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Abstract
Despite a large increase in the area of selectively logged tropical forest worldwide, the carbon stored in
deadwood across a tropical forest degradation gradient at the landscape scale remains poorly
documented.Many carbon stock studies have either focused exclusively on live standing biomass or
have been carried out in primary forests that are unaffected by logging, despite the fact that coarse
woody debris (deadwoodwith⩾10 cmdiameter) can contain significant portions of a forest’s carbon
stock.Weused afield-based assessment to quantify how the relative contribution of deadwood to total
above-ground carbon stock changes across a disturbance gradient, fromunlogged old-growth forest
to severely degraded twice-logged forest, to oil palmplantation.Wemeasured in 193 vegetation plots
(25 × 25m), equating to a survey area of >12 ha of tropical humid forest locatedwithin the Stability of
Altered Forest Ecosystems Project area, in Sabah,Malaysia. Our results indicate that significant
amounts of carbon are stored in deadwood across forest stands. Live tree carbon storage decreased
exponentially with increasing forest degradation 7–10 years after loggingwhile deadwood accounted
for >50%of above-ground carbon stocks in salvage-logged forest stands,more than twice the
proportion commonly assumed in the literature. This carbonwill be released as decomposition
proceeds. Given the high rates of deforestation and degradation presently occurring in Southeast Asia,
ourfindings have important implications for the calculation of current carbon stocks and sources as a
result of human-modification of tropical forests. Assuming similar patterns are prevalent throughout
the tropics, our datamay indicate a significant global challenge to calculating global carbon fluxes, as
selectively-logged forests now representmore than one third of all standing tropical humid forests
worldwide.

1. Introduction

Coarse woody debris (CWD), comprising standing
dead trees and fallen trunks and branches, is important
for various ecological functions in tropical forest
ecosystems. Dead wood provides a habitat for wildlife
such as wood-feeding termites (Eggleton et al 1995),

cavity-nesting birds (Gibbs et al 1993), saproxylic
beetles (Grove 2002) and bats (Giles 2012). It facil-
itates tree regeneration by providing ‘nurse logs’
(Fukasawa 2012), interacts with disturbance regimes
such as fire (Pyle et al 2009), and acts as a significant
carbon and nutrient reservoir (Chambers et al 2000).
CWD may account for roughly 10% of total carbon
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storage across tropical forests (Pregitzer and
Euskirchen 2004), and may store as much as 33% of
tropical forests’ above-ground biomass (Clark
et al 2002, Rice et al 2004). Yet, the relative contribu-
tion of CWD to carbon stocks in logged tropical forests
remains poorly documented (Clark et al 2002, Baker
et al 2007).

Carbon stored in the dead wood of a forest stand is
one of the five carbon pools identified by the Inter-
governmental Panel onClimate Change that should be
measured and monitored for carbon book-keeping
(Watson et al 2000). Accurate accounting of these
pools is essential formitigation, e.g. via REDD+ (redu-
cing emissions from deforestation and degradation +
enhancing forest carbon stocks) (Mertz et al 2012).
Decomposition of dead wood contributes to carbon
emissions originating from forests, and themagnitude
of this contribution will depend on the variation in
CWD stocks due to forest type and age (Pregitzer and
Euskirchen 2004, Kissing and Powers 2010), mortality
pulses (Rice et al 2004), topography affecting tree
mortality (Gale 2000), chemical composition of the
debris and hence the forest’s tree species composition
(Baker et al 2007), and the land use history and man-
agement of an area (Eaton and Lawrence 2006, Kauff-
man et al 2009).

Selective logging, which can cut deep into forest
interiors, is a major land use change process with
short-term and long-term impacts on emissions of
carbon dioxide (Feldpausch et al 2005). The Interna-
tional Timber Trade Organisation (ITTO) estimates
that 350 million ha of humid tropical forests con-
tributed to timber production in 2005 (ITTO 2006);
approximately 31% of the total humid tropical forest

area based on remotely sensed forest cover estimates
for the same year (Hansen et al 2010). Since then, the
practice of selective logging, either legal or illegal, has
been on the rise in many of the ITTO’s 33 member
countries, reaching 403 million ha in 2010 (Blaser
et al 2011). Timber harvesting focuses on high-value
species and removes large, high-biomass trees from a
forest stand. Logging infrastructure and residual
canopy damage can dominate carbon emissions in
logged forests (Pearson et al 2014). Logging events
additionally accelerate the formation of CWD, from
which carbon is released as decomposition progresses
(Feldpausch et al 2005,Houghton 2005).

