, limited emer-
gent vegetation to uptake CO2, and microbial and
photo-degradation of dissolved organic carbon
(DOC). The published rates of C release from water
bodies on peatlands are of the same magnitude, but
with an opposite sign, as the published net ecosystem
carbon balance (NECB) for peatlands without pools
(e.g. from a source of 14 to a sink −101 gCm−2 yr−1)
(Roulet et al 2007, Nilsson et al 2008, Billett et al 2010,
Koehler et al 2011, Olefeldt et al 2012). Peatlands with
pools are found from temperate to subarctic regions in
both the northern and southern hemispheres (Gla-
ser 1999) and are of varying age (e.g., Foster and
Wright 1990, Beilman et al 2009, van Bellen et al 2011,

Magnan and Garneau 2014); the long-term C accu-
mulation in the vegetated areas of these peatlands has
to exceed the C loss from the pools. However,
assuming peatlands with pools have a similar uptake as
those without pools could result in a significant over-
estimation of the C uptake attributed to peatlands.
Pools form from differential biomass accumulation
and decomposition and their development is influ-
enced by climate, topography, and geographical set-
ting (e.g., Foster and Wright 1990, Belyea and
Lancaster 2002, Belyea 2007, Eppinga et al 2009, Mor-
ris et al 2013). Pool depth appears to vary from <0.5 to
>2m and width from 1m to >100 m (e.g., Foster and
Wright 1990, Karofeld and Tõnisson 2012). Despite
their wide geographic coverage, there are only a few
estimates of the surface area of peatlands covered by
pools. In the Hudson Bay Lowlands, pool coverage is
>40% in some areas (Roulet et al 1994), >50% in fens
in northeastern Quebec, Canada (White 2011), and
between 5 and 40% in some of the major peatland
types in Russia (Botch et al 1995). Recently there has
been an effort to include peatlands (e.g., Wania
et al 2009, Kleinen et al 2012, Spahni et al 2012, Wu
et al 2012) in models that simulate climate–C
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connections, but the resolution of these models is far
too coarse to include pools. Therefore it is relevant and
timely to determine if the C exchange from peatlands
with pools is different than that of peatlands without
pools to determine if the simple generalized model
parameterization might be used for peatlands with
pools.

Measurements of net ecosystem carbon dioxide
exchange (NEE-CO2) using the eddy covariance (EC)
method have beenmade in several peatlands in tempe-
rate, boreal and surbarctic regions, covering multiple
years of continuous measurements (e.g., Aurela
et al 2004, Roulet et al 2007, Sagerfors et al 2008).
However, these peatlands have relatively homo-
geneous surface vegetation (e.g., Lafleur et al 2003,
Aurela et al 2009) and no pools, with the possible
exception of the measurements from Kaamanen in
northern Finland where there are ephemeral pools
(Aurela et al 2001, 2002, 2004). To our knowledge, no
NEE-CO2measurements have been reported for peat-
land with deeper and permanent open water pools.
The magnitude of the published annual release of C
from open water pools raises the question as to whe-
ther the generalized uptake figures for peatlands with-
out pools apply to peatlands with permanent open-
water pools. Considering the efforts to integrate peat-
lands into global climate models, it is important that
the C exchange from different peatland types be docu-
mented in order to provide guidance on how to para-
meterize thesemodels (Frolking et al 2009).

Based on the reported net loss of CO2 from pools
(e.g., Waddington and Roulet 2000, Pelletier
et al 2014) and the NEE-CO2 uptake for vegetated peat
surfaces (e.g., Lafleur et al 2003, Sagerfors et al 2008),
we hypothesize that peatlands with pools are either
NEE-CO2 neutral or a smaller sink for CO2 during the
growing than peatlands without pools. Here we pre-
sent the results of one growing season (May–October)
of NEE-CO2 measurements in a boreal ombrotrophic
peatland with pools and compare these results with
those reported in the literature for peatlands without
pools.

