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Abstract
Climate variability and extremes are expected to increase due to climate change; thismay have
significant negative impacts for agricultural production. Previouswork has primarily focused on the
impact ofmean growing season temperature and precipitation on rainfed crop yields with little work
on irrigated crop yields or climate extremes and their timing. County-level crop yields and daily
precipitation and temperature data are pooled to quantify the impact of climate variability and
extremes on fourmajor staple crops in theUnited States. Conditional density plots are used to
graphically explore the relationship between climate extremes and crop yields, thereby avoiding
assumptions about linearity or underlying probability distributions. Non-linear and threshold-type
relationships exist between yields and both precipitation and temperature climate indices; irrigation
significantly reduces the impact of all climate indices. In some cases, this occurs by shifting the
threshold, such that amore extremeweather event is necessary to negatively impact yields. In other
cases, irrigation essentially decouples the crop yields from climate. This work demonstrates that
irrigationmay be a beneficial adaptationmechanism to changes in climate extremes in coming
decades.

1. Introduction

In the coming decades, we are presented with the
challenge of feeding a growing population in the face
of climate change—two potentially major stressors to
the global food system. Some studies have predicted
that an expansion in cropped area will be necessary in
order to increase production to meet growing food
needs, but many of these regions may be in marginal
regions and require irrigation (Bruinsma 2009). From
an agricultural perspective, irrigation water use is a
positive phenomenon, leading to increased yields and
more stable production, but little research has focused
on how it buffers against a range of climate extremes to
better inform predictions of climate change impacts in
the agricultural sector.

There is a significant body of literature linking cli-
mate conditions and crop yields, particularly in the
context of the potential impacts of climate change on
agricultural productivity. Using crop models and

future climate scenarios from global circulation mod-
els, a decrease in agricultural production is predicted,
although uncertainty exists in the crop responses to
certain conditions, including crop response to high
temperatures (Rosenzweig et al 2014). Regional stu-
dies indicate a projected decrease in the mean yield of
eight major crops grown in Africa and South Asia by
2050 (Knox et al 2012). Using historical data to under-
stand crop yield responses to climate conditions, it was
found that both temperature and precipitation are key
factors for predicting yields (Lobell and Burke 2008),
with growing season precipitation and temperature
explaining over 30% of year-to-year yield variations
(Lobell and Field 2007). Statistical models have
demonstrated that temperature trends have caused
decreased maize and wheat production globally
(Lobell et al 2011). A recent meta-analysis has shown
that decreases in global wheat, rice, andmaize produc-
tion will occur due to climate change without adapta-
tion (Challinor et al 2014). These studies are useful for
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anticipating the effects of climate change on crop
yields; however large spread exists across the modeled
crop yield responses, as has been shown for wheat
(Asseng et al 2013), leaving open questions about how
to adapt to mean growing season changes over the
coming decades.

In addition to growing season mean temperature
and precipitation affecting yields, studies have sug-
gested increasing climate extremes and variability will
affect crop yield and production (Rosenzweig
et al 2001, Porter and Semenov 2005). Despite this, few
studies specifically analyze the impact of extremes,
either with historical data or in model projections. For
example, crop model simulations that use GCM out-
put (Rosenzweig et al 2014) contain climate extremes
that can affect the yields but the analysis is done as a
yield response to mean temperature change. This is
unsurprising: it is challenging to aggregate data across
a variety of growing regions, and most climate studies
look at response as a sensitivity function to degree
temperature change (or precipitation change). How-
ever, extremes are equally important to consider. For
example, maize yields in the United States appear to be
increasingly sensitive to drought, despite the yield
increases over the past decades (Lobell et al 2014).
Extreme heat (greater than 34 °C) negatively impacts
wheat yields in India (Lobell et al 2012). Losses of
maize yields and spring wheat yields are projected to
double by the 2080s due to increases in heat stress at
anthesis (Deryng et al 2014). Observed data collected
through a controlled environmental experiment in
Germany has confirmed the impacts of heat stress on
rye and wheat yield decline (Siebert et al 2014). Higher
night temperature extremes (32 °C) can impact rice
yields (Mohammed and Tarpley 2009). Rainfall varia-
bility is also crucial for interannual yield variability at
aggregated level and at the plot level. A drought index
was found to be associated with several winter and
spring sown crop yields at county level in Czech
Republic (Hlavinka et al 2009). All of these studies not
only point to the importance of better understanding
of the impact of climate extremes on yields across
growing regions but also to the challenges to studying
climate extreme impacts.

