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Abstract
The interannual variability in the Baltic Sea ice cover is strongly influenced by large scale atmospheric
circulation. Recent progress in forecasting of thewinterNorthAtlanticOscillation (NAO) provides
the possibility of skilful seasonal predictions of Baltic Sea ice conditions. In this paper we use a state-
of-the-art forecast system to assess the predictability of the Baltic Sea annualmaximum ice extent
(MIE).We find a useful level of skill in retrospective forecasts initialized as early as the beginning of
November. The forecast system can explain asmuch as 30%of the observed variability inMIE over the
period 1993–2012. This skill is derived from the predictability of theNAOby using statistical
relationships between theNAOandMIE in observations, while explicit simulations of sea ice have a
less predictive skill. This result supports the idea that theNAO represents themain source of seasonal
predictability forNorthern Europe.

Introduction

Each winter navigation in the Baltic Sea is restricted by
ice cover. Ice season lasts for 3–6 months making
shipping in the ice covered areas dependent on ice-
breakers (Vihma and Haapala 2009). During the
severest of winters ice can cover the whole Baltic Sea
area of 422 000 km2, although the last time these
conditions were observed was in the winter of 1946/
47, more than a half century ago. During mild winters
the ice cover is restricted to the Gulf of Bothnia, the
Gulf of Finland and the Gulf of Riga. The smallest
annual maximum of ice extent of 49 000 km2 was
observed in 2007/08 (Luomaranta et al 2014). Between
these two extremes the ice cover has a strong
interannual variability, which has a great influence on
the economics of the region (Juga et al 2012). For
example, ice-breaker costs during the severe ice winter
of 2010/2011, when maximum ice extent was
309 000 km2, reached 45 million euros, more than six
times larger than during the mild winter of 2007/08
(Baltic Icebreaking Management 2008, 2011). The
need to better prepare for such expense calls for skilful
seasonal forecasts of Baltic Sea ice conditions.

Many previous studies (Koslowski and
Loewe 1994, Tinz 1996, Omstedt and Chen 2001,
Jevrejeva et al 2003) have shown that interannual
variability of the Baltic Sea seasonal ice cover is

strongly influenced by atmospheric circulation
variability associated with the North Atlantic Oscil-
lation (NAO). Indeed, the NAO was positive during
the smallest sea ice extent year of 2007/8 and nega-
tive during the severe ice winter of 2010/11 (Maidens
et al 2013). In particular, Tinz (1996) showed that a
zonal index, closely related to the NAO, could
explain 54% of interannual variability in the annual
maximum sea ice extent (MIE) during the period
1899–1993. Recently, Scaife et al (2014) reported
skilful forecasts of the winter mean NAO index and
showed that this skill translates into skilful predic-
tions of European winter climate. The purpose of
our paper is to document whether this can lead to
skilful predictions of Baltic Sea MIE using output
from the same forecast system.

Data

We use historical forecasts (hindcasts) for the twenty
winters from 1992/93 to 2011/12 produced by theMet
Office Global Seasonal forecast System 5 (GloSea5),
the same data set which was used in and described by
Scaife et al (2014). The GloSea5 forecast system is fully
documented in MacLachlan et al (2014). Briefly, the
system is based on the Hadley Centre Global Environ-
mental Model version 3 with atmospheric resolution
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of 0.83° longitude by 0.55° latitude, 85 quasi-horizon-
tal atmospheric levels, and an upper boundary at
85 km near the mesopause. An eddy-permitting
ocean resolution of 0.25° in both latitude and long-
itude is used globally with 75 quasi-horizontal levels
(ORCA0.25 L75). For each winter, a 24 member
ensemble hindcast was run from starting dates
centred on 1 November (8 members on each of 25
October, 1 November, and 9 November). Initial
conditions for the atmospheric and land surface
components were taken from ECMWF’s ERA-
Interim reanalysis (Dee et al 2011). The ocean and
sea ice components were initialized from the Glo-
Sea5 Ocean and Sea Ice Analysis produced with the
Forecasting Ocean Assimilation Model (FOAM)
system (Blockley et al 2014).

