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Abstract
Onaverage, three tropical cyclones (TCs) affect the Republic of Korea each year, causing extensive
damage. To alleviate the TC-induced disasters, theKorean government has invested nearly 4%of its
annual budget in recent decades in prevention efforts; however, the effectiveness of this costly
programhas not been evaluated. This study determinedwhether any evidence shows a reduced
vulnerability to TCs inKorea over 1979–2010 by utilizingmulti-linear regression. Homelessness,
casualties, and property losseswere individually examined. These explained variables were normalized
into the socio-economic circumstances of 2005 before the regression to eliminate the effect of
changing exposure by dealingwith population andwealth at provincial levels. Three potential
explanatory variables based on nationwideweather-station datawere considered, including the
maximumwind,maximum rainfall, and number of affected stations over eachTC’s damaging period.
In addition, the annual per capita income, showing a quasi-linear increasing tendency, was used as an
additional explanatory variable to examine how vulnerability is altered. The results revealed that each
empiricalmodel of homelessness, casualties, and property losses can account for 47%, 57%, and 57%
of each variance, respectively, which is highest when considering all four explanatory variables.
Consistently negative coefficients of the per capita income terms for all damage types suggest that the
vulnerability to TCs has been significantly reduced. Thisfinding appears to be partly the result of the
national prevention effort, although it also can be attributed to other unintended adaptation factors,
such as building codes, industrial structures, and land use.

1. Introduction

A number of coastal countries over the globe
experience extensive socio-economic damage from
tropical cyclones (TCs), amounting to approximately
13 600 casualties and 22 billion US dollars in losses
every year (http://emdat.be). Previous studies consis-
tently argued that TCs will become stronger in
association with global warming (Knutson
et al 2010). Thus, the possible impact of TC intensity
changes on socio-economic damage is one of our
main concerns. TC-induced damage is well corre-
lated with the maximum wind speeds of TCs, which
to the nth power is generally proportional to the
amount of losses (Pielke 2007, Murnane and

Elsner 2012, Zhai and Jiang 2014). Recent studies also
suggested that empirical models of damage show
better performance when more of the relevant TC
intensity parameters are considered independent
variables, such as the TC size, wind direction, and
sustained periods of gusts, in addition to the max-
imum wind speed (Czajkowski and Done 2014, Zhai
and Jiang 2014). However, some studies focused
more on the possible impact of socio-economic
growth on losses. According to these studies, both
human and property losses are reduced by improve-
ments in societal economic capability, which can
enhance adaptation and prevention measures
(Kahn 2005, Toya and Skidmore 2007,
Bakkensen 2013a, 2013b, Kousky 2014). However,
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this negative correlation is not likely valid for all
cases. For example, in some countries, the economic
growth can increase TC-induced damage due to an
increase in high-value properties in coastal areas,
such as vacation spots (Pielke et al 2008, Zhang
et al 2009). Developing countries show a positive
correlation between economic growth and damage
amount, until they exceed a certain tipping point of
per capita income that likely leads citizens to make
rational choices for disaster avoidance (Kellenberg
andMobarak 2008). Furthermore, a positive correla-
tion can be found in countries exposed to more
catastrophic events (Schumacher and Strobl 2011).
Whether there exists a general relationship between
socio-economic losses and other factors, including
hazard intensity and societal growth, is difficult
to say.

This study aims to determine if any evidence of
reduced vulnerability to TCs can be found in the
Republic of Korea, which is a suitable place to seek evi-
dence of reduced vulnerability given that both the
economy and hazards are noticeably growing. The
country is affected by an average of three TCs
annually, and it recently has been struck bymore cata-
strophic TCs with higher wind speeds and heavier
rainfalls than in past years (Kim et al 2006, Choi
et al 2010, Park et al 2011, 2014). The country not only
invested a large portion, approximately 4%, of its
annual budget in disaster prevention but also achieved
a high level of economic progress over the past dec-
ades. The per capita income in 2010 is approximately
five times that in 1979.

The rest of this article is organized as follows.
Section 2 introduces the data used and the methods of
calculating the explanatory and explained variables,
socioeconomic normalization, and regression.
Section 3 illustrates how well the empirical models
work and whether any evidence of reduced vulner-
ability exists. Finally, section 4 provides a summary
and discussion.