Themajority of studies investigating causes of spa-
tial variation in biomass and carbon stocks of tropical
forests remain focussed on living trees (Malhi
et al 2006, Saatchi et al 2007, Houghton et al 2009),
with the assumption that these represent the
largest fraction of total above-ground biomass (Nasci-
mento and Laurance 2002). Meanwhile, the decrease
of live tree biomass in response to selective logging
combined with the extent of tropical forest area under
logging may well mean that the importance of CWD
stocks is increasing. Here, we analyse, whether (1)
CWD stocks and their relative contribution to overall
above-ground carbon increase with increasing forest
disturbance, and whether (2) any variation in
CWD stocks can be linked to forest attributes such
as micro-topographic and structural traits. We
address these questions by focussing on the forest
degradation landscape of the Stability of Altered Forest
Ecosystems (SAFE) Project in Sabah, Malaysia (Ewers
et al 2011).
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Figure 1. Location of vegetation plots within the SAFE landscape. The average altitude of plots is 439 mabove sea level (range:
238–618 m) based onASTER global digital elevationmodel 2 (a product ofMETI andNASA). Selected close-ups of the sampling
design in forest stands and plantations are overlaid on 3(R)-2(B)-1(G) SPOT-5HRG-2 images (pan-sharpened at 2.5 m spatial
resolution) recorded on 28/04/2009.
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2.Methods

2.1. The SAFEdegradation landscape
The SAFE Project (4 38’N to 4 46’N, 116 57’ to 117 42’
E; figure 1) features a gradient of forest disturbance
from unlogged primary forest through to severely
degraded forest and oil palm plantation (Ewers
et al 2011). There were 193 vegetation plots
(25 × 25 m) established at SAFE in 2010 (Marsh and
Ewers 2013) and distributed among 17 sampling
blocks (table 1): three oil palm plantation blocks (OP1
and OP2 planted in 2006 and OP3 planted in 2000),
two primary forest blocks (OG1 andOG2), two lightly
or illegally logged forest blocks (OG3 and VJR), four
twice-logged forest blocks (LFE, LF1–LF3) and six
salvage-logged forest blocks that are currently being
converted into a fragmented agricultural landscape
(A–F) (Ewers et al 2011). In the latter two categories,
sites were selectively logged once during the 1970s and
again in the late 1990s to the early 2000s, removing
medium hardwoods (Drybalanops and Dipterocarpus)
and lighter hardwoods (Shorea and Parashorea). The
logging rotations at lightly-logged and salvage-logged
blocks were implemented under a modified uniform
system, removing an estimated 113 m3 ha−1 extraction
during the first rotation followed by an estimated
37 m3 ha−1 extraction during the second rotation. In
the salvage-logged forest, timber restrictions were
lifted during the second rotation and the forest was re-
logged three times with an estimated cumulative
extraction rate of 66 m3 ha−1 (Struebig et al 2013).
Selective rounds of logging resulted in heavily
degraded stands, with a high density of roads and skid
trails, a paucity of commercial timber species, few
emergent trees, and the dominance of pioneer and
invasive vegetation.

Vegetation plots were established across the forest
degradation landscape according to a hierarchical
sampling design as an objective procedure to assess
regional stores (Ewers et al 2011). The design was cho-
sen to ensure unbiased decisions as to where to estab-
lish vegetation monitoring plots in the field (Ewers
et al 2011). Plots were located at roughly equal altitude
and oriented to minimize potentially confounding
factors such as slope, latitude, longitude and distance
to forest edges (prior to controlled forest-to-oil palm

conversion currently being carried out at SAFE)
(Ewers et al 2011).

2.2.Quantifying forest attributes within vegetation
plots
We measured all 193 permanent vegetation plots for
above-ground biomass and deadwood in 2010 and
2011, equating to a total survey area of >12 ha. We set
out each 25× 25m plot with North–South orientation
(using a slope correction factor to account for
topography) and tagged each tree that had more than
50% of its visible roots located inside the plot
(Marthews et al 2012). Each tree was measured for
DBH (in cm) using a diameter tape and a subset of
trees was fitted with a dendrometer to allow re-
measurements in the coming years. We measured
height (in m) of trees ‘by eye’. For validation of our
height measurements, we compared height estimates
in the field to height estimated based on region-
environment-structure models describing height-
DBH allometric relationships in Asian forests:
Hmod = exp (0.2797 + 0.5736*ln(DBH) + 0.0120*A+
0.0034*PV+−0.0449*SD+ 0.0191*TA) (Feldpausch
et al 2011). For subsequent analyses, to account for
potential errors in height estimates, we binned esti-
mated tree heights into equal classes of 5 m length each
(e.g. 0–5, 5–10, 10–15 m). Climatic parameters for the
SAFE landscape (mean annual temperature
TA= 24.8 °C, dry season length SD= zero months
with rainfall <100 mm, annual precipitation coeffi-
cient of variation PV= 10.27%) for inclusion in the
allometric model were extracted from the WORD-
CLIM datasets (Hijmans et al 2005). Basal area A
(m2 ha−1) was derived from tree DBH measurements
for each plot and averagedwithin forest stands.