Irrigation allows crop cultivation in climates that
do not receive sufficient rainfall and buffers stress due
to climate variability and extremes on agricultural
production. Irrigated agriculture provides a significant
contribution to global grain production: irrigated
lands are 17% of total cropped land, yet they provide
40% of global cereals (Cai 1999, Rosegrant et al 2002,
Siebert and Döll 2010). Even in regions with sufficient
seasonal rainfall, irrigated yields can surpass rainfed
yields (Grassini et al 2009), likely due to sub-seasonal
variability in rainfall. Pearson’s correlation coefficients
calculated for yields and climate variables, such as
mean, maximum, and minimum temperatures, pre-
cipitation, and radiation, revealed varying correlation
strengths depending on the climate index and timing

of extreme. For example, rainfed maize is more sensi-
tive than irrigated maize to maximum temperature
earlier in its growing season (pre-silking); later in the
growing season (post-silking), rainfed and irrigated
maize shows the same sensitivity to maximum tem-
peratures (Grassini et al 2009). Many of these studies
use correlation coefficients to establish a relationship
between climate and yields. However, correlation
coefficients assume a relationship exists throughout
the distribution of the data; for extreme climate indi-
ces this may not be the case. Quantifying the impact of
climate extremes on rainfed versus irrigated agri-
culture will allow for better climate adaptation plan-
ning in the agricultural sector.

To fill the gap in our understanding of the impact
of extremes on crop yields, both irrigated and rainfed,
this study uses historical, county-level data over the
United States. By pooling each county and year toge-
ther, we are able to overcome the typical small sample
size that plagues analysis of extremes. By using novel
graphical techniques, we are able to establish which
extremes negatively impact crop yields with no a priori
assumptions about the form of relationship (e.g. lin-
ear, quadratic, etc). Utilizing a USDA dataset that
includes both irrigated and rainfed yields for a subset
of US counties, the analysis presented here is able to
evaluate how much irrigation can mitigate against the
effects of climate variability and extremes, thereby
providing a more nuanced view of agricultural water
use which can further help in assessment of agri-
culture, irrigation, and water resources in the coming
decades.

This study has several objectives. First, we intro-
duce a graphical technique useful for establishing rela-
tionships between two variables in large datasets. The
technique allows for a representation of the probabil-
istic response of crop yield to climate indices. Second,
we use this technique to evaluate the effect of climate
(both seasonal means and extremes) on crop yields at
the county-level in the US. This provides an analysis of
data at larger spatial scales to complement the many
field-scale studies on this topic. Third, using a subset
of the counties for which data is available, we quantify
the effect irrigation has on increasing crop yields
under different climate conditions.

2.Data andmethods

Daily precipitation, daily minimum temperature and
daily maximum temperature were taken from a
dataset at 1/8° spatial resolution covering the con-
tinental United States for the period 1948–2010
(Maurer et al 2002). It was interpolated to the 3111
counties across the conterminous United States (Devi-
neni et al in review). To focus on the impact of climate
extremes, nine climate extreme indices were calculated
from this dataset (table 1), many following those laid
out in (Tebaldi et al 2006).
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The crop yields were taken from the USDA
National Agriculture Statistics Survey’s Quick Stats
database (http://quickstats.nass.usda.gov/), which
contains average yearly crop yields on a county basis
for wheat, soy, rice, and corn as well as many other
crops. The USDA database also contains separate esti-
mates of irrigated and rainfed yields at the county
level, which is used to quantify the buffering capacity
of irrigation against climate extremes, although the
data only exists for a limited number of counties,
mostly in the High Plains region. The USDA’s Usual
Planting and Harvest for US Field Crops identifies
active planting and harvesting months for each crop
and state. We performed separate analyses for the
planting and growing seasons, where the growing sea-
son is defined as the months between the planting and
harvestmonths.