2.Data andmethods

Changes in vulnerability to TCswere examined using a
multi-linear regression method. The number of
homeless, casualties, and property losses are consid-
ered explained variables. On behalf of explanatory
variables, weather station-based variables were used,
including the maximum winds, maximum rainfall,
and number of weather stations affected by TCs. Most
preceding studies only considered wind-related para-
meters as possible determinants for damage and
disregarded rainfall (e.g., Murnane and Elsner 2012,
Czajkowski and Done 2014, Zhai and Jiang 2014)
because the best-track data, widely used to represent
TC intensity, provide only the maximum wind speeds
and radii of gusts. For this reason, weather-station data
were applied here to determine the rainfall intensity.
In addition, Korea has a dense nationwide network of
weather stations to supply high-quality wind and
rainfall information.

2.1. Explanatory variables: weather-station data
Sixty weather stations within Korea were utilized to
obtain TC-intensity parameters (figure 1). The max-
imum values of wind speed and rainfall amount based
on daily weather station data over the damage period
for each TC case were regarded as explanatory
variables. The definition of damage period is explained
in detail in section 2.2. Because the affected area is
another important intensity parameter (Czajkowski
and Done 2014, Zhai and Jiang 2014), the number of
affected stations was calculated by counting stations at
which either the daily maximum wind speed or the
daily accumulated rainfall exceeded critical thresholds.
Using a method similar to that of Donat et al (2011),
the critical values ofmaximumwind speed and rainfall
were set at each station’s 90th percentiles, averaging
7.9 m s−1 and 29.7 mm, respectively. These threshold
values were regarded as the lower limits at which to
incur the losses.

Figure 1.Province-level regions defined, locations of weather stations used (black dots), climatological (black arrow and thick black
line) and total tracks (thin gray lines) of TCs damaging the Republic of Korea.
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2.2. Explained variables: socio-economic loss data
andnormalization
The data on socio-economic losses were obtained
from the National Disaster Information Center
(NDIC) of the Korean government. The data are
officially verified by the government and are open to
the public through the web site, http://safekorea.go.kr.
Although the NDIC data provide information on the
number of homelessness, number of casualties, and
amount of property losses for each natural disaster,
along with the duration of the disaster, the data do not
specify the sources of damage. Thus, damage is defined
as TC-induced damage when the reported damage
period overlaps with any days on which a TC center is
located within 5° from the coastline of Korea. The TC-
location information was obtained from the best-track
data issued by the Regional SpecializedMeteorological
Centers—Tokyo. We considered TCs of the magni-
tude of typhoons (maximum wind⩾ 64 knots), tropi-
cal storms (34 knots⩽maximum wind <64 knots),
and tropical depressions (maximumwind <34 knots).
The TC best-track data are composed of 3 or 6 h
intervals, which are too coarse to determine a more
accurate damage period over Korea. Thus, the data
were linearly interpolated into 1 h intervals, as in Park
et al (2011, 2014). The union of the two defined
damage periods, one from the NDIC and the other
from the best-track data, is considered the damage
period. According to this approach, 92 TCs caused
damage over the period of 1979–2010 (table 1). In
some cases, the damage period is too long, e.g., >10
days. This consequence is caused by (1) two TCs
successively affectingKorea or (2) a TCarriving during
a monsoon period. Here, because these cases can also
be used to evaluate changing vulnerability, we took all
12 cases into account to have as many samples as
possible. Excluding these cases does not significantly
change our results.

Property losses include the direct damage of
industrial, public, and private facilities in total eco-
nomics, and the losses are adjusted by the value of
money in 2005. Basically, data on light property losses
are not gathered, but there is no objective criterion for
light loss. Casualties include the number of deaths,
missing persons, and injuries of both the insured and
uninsured. The homeless are defined as people who
lost their homes due to a disaster. The finest level of
loss data are provided at the city levels, referred to as Si,
Gun, and Gu in Korean. However, the data are not
well organized for use in analysis; thus, it is necessary
to reorganize them individually. Because the number
of city-level districts is too large to take all of them into
account, province-level aggregate data were used in
this study, including the Sudo, Hoseo, Honam,
Yeongnam, and Gwandong areas (figure 1). There are
more than 260 city-level districts in the country.