2. Study site andmethods

We measured the NEE-CO2 using the EC technique
(Baldocchi 2003) from 15 May to 10 October 2012 on
a peatland located on theManicouagan peninsula (49°
08’N, 68°17’W; altitude: 19 m) 8 km south of Baie
Comeau, on the north shore of the St. Lawrence River
in Quebec, Canada. The peatland is a raised bog that
covers approximately 600 ha with a surface pattern
that consists of hummocks, lawns and pools. Sphag-
num fuscum (Schimp.) H.Klinggr., Chamaedaphnee
calyculata (L.) Moench, dwarf Picea mariana (Miller)
BSP and Rhododendron groenlandicum (Oeder) Kron
and Judd dominate the hummocks, while the vegeta-
tion on the lawns is mainly composed of Sphagnum

rubellum Wils., Andromeda polifolia L., Vaccinium
oxycoccos L. and sedges (Eriophorum spp.)
(Simard 1976, Magnan and Garneau 2014). The pools
are free of vegetation except for some Nuphar lutea
(L.) Sm. found in the shallow sections (<1 m depth).
The pool surface area was evaluated using a supervised
classification performed on a geometrically rectified
and orthorectified Worldview-2 image. The pools
cover approximately 7% of the entire peatland surface
but they cover 22% of the surface within 100 m of the
EC tower. Footprint estimation analysis reveals that
90% of the CO2 flux was provided on average by the
area within 108 m (SD± 12 m) of the tower location
(Kljun et al 2004, Eddypro V5.1.0, LI-COR, Lincoln,
NE). The pools are not uniformly distributed around
the EC tower with 37% pool coverage found between
180° and 360° azimuth, compared to 9% between 0°
and 180° (figure 1). The 30-year climate normal
(1981–2010) mean annual temperature is 1.7 °C and
mean annual precipitation is 1001 mm. The coldest
and warmest months are January and July with mean
daily temperature of −14.3 and 15.6 °C respectively.
On average, 34% of the annual precipitation falls as
snow, with average snowfall of 303 mm [Environment
Canada, data available at http://climate.weatheroffice.
gc.ca]. In 2012, the pools were ice-covered from mid-
November to the end of April, and the vegetated area
was frozen to a depth of ∼0.1 m for four months of
the year.

The EC system consisted of a fast response three-
dimensional sonic anemometer (CSAT-3, Campbell
Scientific, Edmonton, Canada), a fine-wire thermo-
couple (FW05, Campbell Scientific, Edmonton,
Canada), and an enclosed CO2/H2O analyzer (LI-
7200, LI-COR, Lincoln, NE). The instruments were
mounted on a tripod 2.5 m above the surface of the
peatland. The variables used to calculate the flux were
recorded and stored on a 4 GB industrial grade USB
flash drive using an analyzer control unit (LI-7550, LI-
COR, Lincoln, NE) at 10 Hz. Air density fluctuations
due to temperature were accounted for using
a posteriori correction from a revision of theWPL for-
mulation (Ibrom et al 2007). The 30 min CO2 fluxes
were computed from the 10 Hz data using the Eddy-
Pro processing software (V5.1.0, LI-COR, Lincoln,
NE). The CO2 fluxes were derived from the covariance
between vertical wind speed and CO2 mixing ratio
(Burba et al 2012). A two-dimensional coordinate
rotation was applied. The EC CO2 data were cleaned
for quality flags output by the EddyPro processing
software (Mauder and Foken 2004). The CO2 data
showing uptake at night were removed using a photo-
synthetically active radiation (PAR) threshold of
<20 μmol m−2 s−1 (Lafleur et al 2003). Following this
step, the CO2 data were separated into day and night,
and data were discarded if deviating more than ±3
standard deviations of the monthly means (Baldocchi
et al 1997). The nighttime NEE-CO2 were plotted (not
shown) against friction velocity (u*), and a threshold
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of 0.1 m s−1 was used to identify insufficient turbulent
mixing to assess reliable fluxes (e.g., Lafleur et al 2001);
data not meeting the criteria were discarded. The
cleaning procedure resulted in 43% of the fluxes being
rejected. Due to the complexity of the landscape sur-
rounding the EC tower, no gap filling procedure was
applied to the data set for the analysis we present
below. The monthly daily average NEE-CO2 was
therefore evaluated by averaging the mean monthly
diurnal pattern of NEE-CO2 presented in figure 3. The
monthly NEEmax was evaluated by averaging the indi-
vidual NEE-CO2 measurements for
PAR> 1000 μmol m−2 s−1. The CO2 fluxes are pre-
sented following the micrometeorological convention
where an uptake by the ecosystem is represented by a
negative flux, while a loss of CO2 to the atmosphere is
represented by a positive flux.