Above-ground biomass (AGBlive) was derived for
each tree from tree size, using an improved pan-tropi-
cal algorithm (Chave et al 2014) and, additionally,
using two global and three regional algorithms (see
table S1 in the electronic supplementary material).
Here, we restrict ourselves to reporting results based
on Chave et al’s (2014) model (developed in 2005 and
improved in 2014) as a recent study showed that it
provided better biomass estimates than regional algo-
rithms when applied to destructive samples from East
Kalimantan (Rutishauser et al 2013).We used our pan-
tropical model with a mean oven-dry wood specific

Table 1.Density of CWDwasmeasured acrossfive decay classes following protocolsmodified fromChao et al (2008) andKeller et al (2004).
In 2014, we randomly sampled deadwood pieces, extracted samples as drill plugs, cubes or powder bags depending on decay status, and
analysed those samples in the field lab.We averaged across samples to obtainwood density per piece and then averaged across all pieces (n:
number of pieces) to obtainmeanwood density (wd, g cm−3) for each decay class (dc).

dc Description fromHarmon et al (1995) wd n

1 Little decay, bark cover extensive, leaves and fine twigs present 0.40 ± 0.03 18

2 No leaves andfine twigs, bark starting to fall off, logs relatively undecayed 0.58 ± 0.08 24

3 Nobark and few branch stubs (notmovingwhen pulled), sapwood decaying 0.37 ± 0.03 40

4 Nobranches and bark, outer wood case hardened, inner wood decomposing 0.26 ± 0.02 33

5 Wood often scattered across the soil surface, logs elliptical in cross-section 0.16 ± 0.06 4
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gravity of 0.64 g cm−3, estimated for species in the
nearby Lambir Hills National Park (King et al 2006).
Oil palms have a fundamentally different physical
structure to forest trees, so we estimated AGBlive in
oil palm plantations separately. We computed dry
mass in Mg for each palm tree from its height (in m)

using  = +
AGBpalm

0.3747 * height * 100 3.6334

1000
(Thenkabail

et al 2004).
Wood-specific gravity is an important predictor of

above-ground biomass and decreases, averaged at plot
level, with increasing level of disturbance as the species
composition of the forest changes (Slik et al 2008). To
investigate the possible scale of the bias between our
conservative approach and an approach using wood
specific gravity values reflecting different disturbance
level of forest stands, we used Slik et al’s (2008) esti-
mates derived for forest plots in Eastern Borneo. For
each tree, we computed AGBsim as above but using
wood specific gravity estimates drawn randomly
(N= 100) from a normal distribution of wood specific
gravity values. This distribution was defined by max-
imum and standard deviation and depended on the
tree’s location: primary forests (0.64 ± 0.18) (King
et al 2006), and lightly logged forests (0.57 ± 0.02),
twice logged forests (0.54 ± 0.03), and salvage logged
forests (0.41 ± 0.05) (Slik et al 2008).

In each plot, we counted woody debris items, dis-
tinguishing between standing dead wood, fallen dead
wood (including fallen branches) and hanging dead
wood. We classified each individual piece of CWD
into one of five decay classes (Baker et al 2007). We
excluded fine woody debris <10 cm diameter from the
dataset. For standing dead wood, diameter was mea-
sured at one end (D1) as DBH or above the root but-
tress as appropriate, and height was estimated visually.
Diameter at the upper end (Dupper =D2) was estimated
using the taper function (Chambers et al 2000). Major
branches over 10 cm are recorded in a similar way. In
practice, we rarely encountered standing dead trees
with big branches as they fall off quite quickly and so
branches were generally measured on the ground. For
fallen woody debris, we measured the length and dia-
meter at both ends (D1, D2) using a tape measure and
during later density assessments the Leica Disto D2
laser distance measure. We made a note if they were a
branch.

Volume of each piece of CWD was calculated
using the ‘frustrum of a cone’ formula (Baker
et al 2007) and summed within plots. We assume that
the state of decomposition of CWD is correlated with
its density (Keller et al 2004). We measured density of
deadwood pieces across five decay classes sampled
randomly across the SAFE landscape (table 1). We
subsequently computed CWD mass as the product of
volume per decay class and wood density for that class.
We note that like Keller et al (2004), we found that
material in decay class 1 was, on average, less dense
than material in decay class 2. Our lower sample size

may have introduced a sampling error and the dis-
tribution in decay class 1 pieces varied strongly across
forest disturbance types. There may also be a species-
dependent effect; a European study found irregular
patterns of CWD density across decay classes for fir,
larch and pine species, where the decline with increas-
ing decay was only apparent from decay class 3
(Paletto andTosi 2010).