GloSea5 includes a fully interactive sea ice compo-
nent and so explicitly simulates Baltic Sea ice cover.
While ice forecasts can, in principle, be based on the
simulated ice cover, the results by Scaife et al (2014)
indicate that regional climate forecasts for Northern
Europemay bemore skilful when based onNAO fore-
casts as a proxy. Here we will compare explicit sea ice
forecasts with NAO-based proxy forecasts to deter-
mine which method provides the most skilful Baltic
Sea ice forecasts.

Following previous publications (Tinz 1996,
Omstedt and Chen 2001, Jevrejeva et al 2003) we use
MIE as a parameter representing winter ice condi-
tions. The benefit of using MIE is that long timeseries
for this parameter are available and that it is used in
operational practices to describe the severity of ice
winter. Observational timeseries of MIE extending
back to 1720 are documented in Seinä and Palosuo
(1996). Here we use their dataset updated to winter
2011/2012. Meteorological fields for the period
1950–2012 are taken from the National Centers for
Environmental Prediction–National Center for
Atmospheric Research (NCEP–NCAR) reanalysis
dataset (Kistler et al 2001). This data set is chosen
because it provides homogeneous data for a long per-
iod which we utilize to establish the statistical link
between MIE and NAO. Repeating the analysis with
the ERA-Interim data, which is only available since
1979, does not change our conclusions.

We calculate the NAO, similarly in model and
observations, as the first empirical orthogonal func-
tion (EOF) of December to February monthly mean
sea level pressure (SLP) anomaly field over the
region 20 °N–90 °N and 90 °W–60 °E. The choice of
the region is after Doblas-Reyes et al (2003). The
NAO index (NAOi) is calculated as the projection of
monthly SLP anomalies on the NAO pattern. The
observed and predicted NAOi timeseries are stan-
dardized using respective mean and standard devia-
tions for the period 1993–2012 when the timeseries
overlap.

Results

Figure 1(a) shows that the pattern of correlation
between winter mean (December–February, DJF) SLP
and MIE calculated from observations for the period
1993–2012 strongly projects onto the negative NAO
phase, meaning that negative NAO favours large Baltic
Sea ice extent. A similar relation has previously been
reported by Tinz (1996) for the period 1899–1993;
however in that case the areas of maximum and
minimum correlations were centred over the Norwe-
gian Sea and western Mediterranean, respectively, i.e.
to the west of the corresponding features shown in
figure 1(a). The difference between our results is
explained by the use of a different period, i.e. it reflects
sampling uncertainty. Repeating our calculations for
the period 1950–2012 reveals results close to those by
Tinz (1996) (not shown).

The association between NAO and MIE suggests
that skilful prediction of winter mean NAO may be
sufficient to drive skilful MIE forecasts; indeed it may
even be necessary. To confirm this we show in
figure 1(b) correlation coefficients between observed
MIE and ensemble mean DJF SLP predicted by Glo-
Sea5. Correlation coefficients in figure 1(b) are typi-
cally lower in magnitude than those in figure 1(a), and
the centres of maximum correlations are located
above the Atlantic Ocean, to the west of the observed
ones. Also, the variability of the ensemble mean SLP is
much lower than that in observations, which is reflec-
ted in a much larger regression coefficients between
GloSea5 ensemble mean SLP and observed MIE com-
pared to between observations SLP and MIE
(figures 1(d) and (e)). The location of maximum cor-
relations in figure 1(b) close to NAO centres of action
(see e.g. Hurrell 1995) strongly suggests that the pre-
dictability of MIE in GloSea5 is mainly associated with
model’s ability to predict NAO, which justifies our
approach to derive MIE predictive skill from NAO.
We find a linear correlation coefficient between pre-
dicted NAOi and observed MIE of −0.51, with 95%
confidence intervals 0.16–0.75, statistically significant
at p= 0.01 according to a one-tailed t test, given that
we know the expected sign of the correlation from
observations. Defining NAOi as a SLP difference
between Azores and Iceland, results in a similar corre-
lation coefficient of −0.52, which indicates that the
result is not sensitive to the definition ofNAO.