Environmental measurements were made every
5 s throughout the study period and averaged every
30 min. The variablesmeasured included net radiation
(CNR4, Kipp and Zonen, Delft, Netherlands), PAR
(LI-190SA, LI-COR, Lincoln, NE), air temperature
and relative humidity (HMP-45C, Vaisala, Helsinki,
Finland), wind speed and direction (05103-10, RM-
Young, Traverse City,MI) and precipitation (TE525M
tipping bucket gauge, Texas Electronics, Dallas, TX).

3. Results

The 2012 monthly mean air temperatures between
May and October were above the 30-year normal
(1981–2010) [Environment Canada, data available at
http://climate.weatheroffice.gc.ca]. The average
monthly temperatures were higher by 1.0–2.4 °C with
largest differences observed in August. These

differences represent 0.9–2.2 times the standard devia-
tion from the normal monthly average temperature.
July precipitation was approximately half the normal
value while October precipitation was double. Despite
the warmer and drier conditions in July, the vegetation
at the site showed no sign of desiccation.

The NEE-CO2 measurements made between May
and October 2012 covered the peatland surface
between wind directions 180°–240° (36%), 270°–360°
(25%), and 30°–60° (12%) (figure 2). The same wind
directions dominated for nighttime ecosystem
respiration (ER=NEE-CO2 for
PAR< 20 μmol m−2 s−1). The dominant wind direc-
tions were also relatively constant between months
with the exception of June where the contribution
from 30° to 60° was more important (22%). The
monthly average diurnal trends in NEE-CO2 showed
CO2 uptake during the day and CO2 release at night
(figure 3). The ER and NEEmax (NEE-CO2 when
PAR> 1000 μmol m−2 s−1) varied statistically
(p< 0.05) between months over the measurement
period (figure 4). The monthly average ER rate
increased from early (May) to mid-growing season
(July–August), before decreasing until October
(figure 4). The monthly average NEEmax increased
from early to late growing season, reaching a max-
imum uptake of −4.1 μmol m−2 s−1 in September
(figure 4). Overall, the monthly mean daily NEE-CO2

flux showed uptake for all months with a range of
−1.02 (SE ± 0.04) to−2.76 (±0.06) g CO2 m

−2 d−1 and
was higher in the first half of the growing season
(May–July) (figure 4). The mean daily uptake for the
entire study period was −1.84 g CO2 m

−2 d−1. Data
were binned by direction to differentiate the signals
from sectors with different pool coverage. However,
because of the proximity of the Saint Lawrence River

Figure 1.Peatlandmicroform classification and EC tower location. The dashed line circle represents 100 m radius from the tower.

3

Environ. Res. Lett. 10 (2015) 035002 LPelletier et al

http://climate.weatheroffice.gc&nobreak;.&nobreak;ca
http://climate.weatheroffice.gc&nobreak;.&nobreak;ca
http://climate.weatheroffice.gc&nobreak;.&nobreak;ca


and the Gulf of Saint Lawrence, easterly winds gen-
erally bring clouds and rainy conditions and lower
CO2 exchange rates are typically measured during
such conditions. Therefore, different processes (lower
daytime PAR; presence of pools) yield numerically
similar fluxes and the analysis of variability in fluxes by
wind sector is compromised. Similarly, sorting ER by
wind direction resulted in some bins having a very

small number of data reducing the ability for statistical
analysis.

4.Discussion

This study is the first to report ECNEE-CO2measure-
ments made over a boreal peatland with permanent

Figure 2.Monthly wind direction frequency forNEE-CO2 in%.Data fromwind directions between 65° and 95° were discarded due to
the upwind presence ofmeasurement infrastructure.