For tree material, we converted CWD mass to
CWD carbon stock Cdead at 47.4% (Martin and Tho-
mas 2011). We estimated above-ground live carbon
mass Clive (Mg) from AGBlive assuming that dry-stem
biomass of trees has a carbon content of 47.4% (Mar-
tin and Thomas 2011). Similarly, we accounted for
disturbance effects on plot—level averages of wood-
specific gravity by computing live carbon mass Csim

(Mg) from AGBsim. We used 41.3% to convert bio-
mass in oil palms to carbon content, based on findings
from oil palm plantations of Sumatra and East Kali-
mantan, Indonesia (Vlek et al 2004). All, Clive and
AGBlive as well as Csim and AGBsim were summed
across trees within vegetation plots.

CWD in oil palm plantations often consists of palm
fronds, which are commonly cut and discarded in piles
within the plantation to facilitate nutrient recycling and
soil conservation. We measured the base width and
length of each leaf frond in the plot. To establish the
mass of these fronds, we collected the top frond from
each pile in each plot, air-dried them for >1month and
then weighed them.Mass of fronds (Mg) wasmodelled
as a function of frond base width and frond length. We
used the resulting relationship to estimate the mass
of each frond within the vegetation plot (Mass =

+( )220.08 0.32* 1000 000)
Width * Length

2

Frondbase Frond

(R2adj = 0.69, P<0.00 01). Mass of dead trunks was esti-
mated following the approach described above. We
summed the mass of dead fronds and trunks within
each plot, and converted oil palm mass to Cdead at
41.7% (Vlek et al 2004). Across the plots, we could
therefore partition carbon into that stored in living trees
(Clive or Csim) and that in CWD (Cdead). From these
values we calculated the importance of deadwood car-
bon as Cdead_imp=Cdead/(Cdead +Clive) or
Csim_imp=Cdead/(Cdead +Csim).

For each plot, we also recorded canopy closure
(sensu fractional vegetation cover), the presence/
absence of significant old logging trails that were still
clearly visible in the field, terrain slope and the pre-
sence/absence of riverine gullies within plot bound-
aries. Mean slope was derived from 12 slope
measurements within plots, from the centre towards
theNorth, South, East andWest and along theN–NW,
N–NE,W–NW,W–SW, S–SW, S–SE, E–NE and E–SE
axes. Based on these slopes, we also determined whe-
ther the plot within the landscape was located on a
ridge, on a slope, or at the bottom of a riverine gully
(‘gulliness’). Fractional vegetation cover (in % per
plot) was estimated from 12 to 13 hemispherical
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upward-facing photographs acquired 1 m above
ground level per plot following in house-algorithms
(Pfeifer et al 2014) and using CAN-EYE V6.3.8 (Weiss
and Baret 2010).

2.3.Quantifying the continuous disturbance
gradient
We quantified disturbance as the number of logged
trees relative to the number of trees that would be
standing in each plot if the forest had been left
undisturbed. We used our data for OG1 and OG2 in
Maliau Basin Conservation Area as the undisturbed
baseline data. During vegetation assessments, we
recorded the cause of death for woody debris pieces
wherever possible, distinguishing between natural
causes (i.e. tree was killed by a liana, a strangler fig or
lightning) and anthropogenic causes (i.e. tree was cut
or burnt). We summed the number of standing and
logged tree stumps in each plot as well as the number
of live trees with DBH ⩾10 cm. We subsequently
calculated the disturbance index for each plot as
DISTURBANCE=number of logged stumps/(num-
ber logged stumps + number of live trees). Note that
oil palms were not counted as live trees as they are
explicitly individuals that did not survive the logging
and deforestation processes. Thus our disturbance
index scales from zero in primary forest to amaximum
of one in oil palm plantations. We compared this
quantitative measure of disturbance to canopy closure
estimates (averaged across plots within stands) and to
qualitative assessments of forest quality, scored on a

scale between 1 and 5 (1: ‘no trees and open canopy
with ginger/vines or low scrub’, 2: open with occa-
sional small trees over ginger/vine layer, 3: small trees
fairly abundant/canopy at least partially closed, 4: lots
of trees, some large, canopy closed, 5: ‘no evidence of
logging at all, closed canopywith large trees’).