The growing season mean is calculated based on
information from USDA’s Usual Planting and Har-
vesting for US Field Crops publication. For each state
and crop, the publication identifies active planting and
harvesting months. The growing season is defined as
the end of active plantingmonths and the beginning of
active harvesting months (when the crops are sown
and lie inside ground), and it is defined by state rather
than county. The growing season mean is calculated
for each county and each crop for each year. The plant-
ing season mean is calculated by taking the average
between the start of active planting months and the
end of the active planting months, in the same way the
GSMwas calculated.

Crop yields typically have positive trends due to
technological innovation, improvements in seeds,
changes in growing practices, etc. To account for this
trend, we standardized the data using a seven-year
movingwindow:

=
− − +

− +
Y

y y

tstd( )
(1)t

t t t

t t

3: 3

3: 3

Yt is the standardized yield value, yt is the original yield
value, − +yt t3: 3 is the mean of the original yield values
for the seven-year moving window centered around
that year, and − +tstd( )t t3: 3 is the standard deviation of
the original yield values for the same seven-year
moving window. This methodology was used rather
than the year-to-year differences as this then produced

standardized anomalies that allowed for pooling of the
county data for statistical power. Figure S1 (supple-
mentary material available at stacks.iop.org/ERL/10/
054013/mmedia) depicts the crop yield time series
before and after detrending and standardization. The
same procedure was done for the climate data.

Because extremes occur rarely by definition, one
would expect to only have a few occurrences over sev-
eral decades in a single location. Therefore, rather than
analyze each county individually, we pool all the stan-
dardized county data for each crop together to evalu-
ate the impact extremes have on crop yields. This also
leads to a better sample size and consequently enhan-
ces statistical power. Figure 1 shows the growing
regions for corn, soy, winter and spring wheat and rice
—the crops considered in this study. Figure 2 shows
examples of the relationship (or lack thereof) between
four of the standardized climate indices in table 1 and
standardized yields for five crops in each crop’s corre-
sponding largest producer state. Significant spread
exists in the relationship between the climate extreme
and the yields. In some instances, such as Kansas win-
ter wheat yields and dry spells, there is little evidence of
a relationship. In other instances, the locally weighted
regression (LOESS) fit indicates there could be a non-
linear relationship with threshold behavior, where
yields are unaffected by a climate index until a certain
threshold is reached. This is seen with Iowa’s corn
yields andmaximum temperature.

As displayed in the LOESS regressions in figure 2,
some climate extremes may potentially impact crop
yields, and the relationships could possibly exhibit
nonlinear behavior. Hence, rather than make any
a priori assumptions about relationships between cli-
mate and yield (linear, quadratic, etc), we calculate
and plot the conditional density functions and high
density regions for associated variables of interest
(each climate index and yield). This technique takes
advantage of the large dataset to establish relationships
based on conditional density functions, such that
changes in the density (or probability) of a yield value
with a climate index can be clearly plotted with no
assumptions about the relationship (or existence of a
relationship) between yield and climate. For the high
density plots, we utilized the R package ‘hdrcde’
(Hyndman andYao 2002,Hyndman et al 2013).

Table 1.Climate extremes calculated for eachmonth of the growing season (definedwith their abbreviation in the figures).

Variable name in figures Variable explanation

Dryspell Maximumnumber of consecutive dayswith no precipitation

Max.five-day Prcp Maximumprecipitation in a five-day period

Prcp. intensity Mean daily precipitation given therewas precipitation

Total prcp. Totalmonthly precipitation

Max. temp. Monthlymaximum temperature

Mean temp. Monthlymean temperature

Min. temp. Monthlyminimum temperature

Heatwaves Number of consecutive days where the temperature is at least 5 °C above themean climatology