To reduce spatiotemporal changes in socio-eco-
nomic factors that are able to significantly alter expo-
sure to TCs (Neumayer and Barthel 2011, Chavas

et al 2013), we utilized normalizing factors based on
the population and per capita wealth at the province
level, following Pielke et al (2008). Equation (1)
expresses the method used to obtain nationwide
aggregate normalized loss data from the province-level
data caused by the ith case of landfall TC
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where Ai,2005, Ci,2005, and Di,2005 indicate the nation-
wide aggregate homelessness, casualties, and property
loss, respectively, which are normalized to the refer-
ence year 2005. The variables Ai,y,r, Ci,y,r, and Di,y,r

represent the number of province-level homeless,
number of casualties, and amount of property loss
over region r in a relevant year y, respectively. The
variables Py,r and P2005,r are the province-level popula-
tions over region r in year y and 2005, respectively.
Similarly, Wy and W2005 present per capita wealth in
year y and 2005, respectively.

2.3. Empiricalmodel design and vulnerability
Because many previous studies utilized per capita
income as an indicator of resistance to disasters, higher
income is often associated with less damage and
vice versa (Kahn 2005, Toya and Skidmore 2007,
Bakkensen 2013a, 2013b, Kousky 2014). Annual per
capita income was included as an explanatory variable
in addition to the three TC-intensity parameters
above. Equation (2) describes the lossmodel suggested
for the ith case of landfall TC
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where Di,2005 is the normalized loss by the ith case and

Y is the intercept. The variables αV ,i
βR ,i and γNi

indicate the maximum wind, maximum rainfall, and
number of affected stations, respectively, which are
the intensity parameters of the ith case. The parameter

δIy represents the per capita income in year y in which
the ith case occurred. The per capita income was
adjusted to reflect 2005 monetary value. The variables
α, β, γ, and δ are the exponential coefficients of the
maximum wind, maximum rain, number of affected
stations, and per capita income, respectively. The
exponential coefficients are composed of coefficients
a, b, c, and d divided by S ,Vlog10

S ,Rlog10
S ,Nlog10

and

S ,Ilog10
i.e., standard deviations of common logarithms
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Table 1. List of TCs damaged Republic of Korea.

Name Year/month Name Year/month Name Year/month Name Year/month Name Year/month

IRVING 1979/8 HAL 1985/6 ROBYN 1990/7 TINA 1997/8 MATSA 2005/8

JUDY 1979/8 JEFF 1985/8 ZOLA 1990/8 WINNIE 1997/8 NABI+KHANUN 2005/9

IDA 1980/6 KIT 1985/8 ABE 1990/9 OLIWA 1997/9 EWINIAR 2006/7

NORRIS 1980/8 LEE+MAMIE 1985/8 HATTIE 1990/10 YANNI 1998/9 WUKONG 2006/8

ORCHID 1980/9 ODESSA+PAT 1985/8 CAITLIN 1991/7 NEIL +OLGA 1999/7 SHANSHAN 2006/9

JUNE 1981/6 BRENDA 1985/10 GLADYS 1991/8 ANN 1999/9 MAN-YI 2007/7

OGDEN 1981/7 NANCY 1986/6 MIREILLE 1991/9 DAN 1999/10 PABUK 2007/8

AGNES 1981/8 ROGER 1986/7 JANIS 1992/8 BILIS+PRAPIROON 2000/8 NARI 2007/9

CLARA 1981/9 VERA 1986/8 POLLY 1992/8 SAOMAI 2000/9 KALMAEGI 2008/7

CECIL 1982/8 ABBY 1986/9 TED 1992/9 CHEBI 2001/6 MORAKOT 2009/8

ELLIS 1982/8 THELMA 1987/7 PERCY 1993/7 TORAJI 2001/7 DIANMU 2010/8

KEN 1982/9 VERNON 1987/7 ROBYN 1993/8 RAMMASUN 2002/7 KOMPASU 2010/9

FORREST 1983/9 DINAH 1987/8 BRENDAN 1994/7 RUSA 2002/8 MALOU 2010/9

ALEX 1984/7 noname 1988/8 DOUG+ELLIE 1994/8 SOUDELOR 2003/6 MERANTI 2010/9

ED 1984/7 JUDY 1989/7 SETH 1994/10 MAEMI 2003/9

HOLLY 1984/8 KEN 1989/8 FAYE 1995/7 MINDULLE 2004/7

GERALD 1984/8 VERA 1989/9 JANIS 1995/8 MEGI 2004/8

JUNE 1984/8 OFELIA 1990/6 PETER 1997/6 SONGDA 2004/9
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of the maximum wind, maximum rain, number of
affected stations, and per capita income, respectively,
to compare the magnitudes of α, β, γ, and δ directly
with each other. We conducted a multi-linear regres-
sion after applying common logarithms to both sides.
Thus, the zero values of loss are not included when
training each model of homelessness, casualties, and
property loss. The number of TCs considered is
displayed by parentheses in table 2.