2.4.Modelling variation in above-ground carbon
stocks
Plot disturbance was aggregated to the level of the 17
sampling blocks (A–F, LF1–LF3 and LFE, VJR and
OG3, OG1 and OG2, OP1–OP3) by averaging across
plots within blocks (figure 2). We modelled the
continuous relationships between disturbance and five
response variables representing above-ground carbon
stocks (i.e. Clive and Csim, Cdead, Cdead_imp and
Csim_imp) using nonlinear and general linear models
(family=‘Gaussian’, link=‘identity’) as implemented
in the R ‘stats’ package (R Development Core T 2013).
We used one-way ANOVA with posthoc Tukey HSD
tests for pairwise comparisons to detect general
differences between plots with logging trails or rivers
compared to plots without loggings trails or rivers.We
employed linear mixed effects models to predict dead-
wood carbon stocks from plot attributes (i.e. terrain
steepness, presence of rivers and trails, gulliness,
canopy closure) and their interactions, with forest
stand included in the model as a random effect. We
fitted models using maximum likelihood criterion
implemented with the ‘lmer’ command within the R
package ‘lme4’ (Bates, Maechler and Bolker 2012).We

Figure 2. Forest stands ranked according to disturbance intensity (see table 2). Primary forests (OG1,OG2) are located in theMaliau
Basin Protection Forest Reserve (IUCNCategory Ia) and are part of a continuous forest area that has never been logged. Adjacent to
the Forest Reserve isOG3, whichwas lightly logged in the 1970s and 1990s. TheVirgin Jungle Reserve (VJR, IUCNCategory Ia), has
been logged illegally. Logged forest patches are located in continuous forest (LF1–LF3, LFE); salvage logged forests (A–F) are in areas
that will become fragments in an oil palm landscape.Oil palm standsOP1 andOP2were planted in 2006, andOP3 in 2000.
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computed single predictor models and multiple pre-
dictor models. The final model was chosen using the
step function in lmerTest. We choose the anova
function implemented in lmerTest to estimateP values
for parameters based on Satterthwaite’s approxima-
tions (Kuznetsova et al 2014).

3. Results

3.1. Above-ground carbon stocks in deadwood and
live trees
Above-ground carbon stocks in CWD of forest stands
ranged from Cdead = 0.64 (±0.22) Mg/plot
(∼10.22 Mg ha−1, in primary forest stand OG2) to
2.31 (±0.60) Mg/plot (∼36.93 Mg ha−1, in salvage
logged forest stand A). Above-ground carbon stocks in
live trees ranged from Csim = 0.98 (±0.22) Mg/plot
(∼15.71 Mg ha−1, in salvage logged forest stand E) to
14.34 (±2.61) Mg/plot (∼229.37 Mg ha−1, in the
primary forest stand OG2) (table 2). The proportion
of carbon stored in deadwood varied from 5.4
(±2.2)% in primary forest standOG2 to 63.9 (±6.7)%
in salvage logged forest standA (table 2).

Above-ground carbon stored in live trees (with
wood gravity adjusted to be a function of disturbance)
decreased significantly and exponentially with increas-
ing disturbance, a pattern that holds true at both plot
and stand level (figure 3). Carbon stored in CWD var-
ied considerably among and within forest stands,
showing only weak trends with disturbance. As expec-
ted, the importance of carbon stored in deadwood
increased with increasing disturbance following a

logistic model (figure 3). Live tree carbon estimates
using disturbance adjusted wood gravity, Csim, are sig-
nificantly lower compared to live tree carbon estimates
based on constant wood gravity, especially in more
disturbed plots that are characterized by lower carbon
stocks (table S2, figure S2). Hence, estimates of the
importance of deadwood carbon, Csim_imp, are higher
using live tree carbon estimates with disturbance
adjusted wood gravity (figure S2, top panel, right).
Responses of both live tree carbon and importance of
deadwood carbon to disturbance follow similar trend
using conservative AGBlive and Clive estimates. How-
ever, our analyses indicate amore rapid decline of Csim

at plot level and a more rapid increase in the impor-
tance of deadwood, Csim_imp, with increasing dis-
turbance (figure 3).

In young oil palm plantations (OP1 and OP2)
much of the CWDmass comes fromdead tree remains
with only marginal contributions from cut palm
fronds (mean± SE= 0.11%±0.06). In the mature oil
palm stand, a larger amount of the CWDmass is con-
tributed by palm fronds (34.9%± 13.0).We emphasize
thatmoisturemay have been left in the oil palm fronds
after drying potentially leading to slight overestimates
in the amount of CWD carbon and in the importance
of CWDcarbon inmature oil palm plots.