To facilitate evaluation of MIE forecast skill we
translate NAOi to MIE via regression. The MIE dis-
tribution is positively skewed as a result of negative
skewness of winter temperatures, the absence of nega-
tive sea ice values and accelerated ice growth above the
critical value of 180 000 km2 (Tinz 1996). Following
previous authors, we seek an exponential relationship
between NAOi andMIE, which accounts for stronger/
weaker sensitivity of MIE to negative/positive NAOi
values. Here,MIE= a× e−b×NAOi, where a and b are the
regression coefficients to be found by a least square fit.
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Reliable estimation of the regression coefficients
requires timeseries of sufficient length; therefore we fit
this model to the observed MIE and NAOi values for
the period 1950–1992, i.e. avoiding inclusion of the
verification data to the regression model. Figure 2
shows that the resulting model provides a good fit to
the observations for the whole period of observations
from 1950 to 2012. Note that, because of the exponen-
tial relationship between NAOi and MIE, one could
expect that periods of neutral to positive NAOi, when
the sensitivity of MIE to NAOi is low should show
reduced sea ice predictability compared to periods of
negative to neutral NAOi when the sensitivity of MIE
to NAOi is high. On the other hand, the spread ofMIE
around the exponential fit is larger for negative NAOi
values, which reduces MIE predictability during nega-
tiveNAOi conditions.

The timeseries of MIE calculated based on Glo-
Sea5 NAOi is shown in figure 3 as well as observed
MIE. The two timeseries correlate at 0.55 (95% con-
fidence intervals are 0.21–0.77, significant at
p= 0.012), i.e. the correlation between MIE and the
exponent of NAOi is slightly higher than that between
MIE and NAOi. This forecast explains about 30% of
the observed MIE variance and we note that, to the
best of our knowledge, this is the first documented
skilful prediction of winter Baltic Sea ice conditions.
The value of the forecasts can be further assessed by
testing how skilful they are in predicting mild and
severe ice conditions. Vainio (2011) analysed the 50-
year period of MIE observations (1961–2010) and

defined winters with MIE less than 115 000 km2 as
mild ice winters, while those with MIE more than
230 000 km2 as severe ice winters. For the period
1961–2010 these thresholds approximately corre-
spond to the 1st and 3rd quartiles of the MIE distribu-
tion. GloSea5 predictions of mild and severe ice
winters are summarized in a contingency table
(table 1) and illustrated in figure 3. For the results pre-
sented in table 1, the hit rates (defined as the propor-
tion of occurrences that were correctly forecast) are
0.67 and 0.50, and the false alarm rates (defined as the
proportion of non-occurrences that were incorrectly
forecast) are 0.07 and 0.13 for the mild and severe ice
winters, respectively. We note that for winters when
observed mild (1992/93 and 2008/09) and severe
(1995/96 and 2002/03) ice conditions were not pre-
dicted, the model predicted normal ice conditions,
and not the conditions opposite to those observed,
which would have more negative impact on the end
users.

To test the sensitivity of the result to the definition
of mild and severe winters we recalculate the thresh-
olds using only the period 1993–2012 for which the
forecasts are available. Specifically, we calculate the
thresholds in a cross-validation mode leaving each
winter in turn out and defining mild and severe ice
winters as 5 winters with smallest and largest MIE
among the remaining 19 winters, which approxi-
mately corresponds to the 1st and 3rd quartiles. The
result, also presented in table 1, show only modest
changes and essentially the same results for the hit

Figure 1. (Top) correlation and (bottom) regression coefficients between Baltic SeaMIE andDJF SLP for the period 1993–2012: (a),
(d) observedMIE and observed SLP, (b), (e) observedMIE andGloSea5 predicted ensemblemean SLP; (c), (e)GloSea5 predicted
MIE and SLP calculated across all individualmembers. Areaswhere absolute values of the correlation coefficient exceeds 0.44, which
is statistically significant for 20 independent data pairs at p= 0.05, are hatched. Note irregular scale for the regression coefficients
which is used to account for large variability of the polar SLP compared to themid-latitude SLP.
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rates and the false alarm rates, except that the false
alarm rate for the severe winters increases to 0.14.
Also, no one forecast ofmild or severe ice winter is ver-
ified as an opposite categorywinter.