Considering the meaning of the exponential coef-
ficient of the per capita income term, the term implies
the degree of vulnerability to TCs. The damage
amount is generally determined by exposure, vulner-
ability, and strength of the event (Neumayer
et al 2014). To the extent that our model successfully
captures the intensity of the physical hazard itself, and
furthermore, that normalization of the damage data
successfully removes the effect of spatiotemporal
variability of exposure, then the other factor, that is,
the per capita income term, largely represents changes
in vulnerability. Hence, because the per capita income
in Korea has quasi-linearly risen (figure 4(d)), the
negative sign of its coefficient indicates the vulner-
ability has been reduced and vice versa.

3. Results

Even though the Republic of Korea is not a vast
country, the change in the exposure to TCs can vary by
region. The country is located in Northeast Asia, and
TCs that affect the country climatologicallymove from
the Philippine Sea to the East Sea via the South Sea of
Korea (see figure 1). Thus, the Southeastern part of the
Korean peninsula is generally subject to the danger
semicircle, i.e., the right half circle of the TC direction
of progress wherewind speed ismuch greater than that
in the left half circle. Accordingly, the Yeongnam area
is most exposed to TCs. Approximately 29%, 45%,
and 44% of the total homelessness, casualties, and
property losses, respectively, are found in this region
where the population and wealth represent only
approximately 28% of the total economy. In addition,
each region shows a distinct socio-economic growth
rate. For the past three decades, the Korean population
has significantly changed. A noticeable increase is only
found in the Sudo, Hoseo, and Yeongnam areas; the
population has decreased in other regions
(figure 2(a)). The time series of regional wealth show
consistent positive trends due to a sharp increase in
per capita wealth, although the rates vary among
regions (figure 2(b)). These regional variations
strongly suggest that the exposure changes need to be
viewed fromboth spatial and temporal sides.

The normalization technique described in
section 2was applied to the raw damage data with con-
sideration of the above regional factors. Figure 3 shows
the non-normalized and normalized losses in each
area, as well as the national aggregation of losses. The

overall trends decrease after the normalization.
Homelessness showed consistently negative trends for
all areas after normalization (figure 3(b)). This finding
indicates that in recent years, housing damage by
flooding and wind gusts has decreased, possibly due to
improved flood control and/or changes in building
codes. Casualties also show negative trends, except in
Gangwon, for both normalized and non-normalized
time series (figures 3(d) and (e)). Property losses show
increasing trends before the normalization. After nor-
malization, however, the trends become negligible
(figures 3(g) and (h)). Consequently, the normalized
aggregates in the numbers of homeless and casualties
for the entire nation have decreased considerably,
whereas property losses have decreased slightly
(figures 3(c)–(i)).

In contrast, intensity parameters have consistently
strengthened in terms of the maximum wind, max-
imum rainfall, and number of affected stations
(figures 4(a)–(c), in close agreement with previous
studies. For example, Park et al (2014) determined
that the maximum wind speed of TCs at landfall over
East Asia has significantly increased because large-
scale environments are favorable for TC development.
Increased sea-surface temperature, weakened vertical
wind shear, and anomalous cyclonic low-level circula-
tion in the vicinity of the East Asian land mass can
intensify TCs. Moreover, TC-induced rainfall has
increased as well due to upper-tropospheric jet shifts
and low-level moistening (Kim et al 2006, Park
et al 2011). The increase in the number of affected sta-
tions is attributable to enhanced TC landfall intensity,
which can lead to an increase in the number of weather
stations where wind speed and/or rainfall amounts
exceed their threshold values used in determining if a
station is affected by a TC.