3.2. LinkingCWDstocks to plot environments
In forest stands, CWD volume, CWD carbon and the
proportion of carbon stored in deadwood, Csim_imp,
increased significantly with disturbance (P< 0.01) in
single predictor linear mixed effects models. Csim_imp

Table 2.Distribution of above-ground carbon stocks (mean and standard error) in live biomass (Csim,Mg/plot) and coarsewoody debris
mass (Cdead,Mg/plot) across SAFE’s forest stands. Estimates of Csim and importance of deadwood carbon versus live tree carbon
(Csim_imp) accounted for changes inwood specific gravity with increasing level of disturbance when computing live tree aboveground
biomass (for details see text). Standswere ranked from lowdisturbance to high disturbance (i.e. number of logged trees relative to the
number of trees that would be standing in each plot if the forest had been left undisturbed) (see alsofigure 2). Forest quality (quality) was
also estimated fromqualitative criteria (scored from 1: very disturbed to 5: not disturbed) for each plot (n: number of plots) and then
averagedwithin forest stands. The relative contribution of coarse woody debris carbon to above-ground carbon stocks (Csim_imp) increa-
ses with disturbance of the forests. Fractional vegetation cover (FCover) does not show consistent trendswith disturbance.

Stand n Csim Cdead Csim_imp (%) FCover (%) Quality

mean se mean se mean se mean se mean ± se

OG2 9 14.33 2.61 0.64 0.22 5.44 2.19 80.1 3.2 5.0 ± 0.0

OG1 9 11.89 2.45 1.69 0.51 14.65 4.63 77.8 3.0 4.7 ± 0.2

VJR 8 3.80 0.54 1.14 0.39 21.89 5.96 76.8 2.5 3.4 ± 0.2

OG3 9 12.84 1.71 1.24 0.33 9.86 2.62 71.1 1.0 4.2 ± 0.2

LF1 9 2.30 0.34 2.10 1.28 32.28 8.43 85.2 2.3 3.0 ± 0.2

D 16 1.13 0.21 1.03 0.39 37.81 8.72 70.9 3.6 2.2 ± 0.1

F 16 2.31 0.32 1.73 0.62 36.64 6.64 72.7 2.3 2.9 ± 0.2

E 16 0.98 0.22 0.80 0.17 50.02 6.47 69.9 2.9 2.1 ± 0.3

LF2 9 4.33 0.34 1.39 0.39 22.10 4.21 79.7 3.0 3.1 ± 0.1

LFE 8 4.07 0.97 0.93 0.30 23.75 7.81 82.5 2.5 3.3 ± 0.3

LF3 9 3.98 0.33 1.13 0.15 23.03 3.75 80.2 2.1 2.9 ± 0.1

C 16 1.28 0.30 1.07 0.28 47.60 5.77 72.6 3.6 2.2 ± 0.2

A 16 1.36 0.33 2.31 0.60 63.91 6.70 71.0 4.4 2.4 ± 0.3

B 16 1.64 0.29 1.75 0.49 48.58 5.02 75.5 3.1 2.7 ± 0.2

OP3 9 0.28 0.12 0.16 0.04 50.85 12.15 60.2 6.5 —

OP2 9 0.37 0.20 2.18 1.15 70.76 9.80 36.6 6.2 —

OP1 8 0.11 0.03 0.42 0.07 76.53 4.73 44.1 7.3 —
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also decreased with increasing terrain steepness
(P= 0.057). However, that effect disappeared after
accounting for disturbance impacts. The proportion
of carbon stored in deadwood was significantly higher
in forest plots with skid trails (P< 0.001), which also
have significantly lower live tree carbon stocks
(P< 0.05). The proportion of carbon stored in dead-
wood was significantly higher in plots located on
ridges as compared to plots in gullies (P< 0.05; Tukey
HSD), but showed no other patterns in response to
plot attributes.We also found significantly higher Csim

stocks on plots without rivers (P< 0.05), but this does
not propagate into effects onCsim_imp.

Final models predicting Csim_imp retained forest
blocks as significant random effect (P< 0.01) and dis-
turbance (P< 0.001) with an interaction effect
between presence of skid trails and gulliness (P= 0.05)
as significant fixed effects. Final models predicting
CWD volume or CWD carbon only retained land use
as significant fixed effect each (P< 0.01).

3.3. Validating tree heights and disturbancemetric
Canopy closure did not show a trend with the
disturbance index at plot or stand level (excluding
heavily managed oil palm stands). The forest quality
score decreased significantly with disturbance across
plots and forest stands (linear model, plot level:
R2
adj = 0.18, P< 0.001; stand level:R2

adj = 0.55, P< 0.01)
(figure 4). Modelled average tree heights were higher
than measured average tree heights but not signifi-
cantly so (see figure S1 in electronic supplementary
material in supporting information), thus validating
the visual estimates of heightmade in thefield.

