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Abstract
Urbanization, amajor driver of global change, profoundly impacts our physical and social world, for
example, altering not just water and carbon cycling, biodiversity, and climate, but also demography,
public health, and economy.Understanding these consequences for better scientific insights and
effective decision-making unarguably requires accurate information on urban extent and its spatial
distributions.We developed amethod tomap the urban extent from the defensemeteorological
satellite program/operational linescan systemnighttime stable-light data at the global level and created
a new global 1 kmurban extentmap for the year 2000.Ourmap shows that globally, urban is about
0.5%of total land area but ranges widely at the regional level, from 0.1% inOceania to 2.3% in Europe.
At the country level, urbanized land varies from about 0.01 to 10%, but is lower than 1% formost
(70%) countries. Urbanization follows landmass distribution, as anticipated, with the highest
concentration between 30°N and 45°N latitude and the largest longitudinal peak around 80°W.
Based on a sensitivity analysis and comparisonwith other global urban area products, we found that
our global product of urban areas provides a reliable estimate of global urban areas and offers the
potential for producing a time-series of urban areamaps for temporal dynamics analyses.

1. Introduction

The transformation of terrestrial environments by
urbanization has been accelerating over the past 30
years (Chen et al 2014), and is likely to continue due to
population growth andmigration. Accompanying this
process is a range of environmental consequences,
with important socio-economic implications (Pou-
manyvong and Kaneko 2010). Urban expansion into
vegetated lands compromises ecosystem services by
reducing photosynthetic production, altering carbon
flux, and threatening biodiversity (Imhoff et al 2004,
Foley et al 2005, Parshall et al 2010, Zhou et al 2010,
Martínez-Zarzoso andMaruotti 2011, Zhou et al 2013,
Aronson et al 2014). Biophysical changes associated
with impervious surfaces modify energy and water
partitioning and thus influence local and regional
surface climates (Hansen et al 2001, Kalnay and

Cai 2003). Built environments not only trap heat and
influence local precipitation patterns but also degrade
air quality by changing atmospheric chemistry and
aerosol composition (Stone 2008). Urban growth also
alters social demography and economic conditions,
especially in developing countries, and change energy
and resource demands. These alterations in environ-
mental and social conditions interact to influence
public well-being and health (Gong et al 2012, Van de
Poel et al 2012). Understanding these interactions is
essential to tackle ongoing global changes. The level of
understanding hinges greatly on the availability of
accurate and consistent information on the distribu-
tion and extent of urban areas.

Although census and survey data have been a tra-
ditional source for creating urban maps, spatially-
explicit urban mapping has been increasingly attemp-
ted using remotely sensed observations, especially over
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large geographical regions (Zhou and Wang 2007,
Zhou andWang 2008, Schneider et al 2009, Zhang and
Seto 2011). During the last few decades, there has been
a proliferation of remote sensing-based urban maps
for a wide range of scales. In particular, satellite multi-
spectral images, routinely available from Landsat and
other satellites, provide valuable spectral data formap-
ping cities and impervious surfaces worldwide, and
such products offer critical information to examine
human-environment interactions for scientific studies
and assessments of social and environmental con-
sequences of urbanization (Homer et al 2007). Recent
technological advances in remote sensing, such as
high-resolution imaging and airborne LiDAR, make it
possible to derive detailed 3D urban structures at the
individual building level (Zhang et al 2006). At the
other end of the spectrum, enhanced computing
power together with increased availability of remote
sensing data permit generating reliable urbanmaps for
the entire globe, consistently (Schneider et al 2009).

Existing global urban maps derived from remote
sensing, offer spatially-consistent sources of informa-
tion valuable for global environmental studies,
although these products have their own limitations
(Stone 2008, Parshall et al 2010, Zhou et al 2010). One
product in wide use is the global urban map created
from the moderate resolution imaging spectro-
radiometer (MODIS) data circa 2001–2002 by the
MODIS land-cover team (Schneider et al 2009,
Schneider et al 2010). This map represents a major
advance in mapping urban areas globally, attributable
particularly to the high quality of spectral measure-
ments; it also overcomes some deficiencies, such as
inconsistencies in urban definition, scale, and data
quality, in earlier global maps derived from other
sources (Schneider et al 2010). Despite these recent
advances, challenges and difficulties still exist in gen-
erating consistent and accurate global urban area
maps and derived products. For instance, it is challen-
ging or labor-intensive to build temporally resolved
maps/products, therefore, limiting application for
dynamic analysis.