We further assess the quality of probabilistic sea
ice forecasts using the spread among the GloSea5
ensemble members. Following the previous approach,

we define mild and severe ice conditions as corre-
sponding to the 1st and 3rd quartiles across GloSea5
ensemble members in a cross-validation mode and
then calculate the fraction of ensemble members that
predict mild and severe ice conditions for the left out
winter. The forecast probabilities for mild and severe
ice winters are shown in figure 4. The forecast prob-
ability of severe ice for the winters when severe ice
condition were observed is, on average, 0.34, larger
than its climatologically expected probability of 0.25.
The corresponding number for themild winters is also
0.34. At the same time the average forecast probability
of mild (severe) winters when severe (mild) ice condi-
tions was observed is 0.20 (0.17) only. The area under
the relative operative characteristics (ROC) curve is a
frequently used skill score of probabilistic forecasts in
operational practices (Wilks 2006, Peng et al 2013).
The ROC area for the forecasts of mild and severe ice
conditions is 0.79 and 0.76, respectively. In both cases
it is larger than 0.5, which indicate a positive skill.
These results corroborate our conclusion about skil-
fulness of theGloSea5 sea ice forecasts.

Figure 2. Scatterplot ofMIE against NAOi in observations for the period 1950–1992 (black circles) and 1993–2012 (red circles) and
GloSea5 ensemblemembers for the period 1993–2012 (grey circles). Solid lines are the regressionmodel fits for observations
(MIE= 152× 103 × e−0.40×NAOi) andGloSea5 (MIE= 58× 103 × e−0.44×NAOi).

Figure 3.Timeseries of observed (solid black line) andGloSea5 simulated (grey line) Baltic SeaMIE.Dashed line showsMIE calculated
fromGloSea5NAOi. Dotted lines indicate conventionally defined thresholds formild and severe icewinters. Yearswith observed
mild and severe ice conditions are indicated by black circles, and those predicted byGloSea5 are indicated by grey circles.

Table 1.Contingency tables for Baltic SeaMIE forecasts
(1993–2012). The numbers indicate the distribution of forecasts
and observations obtained using conventional definition ofmild
and severewinters based on the observations from the period
1961–2010. The numbers in parentheses indicate the distribution
obtainedwhenmild and severewinters are defined in cross-valida-
tionmode using the data from the period 1993–2012 (see the text).

Observed

Forecast Mild

Near

normal Severe

Forecast

distribution

Mild 4 (4) 1 (1) 0 (0) 5 (5)

Near normal 2 (2) 7 (5) 2 (3) 11 (10)

Severe 0 (0) 2 (2) 2 (3) 4 (5)

Observed

distribution

6 (6) 10 (8) 4 (6) 20
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We also tried to directly utilize the GloSea5 pre-
dicted Baltic Sea ice. MIE calculated from the GloSea5
simulated ice cover is biased low as can be seen in
figure 3. Moreover the correlation with the observed
MIE is only 0.04. Figure 3 also reveals a significant
negative trend in simulated MIE, the reasons of which
are not known yet. There is no significant trend over
the same period in observations, but note the observa-
tions also have a much larger variance. Moreover,
Luomaranta et al (2014) did not find a statistically sig-
nificant trend in MIE over the longer period
1901–2013. Removing the simulated trend from the
GloSea5 MIE slightly improves the correlation with
observations to 0.29 but the skill remains low.

To get some insight into why GloSea5 explicitly
simulated Baltic Sea ice has low predictive skill we now
discuss the correlation between simulated SLP and
MIE plotted in figure 1(c). Although the relation is
quantitatively similar to the observed one, the magni-
tude of the correlation is substantially weaker. The
weaker correlation can, at least partly, be attributed to
the low bias in simulated MIE. As can be seen in
figure 2, near ice-free conditions are simulated by Glo-
Sea5 over a broad range of NAOi values, so that Baltic
Sea ice in themodel becomes less sensitive to increases
in heat advection associated with increases in NAOi.
The low value and low variance of the sea ice in the
forecast model is due to a warm SST bias over the Bal-
tic Sea by about 0.5–1.0 °C in regions of ice deficit. The
exact causes of this bias is under investigation, how-
ever, the global ocean model with the ORCA0.25 grid
was never optimized for performance over shallow
seas, and although surface waters will be suitably initi-
alized by satellite SST and the overlying atmospheric
temperature, subsurface layers will not be as suitably
constrained. Since sea ice formation is inherently a
threshold process, the warm bias decreases both the
mean sea ice coverage and it’s variability. Moreover,
Scaife et al (2014) noticed that in GloSea5 the pre-
dicted NAO is a better predictor of Northern

European winter temperatures than the predicted
temperatures themselves because of imperfect NAO
teleconnections, such as NAO impacts on Northern
European temperatures, in the model, perhaps related
to the small amplitude of the ensemblemean signal (cf
Eade et al 2014).

