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Abstract
The severity and timing of seasonalmalaria epidemics is strongly linkedwith temperature and rainfall.
Advancewarning ofmeteorological conditions from seasonal climatemodels can therefore potentially
anticipate unusually strong epidemic events, building resilience and adapting to possible changes in
the frequency of such events. Here we present validation of a process-based, dynamicmalariamodel
driven by hindcasts from a state-of-the-art seasonal climatemodel from the EuropeanCentre for
Medium-RangeWeather Forecasts.We validate the climate andmalariamodels against observed
meteorological and incidence data for Botswana over the period 1982–2006; the longest record of
observed incidence datawhich has been used to validate amodeling systemof this kind.We consider
the impact of climatemodel biases, the relationship between climate and epidemiological
predictability and the potential for skillfulmalaria forecasts. Forecast skill is demonstrated for upper
tercilemalaria incidence for the Botswanamalaria season (January–May), using forecasts issued at the
start ofNovember; the forecast system anticipates six out of the seven upper tercilemalaria seasons in
the observational period. The length of the validation time series gives confidence in the conclusion
that it is possible tomake reliable forecasts of seasonalmalaria risk, forming a key part of a health early
warning system for Botswana and contributing to efforts to adapt to climate change.

1. Introduction

Malaria is a mosquito-borne infectious disease caused
by parasitic protozoans of the Plasmodium genus. It has
a detrimental socio-economic impact on affected coun-
tries, presenting a significant public health challenge,
and it is inextricably linkedwith poverty. Approximately
half of the world’s population is at risk of malaria, with
approximately 198 million reported cases and an
estimated 584 000 reported deaths in 2013 (World
Health Organization 2014). Most deaths occur among
children living inAfrica, where a child dies everyminute
from malaria, with the majority of cases in epidemic
areas, where the human population has little or no
immunity to the parasite (Worrall et al2004).

Malaria is ranked as amajor public health problem
in Botswana despite a national malaria control

program dating back to the 1970s (Thomson
et al 2006). Since the 1980s malaria epidemics in the
countries of Southern Africa have become more fre-
quent and severe due to a combination of factors
including environmental changes, drug resistance,
population movements and social issues affecting the
efficacy of control measures (Mabaso et al 2004). In
Botswana, climate variability has been found to be a
strong driver of malaria incidence variability; studies
have shown that variability in December–January–
February average (DJF) rainfall totals accounts for
more than two-thirds of the inter-annual variability in
standardizedmalaria incidence (Thomson et al 2005).

Climate variables such as temperature and rainfall
are closely linked to the cycle of malaria development
and infection and influence the life cycles of the Plas-
modium parasite and the female Anopheles mosquito
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vector. The climatic conditions also influence vector
breeding site availability (through enhanced rainfall)
and the rate of disease transmission (through
increased frequency of mosquito biting) (Morse
et al 2005, Jones and Morse 2010, 2012). Epidemic
outbreaks can occur as a result of climate anomalies,
such as prolonged periods of rainfall or heat waves,
particularly in regions where malaria transmission is
strongly seasonal (Najera et al 1998,Worrall et al 2004,
Protopopoff et al 2009). However the relationship
between meteorological variables and malaria is non-
linear: although water is necessary to form mosquito
breeding sites, excess rainfall and flooding can lead to
flushing of larvae (Paaijmans et al 2007). Similarly
increased temperature increases the rate of parasite
and vector replication, but extreme temperatures
reduces their respective survival rates and the overall
vectorial capacity (Paaijmans et al 2012)

Climate models run in seasonal forecasting mode
can potentially provide information regarding
upcoming seasonal climate anomalies. These models
simulate the dynamical evolution of atmospheric and
oceanic initial states in the same way as is done in
weather forecasting, but with amuch longer timescale;
generally they forecast conditions several months
ahead. Predictability on these timescales comes from
low-frequency aspects of the climate system, such as
the ocean or the land surface (Troccoli 2010). By
employing dynamic disease models simulating all
stages of the transmission process based on weather
conditions and driving such models with seasonal cli-
mate forecasts, there is potential to predict the risk of
malaria epidemics based on climate drivers. This can
allow health planners to target resources and plan
intervention effectively, such as preemptively dis-
tributing mosquito nets, optimizing insecticide dis-
persal and managing antimalarial drug use to prevent
insecticide and drug-resistance in the vector and para-
site respectively (Hay et al 1998).