#Hot days Total number of days when the temperature goes above 25 °C

3

Environ. Res. Lett. 10 (2015) 054013 T J Troy et al

http://quickstats.nass.usda.gov/
http://stacks.iop.org/ERL/10/054013/mmedia
http://stacks.iop.org/ERL/10/054013/mmedia


3. Results

3.1. Impact of climate variability and extremes on
yields across theUS
To explore the impact of extremes on yields, the
conditional density functions for each crop yield
and climate extreme are plotted. Figure 3 shows the
relationship between precipitation indices (duration

of dry spell, average precipitation intensity, seasonal
precipitation, and maximum five-day precipitation)
and county average crop yields, pulling together all
counties, regardless of irrigated or rainfed, for all
five crops (where spring and winter wheat are
separated). The plots show both the mode of the
yield and the spread of the data conditioned on the
climate index.

Figure 1.Map of the growing regions for corn, soy, wheat, and rice used in this study. Data used to create themaps are taken from
USDA’s Quick Stats database.

PRECIPITATION
    INTENSITY

       TOTAL
PRECIPITATION HEAT WAVES

    MAXIMUM 
TEMPERATURE

    MINIMUM 
TEMPERATUREDRY SPELL

   
   

 IO
W

A
C

O
R

N
 Y

IE
LD

  I
LL

IN
O

IS
SO

Y 
YI

EL
D

N
O

R
TH

 D
A

K
O

TA
SP

R
IN

G
 W

H
EA

T 
   

   
   

YI
EL

D
K

A
N

SA
S 

W
IN

TE
R

  W
H

EA
T 

YI
EL

D

2

1

0

0

-1

-2

2

1

0

-1

-2
-1.5 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

-1.0-1.5 -0.5 0.0 0.5 1.0 1.5-1.0-1.5 -0.5 0.0 0.5 1.0-1.0 -0.5 0.0 0.5 1.0

-1.0-1.5 -0.5 0.0 0.5 1.0-1.0 -0.5 0.0 0.5 1.0-1.0 -0.5 0.0 0.5 1.0-1.0 -0.5 0.0 0.5 1.0-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0 -0.5 0.0 0.5 1.0

-1.0-1.5 -0.5 0.0 0.5 1.01.5

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1
-2

-3

2

0

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

2

1

0

-1

-2

-1 1

0-1 1 0-1 1 0-1 1

0-1 1

0-1 1 0-1 1

2 0-1 1 0-1 10-1 1

0-1 1

Figure 2.Examples of relationships (or lack thereof) between standardized climate extremes (x-axis), as defined in table 1, and
standardized crop yields (y-axis). For eachUS county in the four states shown, the value for a single year and county is plotted as a
single dot, resulting inmany data points pooled together. Although all states are used in themain analysis, for illustration purposes,
the figure shows the largest producing state for each crop. Kendall’s tauwas calculated for each crop in each state for each climate
variable in thefigure. Thefigures above have statistically significant tau values (p-values <0.05). The top row shows the effects of
different extremes on corn yields in Iowa; the second row Illinois soy yields; the thirdNorthDakota springwheat yields; and the
bottomKansaswinter wheat yields. The blue lines are the LOESS bestfits surrounded by 95% confidence intervals in darker grey.
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Rice exhibits little sensitivity to the precipitation
indices, with the exception of precipitation intensity;
this is likely because rice is predominantly irrigated.
Interestingly, this holds true for winter wheat as well,
despite being primarily rainfed. Corn and soy demon-
strate a decrease in yields with longer duration dry
spells during the growing season; this response is less
pronounced in wheat. Lower average precipitation
intensity, seasonal precipitation, and maximum five-
day precipitation all result in declines of corn and soy
yields. Spring wheat shows sensitivity to precipitation
intensity, displaying a monotonic relationship
between mean precipitation intensity and the mode of
standardized yields. It is possible that seasonal pre-
cipitation and the other precipitation characteristics
are positively correlated, resulting in similar relation-
ships with corn and soy yields. For example, seasonal
precipitation might be more a function of the pre-
cipitation intensity than the number of rain days.
Many of the indices that affect yields do so with a
threshold behavior rather than a linear or nonlinear
relationship. This is seen in maximum five-day pre-
cipitation and yields: although yield increases con-
tinuously with maximum five-day precipitation, it

decreases with the highest recorded value of these cli-
mate indices for all crops except rice.