The defense meteorological satellite program/
operational linescan system (DMSP/OLS) nighttime
stable light (NTL) data can provide a systematically
collected global dataset, and has a number of unique
features that meet the needs of widescale, frequently
repeated surveys of urban growth (Henderson
et al 2003, Elvidge et al 2009). Most importantly, the
DMSP/OLSNTL data have a reasonable temporal cov-
erage at the global level from 1992 to present. The
DMSP/OLS NTL data offer potential for regional and
even global urban maps and their application in stu-
dies of human activities, such as population density,
economic activity, energy use, and CO2 emissions
(Imhoff et al 1997, Doll et al 2000, Elvidge et al 2007a,
Zhang and Seto 2011, He et al 2014, Naizhuo
et al 2015).

Although the use of DMSP/OLS NTL data has
been demonstrated in previous studies of urban area
mapping, it still has several shortcomings, such as lim-
ited dynamic range, signal saturation in urban centers
resulting from standard operation at the high gain set-
ting, lack of a well-characterized point spread function
(intensity profile from point source), and lack of a
well-characterized field of view (a measure of the spa-
tial resolution) (Elvidge et al 2010). It has been docu-
mented that the DMSP/OLS NTL data tend to
exaggerate the size of urban areas compared to the
Landsat analysis, because OLS-derived light features
are substantially larger than the lighting sources on the
ground (Imhoff et al 1997, Henderson et al 2003,
Elvidge et al 2009).

Threshold techniques have been developed to
address these challenges of urban mapping from NTL
data and showed potential in generating reasonable
urban products at the regional and national scales
(Imhoff et al 1997, Henderson et al 2003, Amaral
et al 2005, Kasimu et al 2009). However, under- and
over- estimation of urban area extent has been amajor
issue when using a single threshold in regional or
national urban mapping. Zhou et al (2014) developed
a cluster-basedmethod to estimate optimal thresholds
for mapping urban extent using DMSP/OLS NTL for
the US and China. Based on this method, the optimal
threshold for each potential urban cluster is estimated
according to urban cluster size and the overall night-
light magnitude in the cluster, resulting in specific
thresholds for each urban cluster, thus reducing sig-
nificantly over- and under- estimation in general
thresholdmethods.

This study aims to build a globally consistent and
temporally updateable urban extent map from the
DMSP/OLS NTL data. The global map is created by
extending the cluster-based method with a new para-
meterization scheme. This new global map is eval-
uated by comparing it to several existing global
products and also by performing sensitivity analyses.

2.Data andmethod

2.1.Data
The major data used in this study include the DMSP/
OLS NTL, high spatial resolution land cover, water
mask, and gas flare mask. The DMSP/OLS NTL
measures lights on the Earth surface from cities and
settlements with persistent lighting, and other sources
such as gas flares, fires, and illuminated marine vessels
(Zhang et al 2013). The data were recorded as digital
number (DN) from 0 to 63 with a 1 km spatial
resolution, spanning −180° to +180° in longitude and
−65° to +75° in latitude. Annual cloud-free compo-
sites were built using the highest-quality data based on
a number of constraints (Elvidge et al 2009). The NTL
data in the year 2000 were chosen to build the global
product of urban areas for validation and comparison
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with other similar products. The water mask was
derived from MODIS 250 m land–water mask
(MOD44W), and gas flare data were obtained from
the NOAA national geographic data center (Elvidge
et al 2009).

High-resolution land cover data for the US in 2006
and China in 2005 were obtained from US Geological
Survey National Land Cover Dataset (NLCD) and
Resources and Environment Data Center of the Chi-
nese Academy of Science, respectively, both with an
original spatial resolution of 30 m (Homer et al 2004,
Liu et al 2010). Land cover types mainly include open
water, urban, evergreen forest, deciduous forest,
shrub, grassland, cropland and wetland. The land-
cover data for China were built through visual inter-
pretation of Landsat TM images and aggregated to a
1 km scalemap of each land cover type (Liu et al 2010).
The US land-cover data layer was also aggregated from
30m to 1 km spatial resolution, resulting in an urban
percentagemap.