4.Discussion

4.1. Above-ground carbon changes
Our estimates of CWD stocks for primary forest sites
at SAFE (mass: 21.6 and 57.1 Mg ha−1) lie within the
spectrum recorded for lowland tropical forests (Baker

et al 2004) and are similar to estimates of ∼26 (Saner
et al 2012) and 41 (Gale 2000) Mg ha−1 previously
found for lowland forests in North Borneo. Gale
(2000) estimated CWD mass for pieces with ⩾20 cm
diameter to be ∼45 mg ha−1 (Belalong), ∼41Mg ha−1

(Danum) and ∼69Mg ha−1 (Andalau). Deadwood
mass in undisturbed moist tropical forests has been
estimated to be less than 10% (Delaney et al 1998,
Saner et al 2012), 15% (Uhl et al 1988) and 19%
(Saldarriaga et al 1988) of total above-ground biomass
stocks. This is in line with our findings for the
proportion of deadwood carbon in primary and
lightly-logged forest stands. However, our analyses
clearly show that the importance of deadwood carbon
stocks increase with forest disturbance to around 20 or
30% for twice-logged forest stands and to more than
30 or 40%, and as high as 64% in salvage-logged forest
stands. This indicates that carbon storage and emis-
sions in logged forests may be markedly different to
those in primary forests.

Figure 3. Spatial trends in carbon stocks in response to SAFE’s disturbance gradient. (a) Live tree carbon stocks, Csim, decreased
exponentially (a*exp(b*x)with increasing disturbance fromprimary forest to oil palm. At plot level: a=6.97***, b=−9.81***,
pseudo−R2 = 0.27; at stand level: a= 11.68***, b=−14.38**, pseudo−R2= 0.73. (b) Coarsewoody debris carbon stocks, Cdead,
varied strongly among andwithin forest stands showing no trendwith disturbance. (c) The importance of coarsewoody debris
carbon, Csim_imp, increased logistically with disturbance (A= asymptote, I= curve inflection point, S= scaling factor). At plot level:
A= 0.67***, I= 0.08***, S= 0.08***, pseudo−R2 = 0.43; at stand level:A= 0.67***, I=0.12**, S= 0.09**, pseudo−R2 = 0.74. For
details on attributes see also table 1. *** Significant atP< 0.0001. **: significant atP< 0.01.

Figure 4. Inter-comparison of forest quality estimated from
multiple qualitative criteria with our continuous disturbance
metric. Quality decreased significantly with disturbance
across plots and forest stands (linearmodel, plot level:
R2
adj = 0.18,P< 0.001; stand level:R2

adj = 0.55,P< 0.01).
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The increase in the importance of deadwood car-
bon with disturbance was caused, not by increases in
CWDmass, but primarily by a significant reduction in
the above-ground biomass and carbon of living trees
(figure 3). Borneo’s lowland rainforests are living car-
bon density hotspots (Ruesch and Gibbs 2008). At
SAFE, carbon storage in living trees of unlogged for-
ests is around 229 and 190Mg C ha−1. This is similar
to earlier findings for lowland rainforests in Borneo
(∼229Mg C ha−1) and considerably higher compared
to the Amazonian average of ∼144Mg C ha−1 (Slik
et al 2010) or to conservatively-estimated stocks in
unlogged forests at nearby Danum Valley of
91.9 Mg C ha−1 (Saner et al 2012). Logging removed
large trees at SAFE and caused residual logging
damage, thereby significantly reducing above-ground
carbon stocks in live trees to 20–30Mg C ha−1 in some
of the logged forest stands (7–10 years post-logging).
Our findings imply that logging impacts on live tree
carbon stocks may be stronger than the 28.6% reduc-
tion 22 years post logging previously reported for
Sabah’s lowland forests (Saner et al 2012). To verify
that assumption, we are currently re-measuring bio-
mass annually in the 193 vegetation plots to obtain
estimates of biomass recovery over time.

There was only a weak significant relationship
between absolute CWD stocks and disturbance.
CWDs stocks at SAFE, as elsewhere, are likely to be
caused by a balance between input rates and rates of
decomposition. Assuming that input rates in unmodi-
fied forests are a function of living biomass and do not
vary strongly from year to year (Baker et al 2007), the
lack of a relationship between AGBlive and CWDmass
in our study suggests that current CWD stocks may
reflect pre-logging stocks, which are now slowly
decomposing. However, mean residence time of dead-
wood carbon is assumed to be around six to nine years
(Chambers et al 2001, Rice et al 2004) and the last log-
ging events in the SAFE area took place in the early to
mid-2000s, suggesting that most CWD should have
already decomposed. An alternative hypothesis is that
human activities during selective logging have gener-
ated CWD that offsets naturally low rates of CWD
production. This may help explain the high relative
deadwood carbon stocks observed in some of the for-
est stands characterized by a very low amounts of liv-
ing biomass. Furthermore, some species decay much
slower than others, and species composition may have
changed post-logging. Either way, our finding that dis-
turbed forests increasingly store carbon as dead wood
are likely to impact on carbon flux estimates because
of subsequent decomposition (Blanc et al 2009),
which may temporarily offset carbon sequestration
from the growth of new and surviving trees.