Figure 4 shows the conditional probabilistic rela-
tionships between temperature indices and yields for
the same crops. As with precipitation indices, rice
shows little sensitivity to temperature extremes. Win-
ter wheat shows little variability with the temperature
climate indices, with the exception of lower (higher)
mean growing season temperatures resulting in higher
(lower) yields and a small decline in yields during high
maximum temperatures. For spring wheat, heat
waves, the number of hot days, and higher maximum
temperatures all result in lower yields. For corn and
soy, both show an overall decrease in yields with
longer duration heat waves, with the decrease occur-
ring abruptly as a threshold. The same is also true for
higher maximum temperatures and mean growing
season temperatures. Furthermore, corn and soy show
increases in standardized yields for the hottest heat-
waves and the largest number of hot days, which is
counterintuitive and perhaps an artifact of the data.

Different relationships exist during the planting
season as compared to the growing season (figures S2
and S3 available at stacks.iop.org/ERL/10/054013/

Figure 3.Conditional probabilistic relationships between four different growing season precipitation characteristics (duration of dry
spell, precipitation intensity, seasonal total precipitation, andmaximum five-day precipitation, respectively in rows) and yields (y-
axis) for each crop. Corn is in the left column; soy in the next; followed by springwheat, winter wheat, and rice. The black dot in each
panel of the figure is themode of the conditional probability of yield for each slice of the climate index values; the darkest grey color
contains the 50%highest density region, themedium grey the 95%density, and the light grey the 99%density.
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mmedia). Corn shows little sensitivity to any of the cli-
mate indices. Low planting season precipitation inten-
sities negatively impact soy yields, which is the
opposite of the response during the growing season.
Spring wheat has similar responses to total precipita-
tion and maximum five-day precipitation, with lower
precipitation anomalies resulting in yield decreases.
With the exception of the number of hot days in the
season, the spring wheat does not exhibit sensitivity to
the same temperature indices during the planting sea-
son as it does during the growing season.Winter wheat
and rice show little sensitivity to any of the climate
indices during the planting season, except that rice
yield increases with mean temperature and the max-
imum temperature up to a certain point before it is
unaffected by further increases in maximum
temperature.

3.2. Impact of irrigation to buffer against climate
variability and extremes
Figure 5 repeats the analysis of figure 3, but separates
irrigated and rainfed (non-irrigated) agriculture. This
analysis is confined to the High Plains states, as they
are the ones to report both irrigated and rainfed yields
separately. It is clear from this figure that irrigation
provides a significant buffer against climate extremes
and variability. For example, the decrease in yields
with seasonal rainfall for corn and soy is significantly
reduced. In fact, for every precipitation index that

caused a reduction in yield for a rainfed crop, the effect
is either reduced or eliminated for the irrigated crop.
This is especially true for the dry spell duration because
irrigation water is applied during dry times. In some
cases, it significantly extends the threshold before a
decline in yield is experienced, as with soy yields and
the dry spell duration.

Figure 6 extends the analysis of figure 5 for tem-
perature indices. Like precipitation, irrigation reduces
the impacts of temperature extremes in many cases.
For example, irrigated corn and soy shows a less sensi-
tive relationship with all five temperature indices as
compared to rainfed corn and soy. Irrigated corn has a
reduction in yield due to the number of hot days in the
growing season, but the impact is much more moder-
ate as compared to rainfed corn. This is true for other
temperature indices for corn and for spring andwinter
wheat. The above findings also hold if the climate
extremes occur during the planting season (see sup-
plementary material available at stacks.iop.org/ERL/
10/054013/mmedia, figures S4 and S5). For each cli-
mate index that has an adverse impact on yields, irriga-
tion either eliminates the relationship during the
growing season or modulates it through reducing its
severity or the threshold at which it occurs. Irrigation
can play a large role in buffering against climate
extremes during the planting season as well (figures S4
and S5 available at stacks.iop.org/ERL/10/054013/
mmedia). Irrigated corn shows no sensitivity to any of