A unified definition of ‘urban’ has not been
reached, and thus the estimates of global urban land
vary widely with different definitions in previous stu-
dies (Liu et al 2014). In this study, similar to Zhou et al
(2014), we define urban land as those 1 km pixels with
urban percentages larger than 20%, consistent with
the developed areas in the US NLCD dataset (Fry
et al 2011).

2.2.Method
2.2.1. Cluster-basedmethod
The threshold techniques were developed to delineate
urban extent based on the DMSP/OLS NTL observa-
tion to account for the bias of light features in NTL
being substantially larger than the lighting sources on
the ground. The threshold is defined as the DMSP/
OLS DN value above which the pixel is classified as
urban area. Moreover, urban pixels tend to group
together as clusters. As such, our cluster-basedmethod
generally follows this logic by segmenting theNTL into
clusters and delineates urban extent in each cluster
based on the NTL DN values and a cluster-specific
threshold.

Our method for mapping global urban area is an
extension of the cluster-based method originally
developed in Zhou et al (2014). This revised method

includes five major steps: data preprocessing, urban
cluster segmentation, parameterization for the logistic
model, threshold estimation, and urban extent deli-
neation (figure 1). First, as a pre-processing step, water
and gas flare pixels are excluded from the NTL data.
Second, using amarker-controlled watershed segmen-
tation algorithm (Zhou et al 2014), the processed NTL
data were segmented into potential urban clusters,
each consisting of groups of similar and spatially con-
tinuous pixels. Not all pixels in each potential cluster
are urban. More details about segmentation can be
found in Zhou et al (2014).

Third, an optimal threshold for each cluster is then
estimated to delineate the actual urban area from the
NTL data in each potential urban cluster. To estimate
the optimal threshold, we developed a logistic model
with two parameters a/b and β′, as formulated in
equations (1) and (2). This model ingests cluster-level
NTL information and gives an estimate of optimal
threshold for delineating urban extent in each cluster.
Building on the work by Zhou et al (2014), we devel-
oped a parameterization method to estimate a/b and
β′ and calculated these two parameters for each coun-
try (see next section 2.2.2). Here our parameterization
method was developed from the NTL data in years
2006 and 2005 for the US and China, respectively, in
order to be temporally consistent with the available
high spatial resolution land cover dataset. The optimal
threshold is calculated as follows

=
+ ′

× − +

β− ′ ′−

( )
( )

NTL
1

1 e

NTL NTL NTL , (1)

x x
thld

max min min

mean

′ = ⋅( )x Sln NTL , (2)
a
b mean

where x′ is the index for estimating the optimal
threshold based on combined effects of both mean
lightingmagnitude and cluster size, S is the cluster size,
NTLmean is the mean NTL DN in each cluster, and a/b
is the parameter for the relative contribution of each of
two effects. NTLthld is the optimal threshold to
delineate the urban area in the potential cluster, and
x′mean is the mean value of x′. NTLmin and NTLmax are
minimum and maximum NTL DN in the study area,
and β′ is the parameter in the logisticmodel.

Figure 1.The cluster-based urbanmappingmethod.
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Fourth, we estimated the optimal threshold value
for each cluster identified from the year 2000 global
NTL data at the global level using the logistic model
and the derived parameters in step 3. Finally, we map-
ped the urban extent according to the estimated opti-
mal threshold in each cluster. We chose the NTL data
in the year 2000 to build the global urban area product
because of the availability of other datasets such as
MODIS urban product close to this time period for
validation and inter-comparison.

2.2.2. Parameterization of the logistic model
In this study, we developed a parameterizationmethod
to estimate the key parameters (a/b and β′) in the
logistic model using the NTL data only. As reported by
Zhou et al (2014), the parameters of a/b and β′ in the
logistic model show slight difference in the US and
China at the country level, although the optimal
thresholds are not highly sensitive to these parameters.
We calculated these two parameters at the regional
level by dividing the US into nine Census regions, and
dividing China into three economic regions (figure 2).
The optimal thresholds derived from high spatial
resolution reference data for the US in 2006 and for
China in 2005 were used to estimate these two
parameters in the logistic model in each region
according to the method by Zhou et al (2014). We
performed this analysis at the regional level for several
reasons. First, we can collect a number of samples to
evaluate the variations of these two parameters.
Second, because of differences in factors such as
socioeconomic development and geography, these
regions can cover a range of urbanization. Third, it can
reduce the possibility of separation of potential urban
clusters across different regions. The possibility of
shared clusters across boundaries is high atfiner spatial
units, such as province or state.