The Abuja Declaration, part of the WHO’s Roll
Back Malaria global strategic plan for 2005–15, sug-
gests a target for malaria epidemic early warning sys-
tems to detect 60% of outbreaks within two weeks of
onset (Roll Back Malaria Global Strategic Plan 2005).
Following this methodology, prototype seasonal hind-
casts of meteorological variables have been success-
fully combined with both statistical-empirical and
dynamic models of malaria to provide skillful proto-
type-reforecasts of malaria in Africa; using the DEME-
TER seasonal hindcasts (Palmer et al 2004) and
validating against reanalysis- basedmalaria simulation
(Morse et al 2005), using the DEMETER seasonal
hindcasts and validating against observed clinical data
for Botswana (Thomson et al 2006, Jones and
Morse 2010) and using the ENSEMBLES hindcasts to
validate against reanalysis-based malaria simulation
forWest Africa (Jones andMorse 2012).

Here, we present results using a state-of-the-art
operational seasonal climate model to drive a dynamic

malaria model. The model is run in hindcast mode,
meaning that the individual forecasts are initialized
from several start dates in a historical period. In each
case the forecast has no knowledge of future climatic
conditions beyond its initialization date.

Previous work has shown some skill of predicting
malaria incidence when driven by hindcasts created
through one-off research projects employing multi-
model hindcasts with many more total ensemble
members than an operational system (e.g. DEMETER,
Jones and Morse 2010, and ENSEMBLES, Jones and
Morse 2012). However this current work uses hind-
casts based on an operational seasonal climate model,
which gives a more accurate assessment of the level of
predictive skill possible from a real-time operational
malaria forecast. Furthermore the reforecasts are vali-
dated against a 25 year long record of clinically
observed malaria incidence for Botswana. To the
authors’ knowledge, this is the longest time series of
malaria incidence against which a forecasting system
of this type has ever been validated.

The different datasets, the modeling system and
the validation method are described in section 2. Fol-
lowing this, results of the validation are described in
section 3, and section 4 contains a discussion of these
results and provides final recommendations.

2.Methods

2.1. Themodeling system
The rainy season for Botswana falls between December
and February, and inter-annual variation in the rains
provides a large source of variability in subsequent
malaria incidence, which peaks around March. Due to
parasite–vector–host interactions (e.g. rainfall providing
breeding sites for mosquitoes which subsequently take
some time to develop to maturity, become infected and
pass on the parasite to humans), there is a lag between
climatic factors and the host–vector–parasite response.
Therefore here we consider climate based forecasts of
malaria incidence which are initialized in the previous
year and so contain a prediction of the rainy season, e.g.
a forecast issued at the start of November 1999 will
contain a forecast of December 1999–February 2000,
which impacts on themalaria season in 2000.

Seasonal climate forecasts come from the Eur-
opean Centre for Medium-Range Weather Forecasts’
(ECMWFs) System 4. These hindcasts are initialized
on the first day of every month for the period
1981–2010; here we only consider those initialized
every November for the period 1981–2005 (covering
the observedmalaria data period). For each start date a
15-member initial condition ensemble is created, with
initial conditions coming from ERA-Interim (Dee
et al 2011) and each ensemble member is then simu-
lated forward in time for seven months from the start
date. A technical description of the model is given in
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the supplementary material (stacks.iop.org/ERL/10/
044005/mmedia).

The System 4 hindcasts are subsequently used to
drive the dynamic model for malaria: the Liverpool
Malaria Model (LMM, Hoshen andMorse 2004). The
LMM uses a dynamic approach to simulate malaria
incidence in the human population, and consists of
two climate driven components, related to the mos-
quito population and the process of parasite transmis-
sion between human and mosquito hosts. Details are
given in the supplementary material (stacks.iop.org/
ERL/10/044005/mmedia). To investigate the effect of
the first month of the simulation on the eventual
malaria incidence forecast, a variant of the System 4
hindcasts is used to drive the LMM. These are the‘-
seamless’ hindcasts, created at ECMWF (Di Giuseppe
et al 2013). They are seamless in that the first month of
the System 4 forecast for each year is replaced by the
first month of the VarEPS monthly ensemble system
(Vitart et al 2008). Further details of the seamless sys-
tem are given in the supplementary material (stacks.
iop.org/ERL/10/044005/mmedia).