Using the three intensity parameters above and per
capita income as explanatory variables, a multi-linear
regression model for each of the three damage types
was developed. Note that the variance inflation factors
among all the explanatory variables are smaller than
2.7, indicating that the model does not suffer from a
multi-collinearity problem. Table 2 shows the adjus-
ted R-squared values of each model with various com-
binations of one to four explanatory variables. All
models show the highest adjusted R-squared values
when all four explanatory variables are applied. A lar-
ger R-squared value generally indicates the model can
explain a larger portion of the real variance. The mod-
els of homelessness, casualties, and property losses
with four explanatory variables can account for 47%,
57%, and 57% of each variance, respectively, although
all models tend to underestimate damages at both the
high and low extrema (figure 5). For property losses,
the use of only three variables, maximum wind, max-
imum rainfall, and number of affected stations, is ade-
quate because the addition of per capita income
increases the R-squared value by only 0.01–0.54. For
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the remaining damage types, adding per capita income
is important in enhancing theR-squared value.

When only one explanatory variable is applied, the
maximum rainfall is the most influential factor for
determining the amount of all types of damage
(table 2). The adjustedR-squared values are 0.33, 0.35,
and 0.40 for the number of homeless, number of
casualties, and amount of property loss when max-
imum rainfall is solely applied as an explanatory vari-
able. Although the adjusted R-squared value for the
property loss model of the number of affected stations

is 0.44, just slightly larger than that of maximum rain-
fall, the values for homelessness and casualties are only
0.21 and 0.26, respectively. The least influencing factor
is the maximum wind for which the adjusted R-
squared values are only 0.08, 0.14, and 0.23 for home-
lessness, casualties, and property losses. This finding
suggests that maximum rainfall plays the most impor-
tant role in determining the intensity factors for
Korea, that is, most damage is caused by hydrological
extremes induced by heavy rainfall. The same conclu-
sion is reachedwithout considering the TCs during the

Figure 2.Time series of regional (a) population and (b)wealth.Y-axis is a log scale.

Figure 3.Time series of the (a)–(c) number of homeless, (d)–(f) number of casualties, and (g)–(i) amount of property loss for each TC
landfall case. Uppermost, center, and lowermost rows indicate non-normalized, normalized regional losses, and normalized
nationwide aggregate losses, respectively. Y-axis is a log scale.
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monsoon period (not shown). The relative impor-
tance of wind and rainfall intensity effects on the TC
damage in Korea is possibly associated with the topo-
graphy of the Korean peninsula, which is character-
ized by several high mountains particularly along the
East coast. These mountains can protect the country
against strong wind gusts, while they can strengthen
rainfall intensity via low-level moisture convergence
and orographic lifting (Buzzi et al 1998, Park and
Lee 2007).

Finally, we seek evidence of reduced or enhanced
vulnerability by using each regression coefficient of the
explanatory variables (table 3). For all models of
homelessness, casualties, and property losses, the per
capita income terms exhibit negative trends, which are
statistically significant at or above the 90% confidence
level. This result suggests that the vulnerability to TCs
in homelessness, casualties, and property losses has
considerably decreased with time. An examination of
the regression coefficients of other variables and their
significances reveals that all coefficients of the home-
lessness, casualties, and property loss models are sta-
tistically significant. This indicates that all intensity
parameters are influential to all damage types. In

addition, to compare the magnitudes of regression
coefficients re-emphasizes that taking the maximum
rainfall into account as an explanatory variable is very
important in the case of Korea, given that the smallest
coefficient of maximum rainfall is 0.32 while those of
maximum wind and the number of affected stations
are 0.21 and 0.26, respectively.

In the present study, direct connections between
vulnerability reduction and prevention efforts were
not investigated. However, this study suggests the pos-
sibility that the efforts may have reduced vulnerability
because Korea experienced outstanding improve-
ments in weather forecasting and prevention planning
during the late 1980s and 1990s, as shown in table 4.
The Korean Meteorological Administration started
the TC-track forecasts after 1984, the application of
numerical weather prediction after 1991, and the use
of supercomputers for weather forecasting that greatly
improved the prediction accuracy and lead time after
1999. In addition to forecasting, Korea has bench-
marked and adopted successful disaster prevention
plans from other developed countries to efficiently
establish and implement its own plans. Particularly,
the period of 1980–2004 was the build-up period for

Figure 4.Time series of (a)maximumwind speed, (b)maximum rainfall, (c) the number of affected stations, and (d) per capita
income for eachTC landfall case. In case of per capita income, only the year TCs stroke is plotted. Only for (d), y-axis is a log scale.