In order to extend the logistic model in other
regions without high spatial resolution data, we ana-
lyzed the two parameters (a/b and β′) in the logistic
model for all regions in the US and China. We found
that the parameter a/b has a narrow distribution

around 0.23 with a standard deviation of 0.01
(figure 3(a)), and that the parameter β′ is highly corre-
lated to regional nightlight mean magnitude for each
region (figure 3(b)).

Based on this analysis, we took the mean value of
0.23 for a/b, for the logisticmodel in each country. The
parameter β′ for each country was derived from the
regression equation between this parameter and regio-
nal nightlight mean magnitude (figure 3(b)). It is
worth noting that the parameterization scheme could
also be applied at a sub-national level to further
improve urban mapping in large countries, particu-
larly for regional scale urban studies. Although this
paper is focused on global urban mapping, we eval-
uated the sensitivity of the optimal thresholds to these
two parameters to evaluate the reliability of this para-
meterization scheme (see the results and discussion
section below).

3. Results and discussion

3.1. Globalmap of urban extent
The newly developed 1 km urban product was aggre-
gated to 1/12° as a percentage map (figure 4) to be
comparable with other previously published products.
Based on this new map, overall urbanization at the
global level is about 0.54%, which is close to 0.49%
derived from MODIS observations (Schneider
et al 2009). Urban areas show large spatial hetero-
geneity, globally. The global distribution of urban area
as depicted in figure 4 appears realistic, and it is not
surprising that Europe shows the largest urbanized
fraction (2.3%) as compared with other regions, with
North America next at 1.2%. The urbanized land in
Asia, Latin America, and Former Soviet Union (FSU),
and Oceania are 0.7%, 0.4%, 0.2%, and 0.1%,
respectively. The urbanized land in Africa is less than
0.1%, the lowest among all regions.

At the country level, urban land area varies from
lower than 0.01% to higher than 10%.Urban land area
in most countries (>70%) is less than 1%, and more

Figure 2.Map of regions for parameterization and sensitivity analysis.
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than 90% of countries have urban land area of less
than 5% (figure 5). In some regions such as FSU,
urban land area in all of the countries within the region
covers less than 1% of total land area. Urban land area
in large countries such as Russia, with a large amount
of areas in high latitude zones, is close to 0.1%. The
countries with relatively high urban land area are

mostly in Europe. Among the large countries, the US
has urban land area ofmore than 1%.

Major urban clusters are further uncovered by the
longitudinal and latitudinal distributions of both
urban area and percentage (figure 6). The latitudinal
zones around 30° N have the largest urban area due to
contributions from China and the US, while the

Figure 3.The frequency of a/b for 12 regions (a) and the relationship between β′ and regional nightlightmeanmagnitude (b). a/b and
β′ are the parameters in the logisticmodel. The numbers correspond to those infigure 2.

Figure 4.Aglobalmap of urban extent derived fromDMSPnightlight data. The two enlarged example areas compare this new
product with thefive previously published global urbanmaps.
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latitudinal zones with the highest urbanized percen-
tage move North, around 45° N, largely due to the
influence of European countries. The longitudinal dis-
tribution of urban area shows several large centers.
One of themost evident ones is around 80°W, encom-
passing the ‘Boston–New York–Washington’ corridor
of the US Northeast region, and this longitudinal dis-
tribution of urbanized percentage is consistent with
that of total urban land area. This type of analysis is
useful for developing adaptation and risk manage-
ment measures for urban infrastructure, transporta-
tion, energy, and water systems when considered
together with other factors such as climate variability
and change, and high impact weather events.