Prior to driving with forecasts, the LMM requires
spinning up for one year. ERA-Interim was used for
this purpose: for each year, the LMMwas run with the
corresponding previous year of ERA-Interim, starting
on 1st November. Standardized anomalies of the
resultant malaria incidence from the malaria model
was then averaged temporally across January to May
and averaged spatially over Botswana (defined as
17.5–27.5°S and 19.5–29°E). A simple bias correction
of the driving temperature was attempted, by calculat-
ing a 366 day difference climatology between System 4
and the ERA-Interim gridded reanalysis across the
hindcast period (Dee et al 2011), which was then sub-
tracted from eachmember of the hindcast.

2.2. Validating themodeling system
This forecast system is run in ensemble prediction
mode, meaning that multiple forecast realizations are
simulated rather than a single deterministic predic-
tion. This results in probabilistic forecasts. Probabil-
istic forecasting allows a quantification of forecast
uncertainty, and provides more reliable and therefore
more useful forecasts (Sivillo et al 1997). However it
also requires more sophisticated validation metrics;
deterministic measures such as the anomaly correla-
tion coefficient or root mean square error are no
longer appropriate when forecasts are given as prob-
abilities. Here we use the relative operating character-
istic area under curve, hereafter ROC area (Jolliffe and
Stephenson 2003) to measure the skill in forecasting
upper and lower tercile malaria incidence seasons
(hereafter UT and LT). Significance levels are calcu-
lated by a comparison to the Mann–Whitney U test
(Mason and Graham 2002). Details of the calculation
of tercile events are contained in the supplementary
material (stacks.iop.org/ERL/10/044005/mmedia).

The temperature and precipitation drivers are
validated by comparison to the Climatic Research
Unit TS3.21 monthly gridded dataset for tempera-
ture (Harris et al 2014) and the Global Precipitation
Climatology Project (GPCP) merged dataset for pre-
cipitation (Adler et al 2003). The spatial resolution of
these datasets is 0.5° × 0.5° and 2.5° × 2.5° respec-
tively; where maps of simulated and observed tem-
perature and precipitation are compared in the
supplementary material (stacks.iop.org/ERL/10/
044005/mmedia), linear interpolation was used to
transform these to the 1° × 1° System 4 grid.

The simulated malaria forecast is validated by
comparison with an observed malaria index for Bots-
wana. This is a time series of cases of laboratory-con-
firmed malaria incidence for January to May over
Botswana for 1982–2006, with one value of total inci-
dence for each year. This has been corrected for post-
1996 intervention and converted to standardized
anomalies, where each the time-mean is subtracted
from each value of incidence, and then divided by the
standard deviation across the whole period. This data-
set was originally published for the period 1982–2003;
in this paper further details of the correction and stan-
dardization can be found (Thomson et al 2005). It has
been extended from the original time period up until
2006 through communication with the original
authors. We also produce a forecast using ‘perfect’ cli-
mate driving data, to calculate themaximum potential
skill of the malaria model. To do so we use a parallel
setup to the System 4 forecasts, but instead use the cor-
responding ERA-Interim reanalysis.

Results are presented in the following section,
starting with an analysis of the realism of the tempera-
ture and precipitation drivers from the seasonal fore-
cast system. Following this, validation of the simulated
malaria output is described and visualized, by demon-
strating forecast probabilities issued by the modeling
system for every year of the hindcast period.

3. Results

3.1. Validation of the drivers
Figure 1 shows the mean seasonal cycle of rainfall and
temperature for Botswana as simulated by System 4
forecasts initialized in November, compared to the
reference observation data. The model is systematically
cold and wet, with monthly temperatures consistently
around 6 °C below the reference and has a wet bias of
around 1 mm d−1, decreasing toward the peak of the
rainfall season. There is also a slight shift in the timing of
maximumprecipitation, to January insteadof February.