Figure 4.As infigure 3, but for five different temperature characteristics and yields across the growing season for each crop.
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the planting season climate indices, with the exception
of mean temperature, where there is a very slight
decrease in yields with colder planting seasons (figure
S5 available at stacks.iop.org/ERL/10/054013/
mmedia). Rainfed corn shows decreases in yield in
response to many of the climate indices. Irrigated soy
and spring wheat also show little response to the cli-
mate indices; whereas there is a response in the rainfed
crops.

In order to explicitly examine the irrigated yield
gains as a function of climate, figures 7 and 8 plot the
yield differences (irrigated yield—rainfed yield)
against the non-standardized values of the growing
season climate indices used in previous figures for pre-
cipitation and temperature indices, respectively. Over-
all, winter wheat shows the least sensitivity in yield
differences across the climate indices. As one would
expect, the benefit of irrigation increases for corn, soy,

and spring wheat with longer dry spells. The yield dif-
ferences decline with precipitation intensity, total sea-
sonal precipitation, and maximum five-day
precipitation, with some increases in the right tail of
the climate distributions for spring wheat. These three
precipitation indices are correlated with each other in
the region where both irrigated and rainfed yields are
reported (correlation coefficients ranging from 0.69 to
0.82), making it difficult to attribute which climate
variable causes yield responses. Corn and soy show a
benefit of irrigation for as maximum temperatures
increase until the temperature reaches approximately
34 °C when a decrease in the irrigation benefit is seen.
Previous studies have demonstrated a threshold effect
of temperature, such as rainfed yields decreasing with
temperatures greater than 30 °C (Lobell et al 2013),
and it could be that irrigation only moves this thresh-
old rather than eliminates it. A monotonic increase in
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Figure 5.As infigure 3, but irrigated and non-irrigated crop yields are segregated in order to understand the buffering effects of
irrigation on yields during climate variability and extremes.
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yield differences exist for spring wheat versus mean
growing season temperature. Winter wheat shows a
step change in the yield differences when the number
of hot days exceeds ten per season.

4. Conclusions and discussion

We are able to estimate the impact of climate extremes
on crop yields, graphically, by pooling all the counties
together, which significantly increases the number of
data points in the tails of the distributions and
enhances statistical power. This study provides a good
generalization of US-wide impacts of climate extremes
on crop production. Our method of analysis pools
together crops grown across a range of climates given
the large size of the United States. This assumes that
farmers plant crop varieties particularly suited to their
local climate, so that standardized anomalies have
similar impacts on yields regardless of the mean
climate. This may not reflect certain thresholds of
extremes that exist regardless of cultivar choice. For
example, corn and soy yields have been shown to have
an optimum growing temperature of 29 °C and 30 °C,
respectively; temperatures above this threshold result
in yield decreases (Schlenker andRoberts 2009).

Irrigation is shown to have a beneficial impact in
increasing yields and provides a significant buffer
against both precipitation and temperature-derived
climate indices. For example, the mode of yield

differences is over 100 bu/ac for growing season max-
imum temperatures of 33 °C. The physicalmechanism
for why irrigation changes the crop response for tem-
perature-related indices is an open question. This
could be because temperature affects the potential eva-
potranspiration and irrigation would reduce water
stress induced by high potential evapotranspiration.
However, it also could be that there is a local decrease
in temperature due to evaporative cooling: Bonfils and
Lobell (2007) demonstrated a decrease in maximum
temperature in irrigated regions. Because this work
uses county-average temperature data, there could be
local cooling that is averaged out at the county scale.
Identifying the exact mechanism would require
detailed process-based modeling at the field scale. In
addition, canopy temperatures experienced by the
crop may differ from the measured air temperature at
2 m. Siebert et al (2014) showed that irrigated crops
can have a canopy temperature 2 °C cooler than the
measured and rainfed crops can have a canopy tem-
perature up to 5 °C higher. These differences between
the temperature experienced by the crop and that
measured introduces uncertainty into the analysis
used here, but also provides some insight intowhy irri-
gated crops may behave differently than rainfed under
temperature extremes.