3.2. Sensitivity analysis of logisticmodel parameters
Two sensitivity analyses were performed to examine
the impact of the parameters of a/b and β′ on the

selection of the optimal thresholds (figures 7 and 8).
In the first analysis, we evaluated the R2 and root
mean squared error (RMSE) between the optimal
thresholds derived from high resolution land cover
data and our logistic model by varying the parameters
(a/b and β′) in a range of possible values (figure 7).
The results indicate that the choice of these para-
meters have small impact on the R2 when a/b is lower
than 0.3, and that R2 values begin to decrease when a/
b is larger than 0.3, and the RMSE reaches its
minimum value when a/b falls in the range of
0.2–0.25, for most regions. More important, the
RMSE is as low as 4 when a/b is within a range of
0.15–0.3, for all regions. The impact of parameter β′
on the R2 is also minor, and it reaches its maximum
R2 value around 0.9 in most regions when β′ falls in
the range of 0.75–1.0. The RMSE is as low as 3 when β′
is within the same range.

Figure 5.Distribution of countries in terms of percentage of urban land area, for different regions, globally.

Figure 6.Urban area distribution by longitude and latitude. Urban area and percentage are calculated in each 1/12° of longitude and
latitude zone. Red is total urban area in each zone and blue is urbanized percentage of total land area in each zone.
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The first sensitivity analysis indicates that the sen-
sitivity of the optimal thresholds to the two parameters
(a/b and β′) is low when these parameters are suffi-
ciently close to their optimal values. Then, in the sec-
ond analysis, we examined the difference between
optimal thresholds from high-resolution land cover
data and those using the logistic model with para-
meters of a/b= 0.23 and β′ derived from the regression
equation for each region (figure 8). The results indi-
cate that the parameterization method in the logistic
model based on a regression equation for the para-
meter β′ together with a mean value (0.23) for the
parameter a/b performs well in determining the opti-
mal thresholds for all study regions.

3.3. Evaluation
We compared the global map of urban extent from
NTL to five previously published and widely used
global urban area products approximately for the
same period. These include (1) MODIS 500 m urban
map (2001–2002); (2) GlobCover (2005); (3)
GLC2000 (2000); (4) global rural–urban mapping
project (GRUMP) (1995); and (5) NOAA's imper-
vious surface area map (IMPSA) (2000–2001), at the
pixel level for two selected sites (figure 5), and

regionally (figure 9). The derived urban area from
MODIS data is defined as built environment includ-
ing all non-vegetative and human-constructed facil-
ities that cover greater than 50% of a given landscape
unit (Schneider et al 2009). The urban area estimates
in GlobCover and GLC2000 are defined as artificial
surfaces and associated areas (Bartholomé and Bel-
ward 2005, Bicheron et al 2008). The urban area in
GRUMP is defined as urban extents with the total
population greater than 5000 persons (CIE-
SIN 2011). The urban areas in IMPSA is based on
the density of impervious surface area (Elvidge
et al 2007b).

For the first site in Japanwith highly urbanized land,
our newly developed product shows the greatest similar-
ity in spatial pattern and urbanization magnitude with
theMODIS product. The extent of urban areas in Glob-
Cover andGLC2000 ismuch smaller compared to other
datasets, while the urban extent inGRUMP is the largest
among the six products. The urban extent in IMPSA is
similar to our estimate and the MODIS product, but its
magnitude is smaller. For the second site in Brazil with
medium urbanized land, the urban extent and magni-
tude in our data, the MODIS product, and IMPSA are
similar, while the urban extent is still smaller in

Figure 7. Sensitivity of the optimal thresholds for parameters of a/b (top) and β′ (bottom). a/b and β′ are the parameters in the logistic
model. The region numbers correspond to those in thefigure 2.
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GlobCover and GLC2000, and larger in GRUMP com-
pared to the other products.

Similar to the comparison at the two selected sites,
total urban land area in our newly developed product
is closest to the MODIS product at both global and
regional levels (figure 9). Urban areas in GlobCover
and GLC2000 are generally lower than all other pro-
ducts, and urban area in GRUMP is the highest at the
global and regional levels. Urban area in IMPSA is

generally lower than our estimation and those from
MODIS product, except for Asia. There are several fac-
tors, such as definition of urban extent and data used,
contributing to the difference between products. Dif-
ferent from these products, often limited by the tem-
poral coverage of used geospatial data, the proposed
method in this study provides the possibility to build
temporally updateable urban area maps using the long
time series ofDMSP/OLSNTLdata.

Figure 8.Comparison between optimal thresholds derived fromhigh-resolution land cover data and those from the logisticmodel
using parameters of a/b (=0.23) and β′ (estimated from a regression equation). The numbers on the gray strip correspond to those in
the figure 2.