The spatial pattern ofmodel and reference climatol-
ogywith the associated bias is shown infigure 2, for tem-
perature and precipitation. The field is averaged across
Dec–Feb, as this is a period of the highest rainfall, asso-
ciated with enhanced vector development. Figure 2(a)
shows there is a positive Southeast to Northwest
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temperature gradient across the region in the observa-
tions, with temperature relatively constant over Bots-
wana itself. The spatial pattern is similar in System 4
(figure 2(b)), albeitwith a large cold bias of around6 °C.

The precipitation pattern from GPCP shows a
minimum in the South East of the region, with max-
ima in theNorth and Southeast (figure 2(d)). System 4
reproduces the pattern well (figure 2(e)), with a

spatially heterogeneous wet bias. Overall the model is
around 0.5 mm d−1 too wet, whilst in the climatologi-
cally wettest regions it is around twice this.

Forecast skill for the climatic drivers is shown in
figure 3, with plots of the ROC area for forecasts for
UT and LT Dec–Feb temperature and precipitation
events. Temperature forecast skill is significant at the
95% level for both UT and LT events, for most of the

Figure 1.Botswanamonthly (a) temperature and (b) precipitation climatology from System4 hindcasts and observations.

Figure 2.Top row:Dec–Jan–FebBotswana climatologymaps for 2 m air temperature for (a) CRUobservations, (b) System4,
November start dates and (c) the corresponding temperature bias of System 4. Bottom row: precipitation climatology for (d)GPCP
observations, (e) System 4 and (f) the corresponding precipitation bias.
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region. Skill is lower for precipitation, however a large
part of the region exhibits skill above significance.

3.2. Validation of themalaria output
The output of the seasonal hindcasts driven through
the LMM is shown in figure 4, which shows the time-
averaged incidence for Botswana for each month of
the forecast. The large cold bias has been corrected
following the method described in the methodology;
without this correction the simulated malaria is
effectively zero (not shown). This is expected as the
uncalibrated temperatures generally remain below the
sporogonic temperature threshold (18 °C), preventing
parasite development within the mosquito vector as
simulated by themodel.

Figure 3.Maps of the RelativeOperating Characteristic area under curve forUT (a), (b) and LT (c), (d)Dec–Jan–Feb (DJF) average
temperature (a), (c) and precipitation (b), (d), from System4 forecasts initialized at the start ofNovember. Validation targets are CRU
andGPCPdata, respectively, and the cross-hatching indicates where the score is significant above the 95% level.

Figure 4.Cases ofmalaria incidence per 100 people output by
the LMMafter temperature bias correction for both the raw
and the seamless calibrated forecast system averaged over
Botswana, averaged across all forecast start dates. Only the
time period simulated by the forecast (i.e. sevenmonths from
the start ofNovember) is shown.
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With the bias correction the incidence follows a
cycle peaking in March, with some slight difference in
the raw System 4 and the seamless runs; seamless runs
show a slight decrease in simulated malaria incidence
during March and April. However this difference is
not large with respect to themagnitude of the averaged
monthly incidence.

Figure 5 shows the explicit forecast probabilities for
upper and lower tercile (UT and LT) events across the
hindcast period, along with the occurrence or non-
occurrence of events according to the observed malaria
data. The baseline frequency of the event (in the case of
tercile events this is one third) is used as a decision
threshold, and plotted as a red line on the figure. This
can then be used to calculate some forecast statistic-
s:‘hits’, ‘misses’, ‘false alarms’ and ‘correct rejections’.
From this one can compare the total number of correct
(‘hits’ and ‘correct rejections’) to the number of incor-
rect forecasts (‘misses’ and ‘false alarms’). These statis-
tics are dependent on the decision threshold, which can
be calibrated based on the hindcasts to maximize fore-
cast value, andwould likely take a different value for dif-
ferent events.However here the decision threshold is left
uncalibrated; we use the climatological frequency of a
tercile event (i.e. 33%) as a threshold, for demonstrative
purposes. Using this frequency as a threshold represents
the case where a warning is issued when the issued
model probability is higher a climatological forecast

(since a climatological forecast for a tercile event is
always 33%).