Each climate index was analyzed independently to
evaluate the impact of that extreme on crop yields. It is
possible that some of these climate indices are

Figure 7.As infigure 3, but the x-axis contains the non-standardized growing season climate index and the y-axis contains the non-
standardized difference between irrigated and rainfed yields (bu/ac).
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correlated, and it is therefore difficult to know which
(or if both) variables are determining the change in
crop yields. For example, precipitation intensity, sea-
sonal total precipitation, and maximum five-day pre-
cipitation are all correlated with one another, with
correlation coefficients ranging from 0.69 to 0.82. The
methodology in this paper focuses on correlative rela-
tionships and the results do not necessarily imply cau-
sation. In addition, some of the climate indices are
possibly correlated among each other: e.g., the prob-
ability of a heat wave during a dry period may be
higher than climatology. This leads to interesting
questions of which extreme primarily affects the crop
yield or if the combination ofmultiple extreme indices
results in further yields decreases. Further work could
entangle this by evaluating the combined effects of
concurrent extremes, such as drought and heat waves,
as well as solo temperature and precipitation events to
ascertain how the yield response differs. When trans-
lating these results to agricultural vulnerability to cli-
mate, concurrent extreme values should be considered
in order to not overestimate the yield declines due to
climate extremes. Other variables besides climate will
influence crop yields, such as soil texture, soil depth,
cultivar, and farming practices, all of which are not
considered in this study. It is possible that these vari-
ables could be causing the large spread in crop respon-
ses to climate, and it remains an open question how
large a role these other variables play.

The strengths of themethodology used to quantify
the distribution of crop yield responses to climate
indices are also its limitations. The graphical

technique allows for a complete representation of all
the data, which can allow for a better understanding of
the stochastic nature of crop responses to climate.
However, it does not provide any insights into the
physical mechanisms of the crop response nor does it
demonstrate causation, only correlation. Much of the
interpretation is visual rather than quantitative. The
methodology allows for relatively quick computa-
tional displays of relationships between two variables
in large datasets, which can then allow researchers to
focus on the variables of interest in amore quantitative
framework.

These analyses were all performed for the United
States, which covers a number of climate zones. As
such, these results are believed to be robust predictors
of the impact of climate on the yields of wheat, soy,
rice, and corn in the US. However, before extrapolat-
ing the relationships globally, they should be con-
firmed in other geographic regions where relatively
fine spatial scale agricultural yield data is available. The
spatial resolution neededmakes this difficult: country-
level agricultural production and yields are readily
available, but it would be difficult to ascertain what
was irrigated and what was rainfed. It would also be
difficult to tease out the impact of climate extremes on
yields given that the extremes rarely occur over the
entire growing region, so that some cropped areas
would be affected and others would not. Unfortu-
nately, sub-national data outside the US is often diffi-
cult to obtain except at field research sites. This is
challenging as there may be only one or two of each
climate extreme in the historical record at each site,

Figure 8.As infigure 7 but for the temperature climate indices.
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whichmakes establishing any impact on yields statisti-
cally problematic.

It is likely that extremes will increase in intensity
and frequency in the coming decades. How these
extremes will impact crop production is of consider-
able interest as it is also expected that population will
continue to grow, potentially stressing an already
stressed food supply. Based on these results, irrigation
can provide a potent buffer against both precipitation-
and temperature-related climate extremes. However,
any expansion of irrigationmust be considered against
the available water resources, both in terms of the
mean and the extremes, so that a reliable food supply is
not prioritized at the expense of reliable water resour-
ces. In the US, many parts of the country experience
water scarcity due to both climate variability
(droughts) and anthropogenic water use. In addition,
agricultural runoff can decrease water quality down-
stream. Irrigation should therefore be considered as
one way of buffering against climate extremes where
appropriate; other measures such as increased grain
storage capacity should also be considered given the
expected increased exposure of the food system to
extreme events.
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