We detected some environmental factors that
influenced the relative amount of carbon stored in
CWD; terrain steepness, land use and the presence of
old logging trails were linked to higher deadwood car-
bon ratios. However, environmental factors other

than disturbance measured at SAFE do not appear to
drive absolute CWD carbon stocks, but rather affect
above-ground live tree carbon, highlighting the com-
plex patterns of topography and disturbance that
underlie spatial variation in above-ground carbon at
landscape scale (Gale 2000, Vieira et al 2011). Given
the potential impact of species composition on CWD
stocks, including biological drivers into models of
CWD stock variation will be the subject of future
studies.

4.2. Implications for carbon budgets
Forest degradation through selective timber harvest-
ing is increasing in frequency and extent (Curran
et al 2004, Asner et al 2005) and has now probably
become a more extensive cause of land use change
than outright deforestation (Asner et al 2009). Satellite
monitoring has revealed the progression of logging
through Central Africa (Laporte et al 2007), the
Amazon (Asner et al 2005), Borneo (Gaveau
et al 2014) and other humid tropical forest regions.

The impacts of widespread logging have recently
regained the attention of conservation ecologists, as
meta-analyses suggest that selectively-logged forests
retain substantial biodiversity, carbon and timber
stocks, with once-logged forest stands retaining 76%
of their above-ground carbon stocks one year after
logging (Putz et al 2012). However, large, landscape-
scale assessments of above-ground carbon changes
along a disturbance gradient in tropical forests are rare
(Berenguer et al 2014). Carbon change studies typi-
cally focus on assessments of either live tree or dead-
wood carbon (Keller et al 2004,Malhi et al 2006, Blanc
et al 2009, Lewis et al 2009). The few studies that quan-
tify both living and dead carbon stocks have often been
carried out in primary forest stands alone (Nasci-
mento and Laurance 2002, Pereira et al 2002, Rice
et al 2004, Malhi et al 2009), or along comparatively
small transects. For example, Saner et al (2012) sam-
pled along linear transects covering just 1 ha in both
selectively logged forests and primary forests and
ignored fallen dead wood, which represented the
majority of deadwood carbon in our plots (>65% in all
forest stands except in LF1, where it was 54.1%).

Our analyses show that deadwood carbon stocks
can represent a large proportion (>50%) of above-
ground carbon stocks in human-modified forests. We
acknowledge that our estimates contain uncertainties.
For example, we use a global algorithm to estimate
above-ground biomass in live trees (although trends
remain stable using different biomass algorithms).
However, we do account for possible changes in mean
stand-level tree wood density over time with dis-
turbance that might occur as the high-density com-
mercial timber species are removed and more light-
wooded successional species become more dominant.
And we show that those factors are not changing our
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clear results, which highlight the need for carbon stock
studies to includeCWDestimates in their calculations.

Forest degradation can alter the balance between
carbon emissions and sequestration in tropical forests.
A global assessment of carbon sinks in the world’s for-
ests estimate a ‘near-sink’ in tropical forests as carbon
emissions from tropical deforestation (∼3 and
2.8 Pg C yr−1) are counterbalanced by carbon seques-
tration in intact forests combined with forests re-
growing after disturbance (∼2.9 and 2.7 Pg C yr−1)
(Pan et al 2011). This assessment was criticized for
overestimating carbon sequestration, as the authors
overlooked tree re-census data and mismatched
between sources used for estimates of forest area
(Wright 2013). The authors based their analyses on
biomass data taken in old-growth forests and up-
scaled to regions. In addition, for the tropics they had
only sparse ground-based data on deadwood carbon
stocks and none from disturbed and re-growing for-
ests. Our results imply that for logged forests, at least
in Southeast Asia, they may have underestimated car-
bon emissions from dead wood and overestimated
carbon storage in live trees.

The patterns found at the SAFE landscape may
ultimately be representative of tropical forests in
Southeast Asia and human-modified tropical forests
elsewhere. Detrimental effects of disturbance may be
less severe in selectively logged tropical forests com-
pared to outright deforestation and agroforestry (Gib-
son et al 2011, Putz et al 2012). However, lower carbon
storage in live biomass and higher temporary carbon
storage in deadwood across degraded forest stands
may have important implications for global assess-
ments of carbon sources and sinks such as those by
Pan et al (2011), as logged forests now represent more
than 30% of all standing tropical humid forests,
implying a strong, time-delayed human footprint.
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