Before temperature biases have been corrected, the
skill is low for both UT and LT event forecasts, for
both the raw System 4 and seamless systems: in all
instances the number of incorrect years is larger than
the number of correctly forecast years (not shown).
The ROC area for the uncorrected hindcasts is also
well below 95% significance. With bias correction the
skill is much improved (figure 5). For the forecasts of
LT events, ROC area is still below significance, and the
number of correct and incorrect years is roughly
equal. However, the ROC area for UT forecasts is
around the 95% significance level for the raw System 4
and the seamless calibrated system (0.76 and 0.73
respectively). For the raw and calibrated systems,
using the baseline frequency as a decision threshold
results in six out of sevenUT years correctly forecast.

Skill as measured by the ROC area is summarized
in table 1. This also includes results from previous
work, where seasonal hindcasts from the ENSEM-
BLES project (Weisheimer et al 2009) were used to
drive the LMM. This shows the result where the LMM
was driven by both themulti-model ENSEMBLES sys-
tem and by the previously ECMWF model, System 3,
alone. These results are previously unpublished and
not directly comparable, as the ENSEMBLES simula-
tions were only carried out for the period 1982–2001.

Figure 5.Malaria incidence forecast probabilities over the hindcast period forUT (a), (b) and LT (c), (d) incidence. The bar height
indicates the event probability forecast by themodel, black bars indicate the occurrence of the event in the observational data and
white bars correspond to yearswhere the event did not occur. Results are shown for (a), (c) the calibrated System4 forecasts and (b),
(d) the ‘seamless’ system. The red line indicates the baseline frequency of events, which is used here as awarning threshold, allowing
calculation of performance statistics.
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In all cases, results are improved by bias correction,
with the single model System 4 hindcasts showing the
best result for UT forecasts of malaria incidence, beat-
ing themulti-model forecasting system. For LT events,
the ENSEMBLESmulti-model system shows the high-
est score, which is notmatched by System4.

3.3. Investigating the source of forecast error
It is clear from figure 5 that the forecast is imperfect,
and that there is a tendency for false alarms (at least
when using a climatological decision threshold). This
is in part likely due to a low signal-noise ratio; in
seasonal climate predictions the ratio of the predict-
able signal generally decreases from forecast initializa-
tion (e.g.Misra and Li 2014), with a short-lead forecast
giving a clearer signal than one for conditions many
months in advance. In the current system the malaria
model is driven by a climate forecast up to seven
months ahead; a low signal to noise ratio can be
expected. The highest signal-noise ratio and skill is
generally expected for large-scale spatial average (e.g.
global, hemispheric or continental), with lower signal-
noise ratio and skill expected for smaller regional
domains (e.g. Masson and Knutti 2011, MacLeod
et al 2012), as in the current case. Furthermore,
precipitation is a particularly noisy variable in climate
models (e.g. Hawkins and Sutton 2011); using this to
drive another model further suggests that one should
not be surprised by noisy output.

Despite a low signal-noise ratio, we make some
attempt here to answer the question: why does the
forecast occasionally get it wrong? We do this by con-
sidering whether the temperature and precipitation
forecasts driving ‘good’ and ‘bad’ malaria forecasts
share any corresponding features. These driving cli-
mate forecasts are plotted in figure 6, which shows the
distribution of the ensemble of standardized DJF tem-
perature and precipitation anomalies for each valida-
tion year. The forecast is noisy but has some skill: of all
25 years the 5–95 percentile range of the ensemble
contains the observation in all but three years for tem-
perature, and four for precipitation.

Due to the non-linear relationship between these
variables and resultant incidence it is not easy to draw

clear conclusions of cause and effect between large-
scale averages; there is uncertainty in the relationship
between seasonal average climate and malaria risk
(MacLeod and Morse 2014). However upon scrutiny
of figures 5 and 6, two observations present
themselves:

• Years when themedian of the precipitation forecast
is positive and the observation is negative (i.e. over
prediction of rainfall) tend to over predict malaria
incidence and result in false alarms of UT inci-
dence. These years correspond to 1984, 1985, 1986,
1999, 2001 and 2002: all are UT false alarms in
figure 5(a) (except for 1999, which is anUThit).