Figure 3.Meanmonthly diurnal pattern inNEE-CO2 betweenMay andOctober 2012 on the studied peatland. Each symbol
represents the 30 min averageNEE-CO2 for the corresponding half-hour andmonth. Error bars represent standard errors. No
symbols are shown if a half-hour contained fewer thanfivemeasurements.
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pools. We found that the monthly average diurnal
trends in NEE-CO2 followed a pattern similar to other
peatland ecosystems (Humphreys et al 2006), Typha
angustifolia Marsh (Bonneville et al 2008) or forested
ecosystems (Loescher et al 2003), where CO2 uptake is

observed during the day and CO2 is released during
the night (figure 3). The maximum photosynthetic
uptake (Amax) calculated using a rectangular hyper-
bola relationship between GEP and PAR (see Frolking
et al 1998), and the ER calculated for an air

Figure 4.MeanmonthlyNEEmax (PAR> 1000 μmol m−2 s−1), ER and daily averageNEE-CO2 betweenMay andOctober 2012 at the
studied peatland. Standard errors are given by the error bars. Daily averageNEE-CO2was calculated by averaging themeanmonthly
diurnal pattern presented infigure 3. The daily averageNEE-CO2 forMay only includes data from15May and onward. Limited data
availability prevented calculation of daily averageNEE-CO2 forOctober. NEEmax, andER values are significantly different if they have
no letters in common. Statistical differences between themonthly averages were determined by performingKruskall–Wallis test
followed by post hoc Steel-Dwass.

Figure 5.Relationship betweenAmax andR10 for temperate, boreal and subarctic peatlands. Data fromMer bleue poor fen,Mer bleue
bog, Alberta-Poor fen (AB-PF), Alberta-Rich fen (AB-RF), Alberta-Wooded fen (AB-WF), Saskatchewan-Wooded fen (SK-WF) are
fromHumphreys et al (2006); SK-RF fromFrolking et al (1998), Humphreys et al (2006) and Sonnentag et al (2010); Kaamanen from
Lindroth et al (2007) andAurela et al (1998); Stordalen fromOlefeldt et al (2012) and SHarder (personal communication).
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temperature of 10 °C (R10) (Lloyd and Taylor 1994)
were in the lower range of values for northern peat-
lands (figure 5). This means, that despite the presence
of pools, the studied peatland has lower ER than other
peatlands. TheR10 we found is similar to the Stordalen
palsa mire (R10 = 1.01 μmol m−2 s−1) (Olefeldt
et al 2012) that is experiencing permafrost thaw and
the Kaamanen subarctic mesotrophic fen
(R10 = 1.32 μmol m−2 s−1) (Lindroth et al 2007), which
has ephemeral pools in the spring and early summer
(Heikkinen et al 2002). The autotrophic component of
ER, which is generally about the same magnitude or
larger than heterotrophic respiration in peatlands
(Silvola et al 1996, Moore et al 2002) is eliminated for
those portions of the peatland with pools. The
presence of pools on the peatland can explain both the
lower ecosystem Amax and R10. Because of the absence
of significant CO2-fixing vegetation in the pools and
their constant release of CO2 to the atmosphere
(Pelletier et al 2014), pool surfaces reduce the max-
imum photosynthetic uptake and respiration at the
ecosystem level.

Despite the lower maximum photosynthetic
uptake and respiration rates, the measured mean daily
NEE-CO2 for June–September (−1.83 g CO2m

−2 d−1)
is within the range of published mean daily NEE-CO2

measured in pool-free peatlands (−1.51 to
−5.20 g CO2m

−2 d−1; table 1). This suggests that the
lower photosynthetic rates measured at our site were
offset by lower loss through ER, making this peatland
with pools a net sink for CO2 for the 2012 growing sea-
son, in the same range as that of peatlands without
pools. It is unknown how the higher than normal tem-
peratures observed during the measurement period
affected the ecosystem level NEE-CO2. Pelletier et al
(2014) observed a strong positive correlation between
pool water temperature and their C fluxes at the same
site suggesting that pool C release may have been
greater than ‘normal’ during the 2012 growing season.

Our results refute our hypothesis: the study peat-
land including its pools is not C-neutral nor a smaller
sink for CO2 during the growing season than what has
been observed in other peatlands. This more generally
suggests that the presence of pools on a northern peat-
land does not necessarily reduce the C sink potential.
Olefeldt et al (2012) showed that low productivity
combined with lower ER led to the NECB of a