Table 2.AdjustedR-squared values of themodels for homelessness, casualties, and property loss. Bold indicates the highestR-squared for
eachmodel. NAS and IC indicate the number of affected stations and per capita income, respectively. Parentheses indicate the number of
cases that incurred each type of damages. Note that for allmodels F values are statistically significant at the 95% confidence levels.

Wind+Rain +

NAS+ IC

Wind +Rain +

NAS Wind+Rain Wind+NAS Rain +NAS OnlyWind Only Rain OnlyNAS

Homeless(75) 0.44 0.36 0.34 0.24 0.36 0.08 0.33 0.21

Casualties(72) 0.55 0.44 0.39 0.31 0.42 0.14 0.35 0.26

Property losses(86) 0.55 0.54 0.48 0.50 0.49 0.23 0.40 0.44
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prevention. The Korean National Assembly reviewed
and revised the Countermeasures Against Typhoons
and Floods Act in 1981, which expanded the Disaster
Relief Center. The Disaster Prevention Division was
reorganized and expanded into two departments, one
for disaster planning and the other for disaster preven-
tion, in 1987. In the same year, the Korean govern-
ment established the Central Civil Defense and
Disaster Management Institute. The national 119 res-
cue service was established and expanded over
1981–1992. Thus,major improvementsmainly occur-
red in the 1990s, and these improvements are likely be
related to the decrease in vulnerability to TCs.

4. Summary anddiscussion

This study suggests that the national prevention effort
may have reduced the vulnerability to TCs in Korea
over the period of 1979–2010 on the basis of a multi-
linear regression method. Here, the three intensity
parameters, maximum wind speed, maximum rain-
fall, and number of affected stations, were derived
from weather station—based observations. These
parameters, in addition to per capita income, were
used to train the regression models for three damage
types, including homelessness, casualties, and prop-
erty losses, which were normalized to 2005 by
considering spatiotemporal variations in socio-eco-
nomic growth, including population, inflation, and

wealth. The regressionmodels were designed such that
the intensity parameters and per capita income are the
explanatory variables, and the normalized damages
are the explained variables. The four explanatory
variables explain 47%, 57%, and 57% of the variances
of homelessness, casualties, and property losses,
respectively. Among these explanatory variables, max-
imum rainfall appears to be themost influential factor.
The significant negative values of regression coeffi-
cients of the per capita income terms for all models
indicate that the vulnerability to TCs is reduced.

This study shows a possible link, but not direct
connections, between reduced vulnerability and pre-
vention effectiveness. In reality, the reduced vulner-
ability can also result from other preventionmeasures,
such as stricter building codes, industrial structures,
and land use policy. In early years, i.e., before the
1980s, the country was largely based on agriculture
and light industry, and farmland was the dominant
land-use type. Many houses were wooden structures.
Thus, the overall socio-economic circumstances were
more vulnerable to TCs. In addition, although four
explanatory variables can account for approximately
half of the variances of all damage types, the remaining
variances are not explained. They could be related to
factors disregarded in the present study (e.g., wind
direction, smaller-scale exposure changes, etc),
unknown, or random. Hence, future studies should
attempt to (1) resolve whether the impact of each pre-
vention effort and other adaptation factors can be

Figure 5.Q–QPlots of themodels on (a) homelessness (#), (b) casualties (#), and (b) property loss (KRW). Both of x- and y- axes are
log scales.

Table 3.Each regression coefficient ofmaximumwind speed,maximum rainfall, the num-
ber of affected stations, and per capita income for homelessness, casualty, and property-loss
models. Parentheses represent standard error of regression coefficient. Bold (bold and italic)
indicates the coefficient is statistically significant at the 90% (95%) confidence levels. NAS
and IC indicate the number of affected stations and per capita income, respectively.

Wind Rain NAS IC

Homeless 0.21 (±0.11) 0.45(±0.12) 0.30(±0.12) −0.35(±0.10)
Casualties 0.23(±0.07) 0.32(±0.08) 0.26(±0.08) −0.29(±0.07)
Property losses 0.33(±0.10) 0.35(±0.13) 0.47(±0.13) −0.17(±0.09)
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clearly divided and (2) determine what factors are
responsible for the remaining variances.
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