• Forecasts of large positive temperature anomalies
tend to result in high probabilities of LT malaria
incidence. For example, the years with the largest
predicted positive temperature anomalies corre-
spond to 1983, 1992, 1995, 1998, 2003 and 2004. Of
these, five give probabilities of LT incidence greater
than 50% (2004 has a probability of 47%). Further-
more for all years with LT incidence probability
below 20% (1984, 1985, 1999, 2000, 2001 and
2002) the corresponding temperature forecast has a
negativemedian anomaly.

Enhanced precipitation creates breeding grounds
for mosquitos, and too high temperature reduces the
vector survival, this is consistent with previous studies
of the climate–malaria relationship in the region
(Thomson et al 2006).

The second relationship is also supported by the
observations and related modeling assumptions: mos-
quito survival rate drops off at temperatures greater
than 30 °C (Martens et al 1997, Hoshen and
Morse 2004, Kirby and Lindsay 2009). Considering
that the average DJF temperature in Botswana is
around 26 °C (figures 1 and 2), positive anomalies
relative to this mean are likely to pass the threshold
above which mosquito survival drops off. Negative
anomalies relative to this mean would still have a high
survival rate and it would require a rather large nega-
tive anomaly for incidence to be severely affected,
when temperatures drop below the 18 °C sporogonic
threshold.

These statements should be taken as preliminary
hypotheses, further in-depth analysis is necessary to
understand the true pathways of cause-and effect. For
example, further work might consider the character-
istics of the driving forecast outside of the rainy season,
the impact of intra-seasonal variability in the tempera-
ture and precipitation time series and the temporal
evolution of the full suite of output from the malaria
model (MacLeod andMorse 2014).

To investigate further the impact of an imperfect
driving seasonal forecast, we perform additional simu-
lations where the LMM is driven by temperature and
precipitation from the ERA-Interim reanalysis,

Table 1.ROCarea forUT and LTmalaria incidence
forecasts, including previous workwith the ENSEM-
BLES hindcast data. The scores are shown for simu-
lations where the temperature input has been bias-
corrected. Asterisks indicatewhere score is sig-
nificant at the 95% level, and bold numbers indicate
the systemwith the highest score for each event (N.B.
The ENSEMBLES period is different from the Sys-
tem 4period, finishing in 2001 rather than 2006).

Hindcast data UT LT

System 4 0.76* 0.57

System 4 (seamless) 0.73 0.51

ENSEMBLES (System 3) 0.59 0.81*

ENSEMBLES (multi-model) 0.69 0.85*
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assumed here to represent the observed meteor-
ological conditions (the lack of gridded daily data
observation for the region necessitates the use of rea-
nalysis). Results from this simulation are shown in
figure 7, where the result from the ERA-I driven simu-
lation is shown alongside the observed incidence and
the forecasted ensemble of the LMMdriven by the Sys-
tem 4 data. The incidence simulated by ERA-LMM
can be interpreted as being the best that the LMM can
do, as if it had perfect driving climatic conditions. In
the situation where observed incidence is not repro-
duced by either the ERA-LMM or the System 4-LMM
estimates, it is possible that the situation is such that
model would be unable tomake a good incidence fore-
cast evenwith perfect input climate forecast data (i.e. if
the climate state was exactly known). Alternatively it
may be the case that other external factors were active
in those years that impacted the resultant observed
incidence (e.g. a short term control intervention). This
situation is observed for the 1987, 1996, 1998 and 2002
hindcast years.

Years where all three elements of figure 7match up
can be tentatively interpreted as good driving condi-
tions, transformed accurately into an accurate malaria
forecast. This is the case for 1983, 1986, 1989–1995,
1997, 1999, 2001 and 2003–2005. Of the remaining
years, 1982, 1984 and 1985 suggest that a good forecast
may be possible had the seasonal climate forecast been

better, whilst 2000 and 2006 indicate that the malaria
ensemble forecast captures well the observed inci-
dence, whilst the ‘perfect’ ERAI-LMM is well outside
the range. This suggests that either System 4 for those
years is closer to reality than the reanalysis, or that
there is some error cancellation occurring when seaso-
nal forecast temperature and rainfall are integrated by
the LMM, leading to the right answer, but for the
wrong reasons. These years show good temperature
forecasts, with an under prediction of precipitation
(figure 6): this does not support the hypothesis that the
climate forecast (at least for precipitation) is better
than the reanalysis for these years.