Figure 9.Urban areas (on a log scale) from six datasets, at the regional and global levels.
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We evaluated our urban area product at the pixel
level using the five global urban products discussed
above as reference data (figure 10). A kappa coefficient
of 0.41–0.60 indicates moderate agreement, and a
value of 0.61–0.80 indicates substantial agreement
(Viera and Garrett 2005). Based on this analysis, we
find our newly developed urban area product to be in
substantial agreement with the IMPSA product for
most regions, globally. One reason for this high degree
of agreement is that both products use the same input
data, including NTL and NLCD, in mapping urban
areas. As the IMPSA method requires auxiliary data
such as gridded population, it needs more effort to
develop a global product. The requirement for aux-
iliary data also limits its capability in mapping tem-
poral urban dynamics. It would be useful in future
work to examine if the methodologies developed here
could be extended to also produce information on
impervious surface area, given its importance for
applications such as hydrologymodeling.

The agreement for North America is also high
between our product and all other products except for
GlobCover. For all regions, our product is inmoderate
agreement with MODIS product, and especially in
substantial agreement for North America, South
America, and Oceania. At the global level, our product
is in almost substantial agreement with MODIS pro-
duct. Our newly derived urban area map achieves an
overall high comparability with other five products for
all regions. According to themeasurement of omission
error, our product varies the most compared with the
GRUMP product, while the omission error is the

lowest compared with IMPSA product. The omission
error for urban area in our product is lowest in North
America, as compared with all five products. Accord-
ing to themeasurement of commission error, our pro-
duct varies the most compared with the GlobCover
product, while the commission error is lowest com-
pared with GRUMP product. The commission error
for urban area in our product is lowest in Oceania
region, comparedwith allfive products.

In addition to the evaluation against other pro-
ducts at the global level, we chose Europe, a region not
used in ourmodel development, to assess the accuracy
of the derived urban extent using the 100 m spatial
resolution Corine land cover 2000 data set (Büttner
et al 2004). While our global product is targeted for
large-scale urban areamapping andmonitoring, and it
is also limited by the spatial resolution of NTL data, we
believe that the resulting pixel level accuracy (overall
accuracy of 87%, Kappa coeeficient of 0.55, producer
accuracy of 96%, and user accuracy of 88%) for Eur-
ope is reasonably good.

4. Conclusions

We developed a global urban area map at 1 km spatial
resolution based on a new cluster-based approach
applied to DMSP/OLS NTL data. The comparison of
our product with other five global urban area products
indicates that the new product is robust and provides a
reliable estimation of global urban land area. A
sensitivity analysis shows that the parameterization

Figure 10.Comparison of urban area between newly developed urban areamap and five previously published global urban areamap
products.
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method in the logistic model performs well in
determining the optimal thresholds for delineating
urban extent fromDMSP/OLSNTL observations.

We found the global urban land area to be about
0.5% of total land area. Regionally, it ranges from
0.1% in Oceania to 2.3% in Europe. Nationally, urban
land area varies from lower than 0.01% to higher than
10%, with urban land area being less than 1% in more
than 70% countries. The latitudinal zones around 30°
N have the largest urban area, with highest urbanized
land areamovingNorthward to the 45°N region. Gen-
erally, the largest urban land area is located in 30° N to
45° N region. Longitudinally, there are several highly
urbanized zones, and the highest region is around 80°
W. This information is of great value for developing
adaptation and risk management measures for urban
infrastructure and systems, in the context of global
environmental changes and their impacts on natural
ecosystems, people and infrastructure.

One avenue for future research is to address the
lack of globally consistent urban area product over a
sufficiently long period of time. Such a time-series
would be valuable for uncovering drivers of urban
expansion, modeling urban growth dynamics, and
predicting future urbanization. Although there are
multiple historical maps, they are often static and non-
continuous in capturing urban extents across time and
space; additionally, these maps are often incompatible
due to the use of varying urban definitions, data, or
methods. These limitations highlight a pressing need to
develop consistent global urban maps over time. The
method developed in this study allows the use of
DMSP/OLS NTL data, which has been acquired con-
tinuously since 1992, without using supporting data
such as vegetation index that may be limited in tem-
poral coverage. The simplicity of our proposedmethod
together with the availability of long-term satellite data
sets shows promise for rapidly monitoring urban areas
globally and regionally.
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