Finally, we assess the potential predictability of
Baltic Sea ice within GloSea5, which is defined as the
mean correlation coefficient between ensemble mean
and each individual ensemble member (e.g. Kumar
et al 2014). The potential predictability of MIE calcu-
lated from NAOi is 0.16, much lower than the actual
predictability of 0.55. This is expected result given that
previously Scaife et al (2014) and Eade et al (2014)
found low potential predictability in GloSea5 NAOi
predictions. Note that the potential predictability esti-
mated from the dispersion of ensemble members can-
not be interpreted as the upper limit of achievable
predictability (Kumar et al 2014). In fact, low potential
predictability compared to actual predictability indi-
cates anomalously low signal-to-noise ratio in the
model forecasts and implies that the forecast skill of
both the NAO and Baltic Sea Ice could be further
increased by increasing the number of ensemble
members (Scaife et al 2014).

Discussion and conclusions

Wintertime navigation in the Baltic Sea is continually
growing (Vihma and Haapala 2009) and so does the
need for skilful sea ice forecasts. Currently, operational
services provide forecasts of sea ice conditions for a
few days only (Vihma and Haapala 2009). Here we
report the first skilful predictions of annual maximum
Baltic Sea ice extent (MIE) using output from the
GloSea5 forecast system. For the 20-year period
(1993–2012) the forecast skill measured by correlation
coefficient is 0.55, the hit rate for forecasts of mild
(severe) ice winters is 0.67 (0.50) and the

Figure 4.Timeseries of observed (solid black line) Baltic SeaMIE.Dotted lines indicate conventionally defined thresholds formild
and severe icewinters. Years with observedmild and severe ice conditions are indicated by black circles. Bar chart indicates
probabilities ofmild (orange) and severe (blue) ice conditions calculated fromGloSea5 ensemblemembers (note the reversed axis for
themildwinter probabilities).
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corresponding false alarm rate is only 0.07 (0.13). Such
a skill levelmay be useful for practical applications.

This skill is derived from the predictability of the
North Atlantic Oscillation because, as we show, the
simulated Baltic Sea ice extent itself has little predictive
skill. The lack of skill can be partly explained by the
low bias in the mean simulated MIE, which weakens
the sensitivity of the sea ice to variations in atmo-
spheric circulation of the model. This result also
implies that the predictability of MIE from NAOi
would reduce in a warmer climate as a result of climate
change.

As discussed in Scaife et al (2014) the sources of
NAO predictability in GloSea5 include El Niño/
SouthernOscillation (Toniazzo and Scaife 2006), Kara
sea ice autumn anomalies (Yang and Chris-
tensen 2012) and Atlantic ocean heat content (Rod-
well and Folland 2002). The NAO predictive skill
found here and in the previous studies (Scaife
et al 2014) is consistent with earlier investigations of
statistical properties of the observed NAO time-
series and European temperatures (Stephenson
et al 2000, Keeley et al 2009, Folland et al 2012). At
the same time it remains unclear to what degree the
European climate variability not related to NAO is
predictable at seasonal scale. It cannot be excluded
that non-NAO variability of the Northern European
climate, in particular of Baltic Sea ice, represent cli-
matic noise, and so contaminate the predictable sig-
nal associated with NAO. One interesting possibility
for further development is to investigate whether
the predictive skill of Baltic Sea ice can be derived
from the Pacific Decadal Oscillation (PDO), which
has recently been found to influence Baltic Sea ice
variability (Vihma et al 2014). In any case, our cur-
rent results suggest that the NAO represents an
important source of predictability for the winter-
time Baltic Sea ice conditions.
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