4.Discussion and conclusions

We have demonstrated the potential for producing
skillful forecasts of anomalously high malaria seasons
over Botswana, months in advance. The skill assess-
ment is based on the hindcasts produced by an
operational seasonal forecast system and therefore a
forecast that could be issued to users immediately.
Probabilistic information about the risk of an anom-
alously high risk upcoming malaria season, whilst
imperfect, could provide significant benefits through
advanced and targeted allocation of resources for
malaria control.

Figure 6.Ensemble forecast ofDJF temperature (red) and precipitation (blue), for each year of the validation period. The year labeling
corresponds to figure 5 (for example, theDJF 1982 forecast is initialized inNovember 1981 and gives a prediction ofmalaria incidence
for 1982). Boxes indicate the interquartile range andmedian of the ensemble, whilst thewhiskers represent the 5th and 95th
percentiles. Observations fromCRU andGPCP are represented by dots.

Figure 7.As figure 6, for System 4 JFMAMmalaria incidence. Dots indicate observedmalaria incidence, whilst the crosses indicate the
incidence simulated by the LMMdriven by ERA-Interim reanalysis.
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Temperature bias correction of the forecast is vital:
system 4 is 6 °C too cold over Botswana and the bias
correction greatly improves the skill of forecasts. This
is somewhat expected, as the temperature climatology
is above the sporogonic threshold of 18 °C: without
the bias correction, development of the parasite within
the vector in the model is inhibited and malaria trans-
mission does not occur. This is reflected in the low
incidence output from the model. The temperature
bias correction method employed here is relatively
simple and perhaps a more sophisticated method
would improve skill further, such as one which pre-
serves any co-variation between the temperature and
precipitation time series (Piani andHaerter 2012).

The seamless calibrated system (which differs
from the System 4 hindcasts only in the first four
weeks) does not apparently improve the malaria fore-
casts. Since most production of malaria occurs during
and after the main rainy season, it is perhaps not sur-
prising that modifying the input ahead of this period
makes little difference. Furthermore, the System 4 pre-
cipitation bias over Botswana is small, so calibrated
rainfall makes little impact. It may be the case that in
regions where the precipitation biases are large this
calibrated rainfall dataset may improve the malaria
forecasts, however here it does not. However, the aver-
age malaria is taken over a much longer time period
than the calibration period of the seamless forecast; an
extended calibrationmay havemore impact.

The skill demonstrated here is likely an under-
estimate of the operational skill of the forecast. It has
been shown that using smaller ensembles under-
estimates forecast skill (Richardson 2000) and the
operational System 4 forecast runs with a much larger
ensemble than the hindcast studied here (51 rather
than 15 members). Ideally skill would be estimated
from a hindcast with an ensemble of comparable size
to the operational forecast, however in reality this is
not possible due to computing constraints—generally
the model is upgraded before sufficient operational
forecasts have been archived. Forecasts may be
improved further by using a multi-model ensemble of
state-of-the-art climatemodels such as the operational
EUROSIP project (Vitart et al 2007); it has been shown
that multi-model techniques improve forecast skill
and reliability beyond that of any constituent single
model (Hagedorn et al 2005). Furthermore an opera-
tional malaria early warning system would not only
rely on one forecastmademonths in advance, but each
year as the malaria season approaches it would be able
to utilize updated shorter-term forecasts and climate
observations, refining the forecast of expected
incidence.

Since statistical forecasts between seasonal pre-
cipitation forecasts and malaria have been shown to
have a good fit with incidence observations (Thomson
et al 2006), Occam’s razor suggests that this more
complex dynamical modeling system is unnecessary.
However this is not the case. Statistical approaches are

based on a fit to a historical period; the validity of a
statistical model outside of this period requires the
relationship between a set of predictors and the mod-
eled outcome is preserved in the new situation. That is,
for a statistical malaria–climate model to be useful, it
requires the empirical relationship between precipita-
tion and malaria incidence to be unchanged into the
future. Considering the nonlinear relationship
between temperature, rainfall and malaria incidence,
and the projected 21st century changes in temperature
and rainfall, it is likely that statistical methods are
somewhat compromised under climate change. A
dynamical process-based approach is not as limited by
a non-stationary system as a statistical model is and
there ismore potential for its use in a changing future.