permafrost peatland having a similar net overall sink
to boreal peatlands. For the permafrost peatland, the
combined effect of limited vegetation biomass, low ER
linked to the presence of permafrost, and extended
winter periods still resulted in an average NECB of
56 gCm−2 yr−1. In our studied peatland, the pools play
a similar role in reducing the vegetation biomass
therefore reducing both photosynthesis and auto-
trophic respiration. While the low ER in a permafrost-
affected landscape is probably more due to lower soil
respiration because of the low temperatures, the effect
of the pools on ER is likely experienced through a
decrease in the ecosystem autotrophic respiration.
Simultaneously, chamber measurements of CO2

exchange performed over the different microforms
found on the studied site showed high CO2 uptake on
Sphagnum hummocks with P mariana (Pelletier et al
in review). These high CO2 uptake rates combined
with surface coverage of this microform (figure 1)
could represent an explanation as to why the vegetated
surface offset the CO2 loss from the pools (Pelletier
et al in review).Winter CO2 loss from peatlands repre-
sents an important part of the annual budget (Aurela
et al 2002). Although we did not do winter measure-
ments, the cold season CO2 loss is likely to be low since
the R10 value is low (figure 5) and cold temperatures
persist for more than five months of the year. Even
without winter measurements we are confident that
the studied peatland is a net sink for CO2. Using the
NEE-CO2 data from the Mer Bleue temperate bog
(Humphreys et al 2014) in place of the periods Jan-
uary–April and November–December, and assuming
thatMay andOctober are CO2 neutral (in reality likely
a weak sink), we found our site to be a net annual sink
of 48.8 g CO2 m

−2 yr−1. This estimation is con-
servative considering that the winter ER is likely
greater at Mer Bleue because of the warmer peat tem-
peratures and the absence of pools.

5. Conclusion

The results from the present study suggest that peat-
lands with pools can be net sinks for CO2 at the
ecosystem level during the growing season and poten-
tially on an annual basis though we did not test this
directly. Although the pools at our site represented net

Table 1.Mean June–September daily averageNEE-CO2 for the Petite Rivière peatland and other boreal and subarctic peatlands.
Data from theKamanen, Lompolojänkkä, Fäjemyr and Siikanevawere extracted from figures in the respective papers.

Peatland site g CO2 m
−2 d−1 Number of growing season Source

Petite Riviere, Canada −1.83 1 This study

Mer Beue bog, Canada −1.54 to−2.84 4 Lafleur et al 2003

Degerö Stormyr, Sweden −2.05 to−2.59 3 Sagerfors et al 2008

Kaamanen, Finland −1.51 to−3.86 3 Aurela et al 2001, 2002, Lindroth et al 2007

Lompolojänkkä, Finland −4.11 to−5.20 3 Aurela et al 2009

Fäjemyr, Sweden −1.88 1 Lund et al 2007

Siikaneva, Finland −2.70 1 Lindroth et al 2007
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sources of CO2 to the atmosphere, the reduced
ecosystem CO2 uptake capacity is compensated by the
limited CO2 loss through respiration. This study is the
first to present spatially integrated NEE-CO2 for a
peatland with pools; we present data from a single
growing season and for one specific site, which is an
example of peatland with pools. The representativeness
of our site and results will only be determined if our
work stimulates others to do the same sort of measure-
ments in other peatlands with pools in similar and
different geographical settings. We also recognize the
importance of long-term C exchange studies as those
have, in some cases, shown significant inter-annual
variability in NEE-CO2 (e.g., Roulet et al 2007), and in
others shown comparatively little (e.g., Nilsson
et al 2008). One season of measurements can say
nothing about interannual variability but the study
period was warmer than the climate normal, which
would suggest if anything that the heterotrophic
respiration might have been greater than the longer
termaverage suggesting that our conclusions are robust.
At this point, our results suggest that generalizedmodel
parameterizations based on peatlands without pools
may work until higher resolution models are possible.
Understanding peatland open-water pools develop-
ment is an active research area and studies have shown
that the coverage by pools and their configuration are a
function of topographic and geologic setting as well as
developmental stage of the peatland (Foster and
Glaser 1986, Foster and Wright 1990, Eppinga
et al 2009, Morris et al 2013). Our results raise the
question as to how the variation in pool proportion
between peatlands affects the C exchange. These results
also warrant further study to include methane and
DOC losses to establish a complete NECB for peatland
with pools; based on measurements from peatland
without pools, these components should account for
only 20–40% of the NEE-CO2 uptake (Roulet
et al 2007,Nilsson et al 2008).
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