Whilst the malaria incidence dataset employed for
model validation is the longest yet used to quantify the
skill of such a climate-driven disease prediction on
seasonal timescales, it has some limitations. The first is
that there is only one data point for each year, which
does not allow estimation of the skill in predicting the
onset and seasonal timing of epidemics. Secondly, as
the incidence data corresponds to a large spatial aver-
age, it is not possible to estimate the skill of seasonal
predictions at a sub-national scale. However despite
the limitations of the dataset, a nationwide annual
malaria warning based on seasonal climate forecasts
has the potential to be useful for guiding public health
interventions in Botswana.

Interventions have continued in Botswana, from
DDT spraying in the 1950s to the current program of
bed net distribution, indoor residual spraying and
winter biolarviciding, alongside passive surveillance
(Chihanga et al 2013). Incidence forecasts can con-
tribute to the surveillance program and guide the allo-
cation of financial and material resources. For
example, based on a forecast issued in November for
UT malaria for the following year, the government or
an NGO working in the area may decide to divert
funding from other projects to distribute extra bed
nets, or provide extra resources for indoor spraying,
reducing the harm from a particularly virulent season.

Successful intervention programs themselves pro-
vide further challenges for seasonal malaria forecast-
ing. In this current work, though incidence anomalies
have been corrected for major policy intervention
post-1996 (Thomson et al 2006), the model does not
take into account non-climate factors, meaning that
the modeling system predicts malaria incidence only
in the absence of any intervention. A real-time forecast
of a high malaria event that triggers an intervention
may be undermined by that very action; if the inter-
vention works then high incidence is avoided and the
forecast appears wrong. Despite this, a forecasted suit-
ability for high incidencemay still be observable indir-
ectly, for example by monitoring the level of parasite
andmosquito numbers.

Another concern related to the use of forecasts is
that different forecast users likely have different
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sensitivities to false alarms and/ormisses; an imperfect
forecast system is not necessarily useful for every user.
For example, a user who can act at a cost of £800 to
prevent loss of £1000 would find little use in a system
which forecasts every event but has many false alarms,
whilst a user with the same value of loss but who can
act with a cost of £200 may find use in this system. To
some extent it is possible to tune the forecast system
for a particular value of cost/loss by varying the deci-
sion threshold (for example by calibrating against
potential economic value, see Joliffe and Stephenson
(2003)).However imperfection cannot be avoided and
incorrect forecasts are likely to remain a feature of sea-
sonal forecasting systems for the foreseeable future.

It is also worth concluding with a further note of
caution related to incorrect forecasts. Because each
forecasted season is separated by a year, it is quite pos-
sible that an operational forecast that is skillful overall
will cluster imperfect forecasts. For example, in theUT
incidence forecasts for System 4 (figure 5(a)), the fore-
cast for every year between 1980 and 1984 would have
been a false alarm, followed by a miss in 1985. Follow-
ing this, the system forecasts successfully every year
until 2001—similar to the story of ‘the boy who cried
wolf’ (see also, Roulston and Smith 2004). With hind-
sight it is clear that there is skill in the system, however
a decision-maker at the start of 1986 would under-
standably have low confidence in the model. Con-
sidering the timescales on which governments, NGOs
and health services might fund a health early warning
system, alongside their competing priorities, it is quite
possible that a forecasting system issuing an incorrect
forecast five years in a rowwould be thrown out on the
sixth—even though in the long run it may prove its
worth. It is therefore vital that forecast providers are
absolutely transparent with this possibility and proac-
tively communicate it with users, to prevent a string of
bad luck diminishing the long-term positive impact of
the forecast. Indeed, a close analysis of the reasons
behind incorrect forecast such as that carried out here
can further increase the use of the forecasting system,
as it may allow an a priori indication that a forecast
may turn out to be a bust. This is yet another reason to
work across interdisciplinary boundaries, so that
knowledge can be successfully and effectively trans-
ferred from centers of research to decision-making
institutions.
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